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Abstract—The Internet has changed drastically in recent years,
multiple novel applications and services have emerged, all about
consuming digital content. In parallel, users are no longer
satisfied by the Internet’s best effort service, instead, they expect a
seamless service of high quality from the side of the network. This
has increased the pressure on Internet service providers (ISP)
in their effort to efficiently engineer their traffic and improve
their end-users’ experience. Content providers from their side,
and to further protect the content of their customers, have
shifted towards end-to-end encryption (e.g., TLS/SSL), which has
complicated even further the task of ISPs in handling the traffic
in their network. The challenge is notable for video streaming
traffic which is driving the Internet traffic growth, and which
imposes tight constraints on the quality of service provided by
the network depending on the content of the video stream and
the equipment on the end-user premises. Video streaming relies
on the dynamic adaptive streaming over HTTP (DASH) protocol
which takes into consideration the underlying network conditions
(e.g., delay, loss rate, and throughput) and the viewport capacity
(e.g., screen resolution) to improve the experience of the end
user in the limit of available resources. Nevertheless, knowing
the reality of the encrypted video traffic is of great help to ISPs
as it allows taking appropriate network management actions.
In this work, we propose an experimental framework able to
infer fine-grained video flow information such as chunk sizes
from encrypted YouTube video traces. We also present a novel
technique to separate video and audio chunks from encrypted
traces based on Gaussian Mixture Models (GMM). We evaluate
our technique with real chunk sizes (Audio/Video) collected
through the browser using the Chrome Web Request API [1].
Then, we leverage these results and our dataset to train a model
able to predict the class of viewport (either SD or HD) per video
session with an average 92% accuracy and 85% F1 score.

Index Terms—Video streaming, video chunk size, viewport
resolution, YouTube encrypted traces, machine learning.

I. INTRODUCTION

Video traffic is the major contributor to the global Inter-
net traffic and the main source of pressure on the Internet
infrastructure. By 2023, video traffic will account for 73%
of the global mobile data traffic [2]. Besides major video
streaming platforms such as YouTube and Netflix, it also
includes sharing video through social networks, or offering
direct video connectivity (e.g., Messenger). Video transmission
over HTTP has changed over the years, it started with videos
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downloaded completely by the clients before being played
out, to videos progressively streamed to the clients at a
fixed resolution. Recently, adaptive streaming over HTTP has
been widely adopted to automatically tune the streamed video
resolution as a function of the available network resources. For
instance, Dynamic Adaptive Streaming over HTTP (DASH)
protocol [3], [4] allows adapting the video quality to the avail-
able bandwidth and the client terminal characteristics (e.g.,
viewport resolution). In plain, DASH divides the video into
segments (e.g., 2 - 10 seconds) with each segment available
in different quality versions. Details on the video availability
at the server are stored in the Media Presentation Description
(MPD) template which describes the video segments in terms
of coding standard and bit rate and is shared with the client at
the beginning of every video session. The choice between the
different video representations is done by the DASH client
taking into consideration the network state and the terminal
capacity with as objective the smoothest possible playout
without excess bandwidth usage.

In light of this rapid growth, Internet service providers
feel more pressure to optimize their network and meet the
expectations of their end users. They give high importance to
video traffic engineering which requires the ability to infer
the context of the video streaming such as the characteristics
of the terminal on which the video is played out and the
resolution of the streamed video. However, this is getting
more difficult because of the end-to-end encryption adopted by
major video streaming platforms (e.g., YouTube, Netflix and
Amazon) [5]. For example, to prioritize or load balance traffic
efficiently, ISPs need information on end-user QoE rather than
just capturing the network Quality of Service (QoS). But,
video QoE is dependent on the content itself (the video bitrate
and resolution) and on the application level QoS metrics such
as start-up delay, duration of stalls and resolution switches [6]—
[8]. It also depends on the resolution of the viewport on
which the video is played out [9]. All this information is
unfortunately hard to obtain from encrypted video traffic,
making their inference an important challenge to solve.

