
 

Environment Aware Adaptive Q-Learning to 

Deploy SFC on Edge Computing  

Suman Pandey 

POSTECH 

Pohang ,South Korea 

suman17july@gmail.com 

James W. Hong 

POSTECH 

Pohang ,South Korea 

jwkhong@postech.ac.kr 

Jae-Hyung Yoo* 

POSTECH 

Pohang ,South Korea 

jhyoo78@postech.ac.kr 

Abstract—Biggest challenge in deploying Service Function 

Chain (SFC) in the Edge Computing environment is the lack of 

resources at the edge. Hence while finding the optimum path for 

SFC deployment, the resource constraint environment should 

be observed and incorporated well in deployment scenarios. In 

this paper, we developed an environment aware adaptive Q-

Learning algorithm to find an optimal SFC deployment path in 

edge computing environment. The available servers are divided 

into hierarchical network structure with local, neighbor, and 

datacenter servers to model an edge computing environment. 

The resource dynamics in the environment is modeled as a state 

transition probability. We compared the new algorithm with 

our base case algorithm that solely depends on Q-Learning and 

doesn’t incorporate the state transition probabilities. An 

intuitive reward function is designed to give maximum reward 

to complex deployment with minimum delays. We integrated 

our algorithm with physical testbeds using OpenStack and open 

source REST APIs. We evaluated SFC deployment on physical 

testbed using 42 different scenarios by measuring RTT.  

Keywords—SFC, OpenStack, SDN, Edge Computing, Q-

Learning, Reinforcement Learning 

I. INTRODUCTION 

In Network Management research, several models have 

been proposed to install SFC[1] and VNFs in Datacenter 

(DC) efficiently [2]. However, in recent years computational 

resources are positioned near to the end-users through edge 

cloud [3] and there is a need to devise a mechanism for 

deploying SFC in an edge computing environment. AT&T 

has also proposed a Central Office Re-architected as a 

Datacenter (CORD) infrastructure [4] to transform the edge 

into an agile service delivery platform. Minimal research has 

been done to exploit this edge infrastructure to deploy SFC.  

 

In this paper we propose to install SFC across multiple COs 

in the nearest proximity if resources are not enough at local 

CO. As per our knowledge there are no standards to install an 

SFC across multiple COs in edge cloud environment. We 

propose to install SFC across neighbor COs to reduce the 

overall latency.  When multiple COs are involved in installing 

a single SFC, it is important to allocate resources intelligently 

to maximize the utilization and minimize the latency. We 

modeled our network topology as a hierarchical structure of 

local, neighbor, and DC servers to simulate the edge 

computing infrastructure. We have also deployed a physical 
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testbed to evaluate our proof of concept. Our physical testbed 

topology resembles Multi-access Edge Computing (MEC) 

scenario. 

On top of the testbed hardware, we installed OpenStack [5] 

to manage our servers and finally integrated our SFC 

deployment algorithm with testbeds. To integrate our 

machine learning algorithm with testbed we used open-

source NI-Mon and NFVO APIs [6]. 

Our machine learning algorithm for SFC deployment is 

based on Reinforcement Learning (RL). RL has been proven 

successful for pathfinding problems in game programming 

and robotics etc. Recently it is also used for Routing [7] and 

SFC path selection [8]. We chose the RL based Q-Learning 

algorithm to deploy SFC in an edge computing environment. 

This work is an extension of our previous work [9]. Our 

previous algorithm deployed SFC by selecting the best path 

with minimum delay using Q-Learning based approach. Q-

Learning typically involves an agent, action, states, policies, 

and rewards. In the Q-Learning algorithm, the environment is 

the task or simulation and a learning agent interacts with the 

environment and tries to solve the task.  

In our SFC deployment scenario, the environment consists 

of servers and their capacity. Server capacity is devised in 

terms of CPU and memory. Moreover, servers are deployed 

in a hierarchical manner including local, neighbor, and 

datacenter servers. The agent interacts with servers in a given 

hierarchy, first with a local edge environment and then with 

the neighbor environment and finally with the DC 

environment looking for the appropriate server to deploy the 

VNFs based on the rewards. To add to this complexity, our 

environment isn’t static, it changes after every VNF 

deployment.  