Previous studies manage to highlight some key QoE metrics
such as stalls, average resolution, and representation fluctu-
ations from measurements on the encrypted traffic and by
using machine learning [10]. These studies mainly rely on
the fact that application level metrics are proved to be tightly
correlated to the network level QoS [11]-[13]. However, they



overlook an important information regarding the resolution of
the viewport on which the video is played out and its impact
on the user QoE. Cermak et al. [9] answered partially the
question concerning the bandwidth needs for acceptable video
experience on a set of screen resolutions. Still, downloading
any resolution exceeding the screen resolution (or viewport)
will be automatically downsized, hence resulting in a waste of
bandwidth [14]. However, the literature is missing a solution to
infer this screen resolution from passive captures of encrypted
video traffic.

In this paper, we present a dedicated methodology able
to perform viewport classification from YouTube encrypted
video traces. To that aim, we leverage video chunk sizes and
inband network-level traffic features such as throughput and
download/upload packet inter-arrival time to train machine
learning models able to distinguish HD/SD viewports. More
specifically, our contributions are the following:

o We present a controlled experimental framework to per-
form video streaming experiments at large scale and to
collect YouTube video metadata. We leverage the Chrome
Web Request API to read the HTTP clear text mes-
sages [1] and obtain ground truth on the video streams.

e We stream up to 5K unique YouTube videos, collect
encrypted traces and HTTP clear messages, and show
that chunk sizes and inband network-level traffic features
carry an interesting signature of the viewport resolution.

« We propose a novel approach to separate video and audio
chunks from encrypted video traces based on a Gaussian
Mixture Model (GMM). Then, we validate our work on
inferring video chunk sizes by comparing similarities and
differences with respect to the real video chunk size
distribution derived from HTTP clear messages.

o We train different machine learning algorithms to classify
the viewport resolution. We prove the pertinence of this
classification taking as input chunk statistics and inband
network-level traffic features that can be derived from the
encrypted video traffic.

Overall, the paper is organized as follows. In Section III,
we present the structure of our experimental framework. In
Section IV, we present our methodology to extract video chunk
sizes from YouTube encrypted traces. Then, in Sections V and
VI, we highlight the viewport signature carried by a set of
inband network traffic features and chunk size statistics, and
train and evaluate a classifier able to predict the viewport class
(SD/HD) from encrypted traces. Last, we conclude and present
our future work in Section VII and VIII, respectively.

II. STATE OF THE ART

Traffic identification from encrypted traces is a very active
field of study. Methods based on Deep Packet Inspection
(DPI) offer solutions to inspect and take actions based on the
content of the packets (known as “payload”) rather than just
the packet header. Machine learning (ML) is widely exploited
in the DPI field, as multiple ML based solutions have been
proposed over last years [15]-[17]. ML techniques proved
their efficiency, learning from big data and using statistical

properties of the traffic flow. While constituting a promising
approach, ML techniques require a lot of training and might
struggle in terms of processing complexity if run in real-
time. Another well-known DPI technology is OpenDPI, which
is freely available and includes the latest DPI technology
combined with other techniques making it one of the most
accurate classifiers nowadays [18]. Khalife et al [19] attempt
to reduce the OpenDPI computational overhead by examining
different sampling techniques. Two sampling techniques are
applied and compared (i) per-packet payload sampling, and
(ii) per-flow packet sampling. Enhancing DPI performance
is as active as inventing new DPI technologies, so several
approaches have been proposed including behavioural [20],
statistical [21], port based [22] and DFI (Deep Flow Identifica-
tion) based approaches [23]. Other approaches apply software
based optimization focused on enhancing DPI algorithms,
e.g., [24], while other approaches rely on hardware based
optimisation [25].

In terms of inferring video QoE, and given its tight cor-
relation to application level QoS metrics [6]-[8], researchers
leverage encrypted traffic by passively monitoring the network
and capturing traffic statistics that are then transformed to
video QoE indicators using machine learning. For instance,
one can find work on inferring video interruptions, video
quality and quality variations by observing network-level
traffic statistics [10]. Others use a large number of video
clips to identify specific Netflix videos leveraging only the
information provided by the TCP/IP headers [26]. Dimopoulos
et al [10] propose to use the size of video chunks as input
to machine learning, however, their method requires access
to end-user devices to collect real values about these chunks
from the devices they control, instead of inferring them
from the encrypted packet traces. They also provide the first
heuristic to automatically extract chunk size information from
encrypted traffic based on identifying long inactivity periods
along with the video streaming session. Silhouette, a video
classification method, uses Application Data Units (ADUs)
and network statistics to detect video flows [27]. It lever-
ages downlink/uplink packet characteristics to identify chunk
requests and corresponding information sent by the server
(chunk size), however, it only incorporates static thresholds
making it unable to differentiate between video and audio
chunks.

All the previous studies incorporate techniques targeting
video flow identification and the inference of application
level quality of service. However, in the light of advanced
and diverse equipments, their limitation is in overlooking the
end-user display which is an important factor determining
the end-user QoE. In a previous contribution [28], we take
into consideration the relationship that exists between screen
resolution, video resolution and end-user QoE, and we propose
a resource allocation problem that maximizes the overall QoE
over a set of users sharing the same bottleneck link. In the
present work, we propose to complete the puzzle by proposing
techniques to infer the end-user viewport characteristics from
the encrypted traffic, which together with the information on



the video flow as the streaming resolution and the application
level QoS, can provide the ISP a fine-grained estimation of
the user QoE for a more efficient video traffic management.
To the best of our knowledge, this is the first attempt to
infer the end-user viewport class (SD or HD) using inband
network features and chunk sizes from encrypted video traces.
Moreover, we believe our approach to separate video and audio
chunks from encrypted traces is novel and prove its efficiency
when compared to ground truth collected from HTTP clear
messages through the Chrome web API [1].

III. EXPERIMENTAL SETUP

We play different YouTube videos using multiple viewports,
under different network conditions emulated using Linux traf-
fic control (zc). Each experiment consists of a unique YouTube
video, browser viewport, and enforced network bandwidth. For
every video session, we leverage the Chrome Web Request
API to read the HTTP clear text messages for ground truth
about the requested chunks and the application level quality of
service. Moreover, we dump the encrypted client-server traffic
to pcap files using tcpdump.

A. Overall experimental framework

Our overall experimental setup, described in Fig. 1, consists
of a local mainController running on MacBook Air machine
of 8 GB RAM. Videos are visualized on a Dell screen 27" of
2560 x 1440 resolution. The local mainController stores the
YouTube video catalog and the viewport list, and provides a
random combination of video ID and viewport for every new
experiment as illustrated in Fig. 1. We consider a list of default
standard viewports such as the current YouTube small media
player mode (400x225) along with other default SD viewports
(e.g., 240x144, 640x360 and 850x480). These latter viewports
represent the current player dimensions adopted by streaming
platforms for several watching modes. We also account for
larger viewports by considering the standard 1280x720 and
1920x1080 (HD). As video resolution pattern is a function
of both network conditions and terminal display capacity, we
study the viewport importance while degrading the network
bandwidth. To that aim, we use Linux traffic control fc and
enforce different bandwidth settings such as 3, 6, 9, 15 and
20 Mbps. We also stream with no bandwidth limitation on
Ethernet access to emulate the best case scenario.

B. YouTube catalogue

We use an open source YouTube catalogue [29] to identify
the videos to stream. The catalog was built using the YouTube
API where YouTube was searched with specific keywords
obtained from Google Top Trends website. The authors of [30]
rely on Google’s getvideoinfo API to return the video metadata
for each video identifier in the catalog. The dataset includes
around 1 Million unique video identifiers.

IV. ANALYSIS OF VIDEO STREAMING TRAFFIC

In adaptive video streaming, the client decides on the
resolution of the next chunk to download based on underlying
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Fig. 1: Experimental framework description

network conditions and viewport characteristics. Each view-
port is supposed to exhibit a different video resolution pattern,
which also depends on the available network resources; the
pattern of chunk sizes is the main illustration of such specific
behavior. However, as most of the video traffic is encrypted,
such information on the viewport is not visible to any entity
between the client and the server. Our intuition is to exploit
the specificity of the chunk size pattern to infer the viewport
resolution from encrypted traffic. The problem is that when
the bandwidth starts going scarce either due to congestion
or in-network shaping, clients will automatically be forced to
request lower video resolutions, thus reducing the effect of the
viewport and increasing the difficulty of viewport resolution
inference. To highlight all these aspects, we investigate the
extent to which screens are considered in video transmission
while varying the network bandwidth.