It is important to opt these environments into the actionable 

insight in our algorithm. The accuracy of our algorithm 

increased, by making our agent accountable to environment 

changes. Hence in this paper, we changed the model to 

incorporate the resource availability probability of the hostile 

states and dynamically changing states. We achieved that by 

introducing a transition probabilities p (s′ | s, a). In the new 

model, we dynamically update the state transition 

probabilities after each action and selectively reduce the 

action space by removing the hostile states. Our proposed 

method contribute in the following ways 

1. To the best of our knowledge, this is the early research 

conducted to deploy SFC on the edge computing 

environment. Edge Computing is realized by dividing 

the infrastructure into, edge, neighbor, and DC servers. 



2. Environment aware adaptive Q-learning agent is 

designed, where the environment is represented with 

servers and their available capacity in three hierarchy.  

3. The Algorithm is integrated and verified on the physical 

testbed with the OpenStack management layer. SFC 

deployment is verified and RTT is measured using 

traceroute command. 

The rest of the paper is organized in the following way. 

Section II describes related work. Section III elaborates on 

our proposed network topology. Section IV explains the 

proposed method and the Q-Learning algorithm. Section V 

explains our evaluation mechanism. Section VI discusses the 

results and challenges encountered during this research and 

Section VII concludes this research with future work.    

II. RELATED WORK 

We identified a few leading research that applied machine 

learning method to dynamically deploy SFC. Runyu Shi et al. 

[11] used RL based Markov Decision Processes (MDP) to 

dynamically allocate VNFs. The authors used the Bayesian 

learning method to monitor the historical resource usage to 

predict future resource reliability. However, they did not 

consider edge computing. All the resources were deployed at 

DCs away from users. They showed very promising 

computation time of 1 to 2 milliseconds but didn’t clarify 

about the SFC length and number of iterations (epochs) 

required for learning. Jian Sun et al. [12] also used Q-

Learning Framework Hybrid Module Algorithm (QFHLM) 

which was derived from RL. They also didn’t consider edge 

infrastructure, besides their computation time is 1 minute and 

learning takes 2.25 million iterations. Moreover, their VNF 

resource model is considering all VNFs with an equal amount 

of resource requirement (CPU, mem, and bandwidth of 1 

unit).  These make their algorithm unrealistic. Aris Leivadeas 

et al. [10] did consider the edge infrastructure, however they 

relied on Mixed Integer Programming (MIP) formulation 

solved using a CPLEX Branch-and-Cut search algorithm 

resulting in high computation time as compare to Q-learning 

algorithms. This paper extends our previous work [9] by 

incorporating the environment variables such as state 

transition probabilities to design an environment aware Q-

learning algorithm. The new feature improves our algorithm 

accuracy and reduces SFC deployment latency significantly. 

Apart from that, this algorithm is also integrated and tested 

on the physical testbed with the OpenStack management 

layer. 

III. NETWORK TOPOLOGY 

We implemented and tested our algorithm on a simulated 

topology as well as on a physical test bed. The simulated 

topology consists of Top of the Rack (TOR) switches, Leaf 

switch, Spine switch, Edge, and Core router. Servers are 

attached to the TOR, and have less capacity at the edge and 

higher capacity at the core. The latency is modeled based on 

the number of hops to cross for installing SFC. If the VNF is 

deployed on the same server as previous VNF then latency 

will be 0. If its in same TOR latency is 1, same edge will 

result in latency 3, same neighbor installation will result in 

latency 7 and DC will result in latency 9. To get the detail of 

our simulated topology please refer to our previous work [9]. 

The same model explained in simulated testbed is emulated 

on a physical testbed with more simplified network structure 

by omitting TOR, Leaf, Spine switches. Our testbed consists 

of three edge switch representing three COs, and one core 

switch connecting these COs with DCs as shown in Figure 1. 

This testbed is subjected to improvement in the future. Delay 

is emulated on this test bed using DEMU[15]. It is a software-

based network emulator implemented as a Data Plane 

Development Kit (DPDK) application. The delay between 

edge and core switch is 5ms and DC and core switch is 12 

ms.  