A. Inferring chunk sizes

Overall, we stream up to 5K YouTube unique videos in
series. In general, chunks of a video are fetched using separate
HTTP requests. We propose a method to infer the chunk sizes
from YouTube encrypted video traces. In parallel, we extract
real chunk sizes from the clear text HTTP traces accessed from
within the Chrome browser using the Chrome Web Request
API [1].

As highlighted in [27], [30], for each video streaming ses-
sion (source and destination already known), large sized uplink
packets correspond to chunk requests while small packets
correspond to transport level acknowledgments by TCP/QUIC.
At first, we use the source IP of our host and the list of
destination IPs to isolate the different flows corresponding to
every video session (CDNs identified by the URLs ending with
googlevideo.com). The CDN identifiers can be collected from
the HTTP clear text messages and corresponding IP addresses
can be resolved. Then, we look at the size of each uplink
packet and instead of using thresholds as depicted in [16],
we use K-means clustering to segregate the uplink packet
sizes into two clusters; the first cluster represents the request
packets and the second cluster represents the acknowledgment
packets. Once the uplink request packets are identified, we
sum the data downloaded between any two consecutive request
packets, with this sum representing the downloaded chunk size
corresponding to the first request between the two. Overall, we
leverage clustering for the sake of generality and to make sure
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Fig. 2: Audio/video clusters as produced by GMM

our approach can be reused with other type of ACKs mainly
in the context of other transport protocols.

Up to this point, and as the case for other existing method-
ologies, the calculated chunk sizes mix between audio and
video chunks, whereas we are only interested in the video
part. In fact, the chunks located between consecutive request
packets can be of either of the two types, audio or video,
and so need to be separated. To overcome this limitation,
we leverage Gaussian Mixture Models (GMM) applied to the
chunk size. The GMM clustering algorithm is based on the
maximum likelihood principle, able to find clusters of points
in a dataset that share some common characteristics. Unlike
K-means, the GMM belongs to the soft clustering subset of
unsupervised algorithms, it provides probabilities that tell how
much a data point is associated with a specific cluster. Another
key property of GMM is that clusters do not need to be
topologically separated as with K-means, they can overlap
and still be identified as long as they follow some Gaussian
property for the distribution of their points. In general, video
chunks should have larger sizes than audio chunks, we use
this property to identify the two components of the inferred
chunks (two Gaussian distributions). Each distribution has
three unique values, mean 7, covariance »  that defines its
spread around the mean, and a probability 7 that defines how
big or small one cluster is compared to the other one, the sum
of probabilities of the two clusters is naturally equal to 1.

For our case, we fit a GMM of two components with the
chunk sizes inferred according to the above methodology. To
get a clear visual illustration, we plot in Fig. 2 the two clusters
rendered by the GMM method, over a 2D space of chunk sizes
(MB) and download time (s). In plain, the audio cluster is
defined with a chunk size less than 750 KByte and no more
than 2 seconds download time. The video chunks however can
be of larger sizes and larger download times compared to the
audio chunks.

Thanks to the above method, we are able to identify
the chunks and infer their sizes from the encrypted traces
(audio+video), and further to separate them between video and
audio chunks. However, we still need to test the accuracy of
this method by comparing its output to some ground truth.
Even though we could have obtained the real label of each
chunk of the encrypted traces by matching it to what has been
seen in the browser, this information will not be available to
an operator, so we decided to make sure our GMM method

—— Audio chunks (HTTP requests)
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Video chunks (HTTP requests)
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Fig. 3: Chunk size CDF

provides video chunk sizes that respect the distribution of the
size of real video chunks as seen in the browser.

Overall, we leverage the HTTP request messages collected
from within the browser. These requests include the itag,
range and mime (Multi-purpose Internet Mail Extensions)
parameters, which can be then used to infer the corresponding
resolution, the codec and the size of the chunk using open
source documentation [31], [32]. Fig. 3 compares the chunk
sizes as estimated by our method from the encrypted traffic
traces and the chunk sizes obtained from the clear text HTTP
traces for the same video sessions. The overall distribution of
the encrypted chunk sizes extracted using our method exhibits
the same shape as the one obtained with HTTP requests.
Further, the two distributions produced by our method for
audio and video are very close to those of HTTP requests.
We can also notice how the video chunks, understandably,
have larger sizes than the audio chunks. This helps better
characterizing the video chunks within a trace of encrypted
video traffic, with this result particularly useful in our case
to further understand the interplay between viewport, network
resources and chunk resolution pattern.

B. Video resolution pattern

For DASH, the client automatically switches between video
resolutions according to the viewport and underlying network
performance. The video resolution pattern as requested from
the server is thus determined by the network conditions
captured by the DASH client, and normally has to take into
consideration the viewport size, which is defined as the number
of pixels, both vertically and horizontally, on which the video
is displayed. It is indisputable that the network conditions,
for instance the bandwidth, will reduce the impact of the
screen in scenarios of bandwidth shortage as DASH will
end up downloading chunks of lower resolution than the
viewport capacity. In this section, we present experimental
results supporting these statements and highlight in particular
the reduction of the effect of the viewport as the available
bandwidth decreases.

We artificially change the available bandwidth (as high-
lighted in Sec. III), and stream for each value hundreds of
YouTube video sessions using different viewports. Each time,
we use random sampling to select the video ID and the
viewport. We plot in Fig.4 the CDF of the video chunk size
per viewport for three bandwidth settings: 3Mbps, 15Mbps,



and no control. As expected, the video resolution pattern is
driven by the network bandwidth and the viewport size. In
Fig. 4(a), the bandwidth is limited to 3Mbps, all viewports
thus exhibit the same pattern by selecting the same video
resolution, which therefore results in the same cumulative
distribution of chunk sizes. However, in Fig. 4(b) we set
the bandwidth to 15Mbps, the effect of the viewport starts
appearing as the distribution of chunk sizes defers from one
screen to another. However, and even at this high bandwidth,
the two large viewports 1280x720 and 1920x1080 illustrate
close distributions, which can be explained by the same reason
of bandwidth shortage. Finally, when no restriction imposed
on the bandwidth, full high definition (1920x1080) viewport
starts differentiating itself from the others. We further notice
in Fig. 4(c) that 40% of chunk requests on small screens (e.g.,
240x144, 400x225 and 640x360) correspond to a chunk size
less 200 KBytes compared to 300 KBytes for medium screens.
For HD screens, chunk sizes are bigger with 40% of chunks
coming from the HD viewport to be less than 1 MBytes and
less than 1.6 MBytes for FHD viewport.

To illustrate further this result, we plot the achieved network
throughput as measured over the encrypted traces and compare
it to the available bandwidth for different viewports. For
each video, we get the CDN URL from HTTP logs, use
the DNS Lookup of CDN URL and identify the video flow
corresponding to the CDN IP from the traffic traces. Then,
we leverage the downlink packets’ timestamps and a bin size
of 1 second to return a vector of throughput values per video
session. The vector is then used to derive throughput statistics
(e.g., average, percentiles) per video session. In Fig. 5, we
use the average throughput per video session to plot the CDF
for different viewports with different bandwidth settings. We
notice that with an enforced bandwidth of 3 Mbps (Fig. 5(a)),
all viewports end-up experiencing the same throughput which
correlates with chunk size results. Moreover, regardless of
the available bandwidth, a subset of viewports form one
cluster exhibiting the same throughput pattern (e.g., 240x144,
400x225 and 640x360).