Figure 1. Physical Infrastructure with OpenStack Management Layer 

Figure 2. Overall Design 

IV. METHOD 

Figure 2 explains our overall design. The algorithm is 

developed using python 3.7. The algorithm takes two types 

of the input files. The first input is related to the network 

topology, where the algorithm takes core-switch-id to which 

the edge network and DC is connected. Once the algorithm 

gets the core-switch-id, it requests for edge switch, servers, 

and links information using REST APIs of the NI-Mon 

module. Using this information, the algorithm builds edge as 

well as DC topology. Based on the edge-switch-id the 

algorithm divides the edge topology into local and neighbor 

servers. So ultimately the infrastructure is divided into three 

hierarchy, 1) Local edge servers, 2) Neighboring servers and 

3) DC servers. It also gathers the available CPU and memory 

on each compute node. It also requests for available VNF-

flavors, the VNF-flavor objects give CPU and memory needs 

of each VNFs. The second input is SFC request. The 

algorithm passes the topology information to the SFC 

deployment module. The Q-learning agent will learn the best 

deployment for VNFs in the chain. The algorithm then uses 

 

 



NFVO open-source APIs to deploy each VNF on the selected 

server.  

A. Q-Learning SFC deployment 

Usually, an RL problem is modeled by 4-tuple states (s), 

actions (a), state transition probabilities (pi), and rewards (r). 

In our implementation states represent the VNFs in SFC. 

Actions represents the selection of the appropriate server for 

deployment, state transition probabilities are represented with 

the resource availability on nodes, and rewards are based on 

the overall latency and resource demand to deploy the SFC. 

Q-Learning is a model-free RL learning approach, where 

learning happens in several episodes (epochs). In each 

episode, the agent in state s performs an action a, receives a 

reward r, and moves to the next state s_next. The action value 

is updated in the Q matrix of size [s × a] with the formula 

given in Eq. 1.  
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Eta represents the learning rate (Eta = 0.05). Gamma 

represents a discount rate (Gamma = 0.5) for a given Q-

Learning algorithm. Refer to Eq. 1, to find how they are used 

in Q-Learning. Periodic decay of Q-values is taken care of 

using gamma (discount factor).  Epsilon (epsilon = 0.8) 

represents the e-greedy coefficient used later in the algorithm.  

For each episode, the epsilon is also reduced by a factor of 

1.5 (epsilon = epsilon/1.5). In machine learning, the learner 

tries to improve the current solution while switching between 

exploration and exploitation of the solution space.  ε-greedy 

selection in addition to greedy selection helps the learner uses 

a small amount of randomness to explore new solutions.  

B. Reward 

A good reward functions determines Q-learning algorithm 

accuracy. We devised an intuitive reward function as shown 

in Eq. 2. Rewards in SFC deployment scenario would depend 

on various factors including the E2E number of hops of the 

SFC path, and SFC length and resource ratio.  

 In reward equation, l represents latency of SFC path and z 

is the length of the SFC. We took a ratio of l and z to 

normalize the latency parameter. Reward should be low for 

high value of l/z.  Hence we chose an exponentially decaying 

type of profile. Then this exponential decay equation is 

multiplied with resource ratio.  

Resource ratio is calculated by dividing resource demand 

and the lowest available resource at the edge. x represents the 

CPU resources and y represents memory resource. High 

resource ratio represents a complex deployment. We assign a 

higher rewards to the complex deployment by multiplying it 

to the exponential decay parameter. Hence this function 

assigns high reward to complex deployment with lower 

latency. α and β are the constants where α represents a higher 

value such as 50 to manipulate the reward points giving 

higher rewards to high resource demand with low latency, 

and β represents a lower value such as 2, which is used for 

adjusting the reward point to give very low reward for low 

resource demand served with high latency.  
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Figure 3. Reward function for given resource ratio, SFC latency and SFC 

length. 

Most of the related work [10] defines a reward as 1 for 

successful deployment and 0 for unsuccessful deployment, 

however our reward function is very intuitive and considers 

several parameters. Figure 3, further clarifies equation 

behavior for different value of x, y, l and z.  

C. Environment  

We introduced two environment variables theta and Pi in the 

already existing algorithm in previous work [9]. These 

variables represent state transition probability in the Q-

learning algorithm. theta will store 1 if the server has enough 

capacity (CPU and memory) to deploy the VNF, or else it will 

store 0. Later this array is converted into the state transition 

probability and stored in Pi using the Eq. 3. 
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If the SFC chain is long, very often it will hit a hostile local 

server. We solved this by reducing the action space by 

removing the servers with state transition probability as 0 ( Pi 

= 0 ) as shown in Eq. 4. This step is taken at each level, of 

local, neighbor, and DC servers.  

 

5.  =  5.– 57 | 57  ∈ )*7 = 0   (4) 

 

By introducing these variables we were able to solve two 

important issues with our previous algorithm. 1) An 

encounter of the hostile servers 2) Incorporating the 

dynamically changing environment. 