V. TRAFFIC CORRELATION TO VIEWPORT

For each video session, we get an array of video chunk
sizes over which we calculate different statistical features that
we plan to use for viewport classification. We study here the
correlation between this array and the viewport. Our feature
set contains the maximum, the standard deviation, the 10th
to the 90th percentiles (in steps of 10) of the chunk size
array. This forms a set of 12 features describing statistically
the evolution of chunk sizes over a video session. In addition
to chunk size related statistics, we also consider the same
statistical features, but this time over the downlink throughput
(in bps, averaged over bins of 1s), and the uplink and downlink
packet interarrival times (in seconds). With these features, we
believe that we can get a fine-grained understanding of the
DASH transmission process and capture any effect of viewport
resolution. Overall, according to feature analysis, viewports
such as 240x144, 640x360 and 850x480 are more likely to
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Fig. 4: Network and viewport impact on chunk sizes

exhibit close chunk size and throughput distributions forming
one viewport class (SD). On the other hand, the 1280x720
and 1920x1080 represent another cluster, called HD showing
similar properties. To take advantage of this overlapping, we
relax the viewport classification problem and consider a binary
classification of the viewport to either SD or HD.

Before building our classifier, we start by studying here the
correlation between our feature set and the target variable (the
viewport class). In Fig. 6 we point to most relevant features by
ranking them according to their Pearson correlation coefficient
with the viewport class and showing only those having a
correlation coefficient at least equal to 0.4. In this figure,
the x_th_csize represents the x_th percentile of the video
chunk size over a video session and y_th_dltp stands for
the y_th percentile of the downlink throughput. Overall, the
chunk size percentiles show a more important correlation with
the viewport, especially when it comes to lower percentiles.
Downlink throughput percentiles come in second place with
a correlation coefficient of more than 0.4. Overall, the chunk
sizes incorporate the strongest bond to the viewport, simply



240x144
400x225
640x360
850x480
1280x720
1920x1080

Throughput (Mbps)

(a) Throughput per viewport for a 3Mbps
bandwidth

240x144
400x225
640x360
850x480
1280x720
1920%1080

T4 s e s o 3
Throughput (Mbps)

(b) Throughput per viewport for a 15Mbps
bandwidth

w 240x144
8 400%225
640x360
850x480
1280x720
1920x1080

s ®

o
o

IR R S
Throughput (Mbps)

(c) Throughput per viewport for a
unlimited bandwidth

Fig. 5: Throughput per viewport for multiple network settings

20th_csize
30th_csize
10th_csize
40th_csize
50th_csize

« 80th_csize
70th_dipt
60th_dltp
70th_csize
50th_ditp
max_csize
80th_csize
80th_dlitp
90th_csize

0.0 0.1 0.2 0.3 0.4 0.5
Correlation to viewport size

Feature

Fig. 6: Features correlation to viewport class

as the video resolution pattern is not only influenced by
the available network resources, but also by the user display
capacity.

To shed further light on the previous results, we show
boxplots of the most important traffic features w.r.t. the two
viewport classes. We plot in Fig. 7 the distribution of the 20th
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chunk size percentile for all video sessions and for both view-
port classes. Overall, we notice a small overlapping portion,
the smaller the overlap the easier to differentiate between SD
and HD viewports. In plain, 50% of video sessions have their
20th chunk size percentile less or equal than 230 KBytes,
whereas high definition viewports score almost twice the value
for the same percentile. In terms of downlink throughput, we
plot in Fig. 8 the distribution of the 70t/ download throughput
percentile for all video sessions as it scores 0.46 in terms
of the correlation coefficient. In general, and as expected,
larger screens are characterized by higher throughput values.
Moreover, the boxplots show that half of our video sessions
have a 70th download throughput percentile around 7 Mbps
compared to 4 Mbps for small definition viewports. All these
results point to the presence of a correlation pattern between
encrypted traffic features and viewport resolution at the client,
a pattern that we will exploit next to build our classifier of
viewport resolution class.

VI. VIEWPORT CLASSIFICATION BY MACHINE LEARNING

In this section, we discuss the performance of the ML
model built using our dataset. In plain, we try to predict the
viewport category (SD or HD) using inband network features
and chunk size stats (Finpand+chunk) €Xtracted from YouTube
encrypted video traces. Our goal is to provide the ISP with a
mean to infer fine-grained video flow insights, in particular,



approximate the viewport class, and this is despite the end-to-
end encryption of the video flows. Such inference can help
the ISP to get an idea about the bandwidth requirements
of her customers and their level of Quality of Experience
(QoE) with the obtained network service, which can also
help taking network management decisions (e.g., resource
allocation, priority queuing) to improve such QoE [9] [28].

We build a dataset matching Fj,pand+chunk tO viewport
class and use it to train different supervised ML classifica-
tion algorithms. We randomly pick videos from the catalog
available in [29], then stream them under different network
conditions emulated locally using the Linux traffic control
utility (#c). Each experiment consists of enforcing the band-
width, playing out the selected video under the enforced
QoS, collecting HTTP clear messages using the Chrome Web
Request API and dumping the traffic in pcap files using
tcpdump. The pcap files are used to calculate the feature set
Finband+chunk~

A. Classification accuracy vs bandwidth

As we have seen before, the effect of the viewport is
maximum in a bandwidth unlimited scenario. As bandwidth
decreases, the different viewports converge to the same video
resolutions and therefore we expect any viewport inference
model to get less accurate as both classes (SD/HD) start
overlapping. To assess the extent of such limitation, we test
our model in different scenarios each featuring a different
bandwidth configuration. We use random forest (using python
Scikit-Learn library [33]) as in our case it showed the best
results compared to other classifiers such as support vector,
decision tree and multi-layer perceptron (MLP). To find the
best tuning, we apply at first a random search of best hyper-
parameters values, then after reducing the space of search,
we apply a grid search to get a fine-grained fitting of major
parameters, this methodology is widely adopted in the machine
learning community [34].

Fig. 9 highlights the accuracy of two classification models
trained with our dataset. In plain, for each bandwidth setting
on the x-axis, we highlight two models related to the random
forest approach trained on two datasets, the blue model is
trained with video samples conducted with one specific en-
forced bandwidth (the corresponding x-axis value), the orange
one is a model trained with the aggregate set of video sessions
obtained over all enforced bandwidth values. It follows that
the blue model varies from one x-axis value to another one,
where the orange model is the same over all x-axis values. On
average, we validate on a test set of 200 videos specific to each
bandwidth scenario as depicted on the x-axis in the figure. In
general, regardless of the training set, the model accuracy is
coherent with our hypothesis as the accuracy increases w.r.t.
the enforced bandwidth. For example, in case of enforced
bandwidth of 3Mbps, both models show a low performance
with a median accuracy of 62%. This is expected as for such
low bandwidth, viewports show similar distributions for most
important features (see Fig. 3). One can expect an even lower
accuracy if the exact viewport resolution is to be predicted
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Fig. 9: Model accuracy vs enforced bandwidth

Precision  Recall F1
HD 0.87 0.85 0.86
SD 0.89 0.93 0.91

TABLE I: Random forest sample (precision/recall)

for such a low bandwidth value. Starting from 6 Mbps, both
models start showing a median accuracy exceeding 80%, with
the model based on mixed conditions showing better accuracy
(in terms of both average and variance) than the model specific
to the enforced bandwidth value, which is a good property of
the orange model given its generality over different bandwidth
scenarios. We recall that the best performance for both models
is reached when no limitation is imposed on the network
bandwidth, the median accuracy, in this case, is around 92%.

The previous results present a general evaluation of the
model, yet, we need to evaluate the model per viewport
class. Here, one can use metrics like precision and recall
or simply the F1 score which is an average of both. To
that aim, we benchmark well known supervised machine
learning algorithms, fit them on our dataset (the no bandwidth
limitation case) and compare them per class using the F1 score.
We plot in Fig. 10 the k-fold (kK =10) validation result for
well known machine learning algorithms. According to this
validation, the dataset is split into & folds, and at each of the
k iterations, a new fold is used as a validation set while the
k - 1 remaining folds form the training set. Average results
are then calculated over the k iterations. In plain, random
forest seems to be the most relevant algorithm, as it shows
an average F1 scores of 85%, while other algorithms such as
linear discriminant analysis and decision tree classifier come
second and third with average F1 score of 80% and 78%
respectively. The lowest performance is recorded for the multi-
layer perceptron and linear regression classifiers with 72% and
68% F1 scores respectively. Moreover, we show in Table I the
precision and recall values of a tree sample produced by our
random forest model, our model classifies correctly 85% of
the total video sessions issued from HD viewports and 93%
of the sessions related to SD viewports. When our model labels
a video session as HD, it is correct in 87% of the cases and
in 89% of the cases for SD.