V. EVALUATION AND DISCUSSION 

We did evaluation of our method in two phase, 1) Q-

learning algorithm evaluation. 2) Deployment evaluation on 

the testbed.  

A. Q-learning algorithm evaluation  

We conducted 1200 tests with 100 episodes each. The SFC 

length varies between 3~8. The SFC could consist of 8 types 

of VNF flavors with different CPU and memory demands 

ranging from 1 to 4 CPU and 1 to 8 memory units. The 

simulated topology for testing the algorithm consists of 9 

local servers, 18 neighbor servers, and 27 DC servers, 

however, the algorithm can support any number of servers. 

The edge server has the capacity of 6 CPU and 8 memory 



units and DC servers have a capacity of 34 CPU and 48 

memory units.  Figure 4, shows the Q-learning behavior of 

our algorithm for SFC of length 8 with high, medium, and 

low resource demands. The environment aware adaptive Q-

learning (Figure 4 (a)) shows lower latency and better 

learning behavior as compared to a simple Q-learning 

algorithm (Figure 4 (b)). The Latency for medium and high 

resource demand is much improved.  

 

Figure 4. Q-Learning algorithm results of SFC-Length 8 for 100 

episodes. (a) Adaptive-Q-Learning, (b) Q-Learning 

 

B. Deployment testing on the testbed 

 

In second phase of validation, we deployed our algorithm 

on a physical testbed with 9 servers, including 2 local, 6 

neighbor, and 1 DC servers. We deployed SFC of size 3~8 

successfully subjected to the resource availability. SFCs 

contains several VNFs of different types including firewall, 

flow monitor, deep packet inspection (DPI), intrusion 

detection system (IDS), and proxy. To this end, we use open-

source software such as iptables, ntopng, nDPI, Suricata, and 

HAProxy. While creating the VNF instances we choose the 

appropriate images with these applications installed. The 

SFC can be tested using iperf, apache-bench, nuttcp or 

traceroute. These mechanisms gives us response time, and 

throughput and RTT. We used Traceroute command in this 

paper to validate if the request is passing through the SFC in 

the appropriate manner. The traceroute command sends a 

request through all the VNFs in the chain making it’s way to 

the destination, and it sends back a short message at each 

intermediate VNFs containing name, address and RTT of the 

VNF. 

Figure 5 represents 42 different deployment scenarios 

chosen by the Q-learning algorithm based on resource 

availability. These results validate our proof of concept as 

RTT is least for local server deployment and highest for the 

deployment across local-neigh-DC. Figure 5 also shows that 

the SFC of varying length have similar latency. This is 

because, the VNFs deployed at the same server have 

negligible delay. To achieve each deployment scenario, we 

have increased and decreased load the servers. In reality this 

result could differ based on other parameters that influence 

RTT. 

We also measured the SFC deployment time for each 

scenario. We found that deployment time steadily increased 

with increasing SFC size and is least impacted by the choice 

of deployment, local, neighbor or DC as shown in Figure 6.  

Figure 5. RTT through traceroute request for each SFC deployment 

across local, neighbor and DC. 

Figure 6. SFC deployment time  

VI. CONCLUSION & FUTURE WORK 

The dynamic optimal resource allocation of SFC is a critical 

research topic. In this paper, we have presented a method 

based on environment aware adaptive Q-Learning to 

dynamically allocate edge and DC computing resources to 

SFC. The hierarchical network model based on the local 

server, neighbor server, and dc server in this paper are more 

realistic as compared to dynamic graph-based models. We 

designed an intuitive reward model based on cumulative 

latency, VNF resource demand, and SFC length. We 

evaluated this research by running 1200 tests with varying 

SFC-length, resource demand, and server capacity. In the first 

phase, we evaluated Q-learning behaviors of the algorithm 

and in the second phase of evaluation we tested our algorithm 

on Openstack testbed. We verified the deployment using 

traceroute command. We measured the RTT for 42 different 

deployments. Based on the availability of the resources in the 

local, neighbor and DC the algorithm chooses the best 

possible deployment. RTT is highest for SFC deployment 

across local, neighbor and DC. In future, we will also 

consider network bandwidth and server NIC card capacity as 

a resource requirement apart from CPU and memory. 

Another possible consideration is to upgrade the algorithm to 

Deep Q-Leaning.  
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