RFC: Random Forest

LDA: Linear Discriminant Analysis
CART: Decision Tree Classifier
NB: Gaussian NB

KNN: K Neighbors Classifier
SVM: Support Vecotr Classifier
MLP: Multilayer Perceptron

LR: Logistic Regression
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B. Real time viewport classification

Up to this point, the statistics we use to train and test
our model take into consideration the entire video session.
This requires waiting until the end of the session to collect
the features and predict the viewport, which can limit the
usability of the method in practice by preventing from taking
quick and real time traffic engineering actions. For that, one
needs to perform the classification as soon as the video starts
playing out, thus allowing for mechanisms such as weighted
fair queuing and load balancing to take place. So here, we
study the goodness of our model for viewport prediction on
the fly, which instead of using as input aggregated statistics on
the entire video session, calculates features on the early part
of the session.

We stream a total of 104 hours (4 days) and 70 hours (almost
3 days) of random YouTube videos using different SD and
HD viewports respectively. We highlight in Fig. 11 the video
duration distribution per viewport class. As expected, the two
distributions look the same, with half of the videos requested
from SD and HD viewports having a median duration of 120
seconds. We split this dataset into training and test sets. In the
training set, we compute the features by considering the entire
video session. On the other hand, for the test set, we use a
specific proportion of the video starting from its beginning and
test over it. For instance, an input on the first 20% will consider
a feature set Fypnpand+chunk calculated over the first 20% of
the video, and so on. To represent the proportions in seconds
and give them a practical meaning, we consider the median
video duration (120s) as reference duration, so proportions of
20%, 40%, and 60% would correspond to the first 24, 48, and
72 seconds of a video session.

We plot in Fig. 12 the F1 score w.r.t. the proportion used as
input for the test. With no surprise, the larger the proportion
of video session considered, the higher the accuracy of the
model is. This makes sense as the model gets more and more
relevant input as compared to those used for the training. Most
importantly, the model still works with few seconds as input
and provide good classification accuracy exceeding 80% on
average. This confirms that the first few seconds of a video
session do also carry an important signature of viewport class,
with for example the first 24 seconds (assuming a median
duration of 120 seconds) allowing a median F1 score of 80%
and 78% in the worst case. We recall that considering the
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full video data leads to 85% median F1 score. We shall thus
confirm the feasibility of our approach to perform pseudo
real-time viewport classification, yet, the best performance is
ensured if 100% of video session related information is used.

VII. CONCLUSION

In this paper, we present our methodology for building
viewport prediction models from YouTube encrypted video
traces using controlled experimentation and machine learning.
The models presented predicts HD and SD viewports from
statistical features calculated over the encrypted video packets,
fully or partially. Such information on the viewport can help
the ISP plan better traffic engineering actions for a more
efficient network management and QoE optimization. Our
methodology starts by inferring chunk sizes, then relies on
Gaussian Mixture Models to separate video chunks from
audio chunks. Statistics on video chunks are then used to
train machine learning models for viewport classification.
These models show prediction accuracy that improves with
the available network bandwidth, and can go up to 92% in its
median. The median F1 score can go up to 85%. Limiting the
classification to the first few seconds of the video decreases
its accuracy, but still leads to acceptable levels of F1 score.
Our experimental study can be reused for other video content
provider as long as documentation exists to interpret the HTTP
clear text messages (to get ground truth on chunk sizes).

VIII. FUTURE WORK

As future work, we plan to extend our study to cover
other popular streaming platforms (e.g., Netflix) and viewport
sizes (e.g., UHD). Moreover, we aim at reusing our results to
perform optimal resource allocation at the edge of the network
leveraging terminal characteristics and aiming at maximizing
the Quality of Experience of end-users.
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