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Abstract—Web browsing is one of the key applications of the
Internet, if not the most important one. We address the problem
of Web Quality-of-Experience (QoE) monitoring from the ISP
perspective, relying on in-network, passive measurements. As
a proxy to Web QoE, we focus on the analysis of the well-
known SpeedIndex (SI) metric. Given the lack of application-
level-data visibility introduced by the wide adoption of end-to-
end encryption, we resort to machine-learning models to infer
the SI and the QoE level of individual web-page loading sessions,
using as input only packet- and flow-level data. In this paper,
we study the impact of different end-user device types (e.g.,
smartphone, desktop, tablet) on the performance of such models.
Empirical evaluations on a large, multi-device, heterogeneous
corpus of Web-QoE measurements for the most popular websites
demonstrate that the proposed solution can infer the SI as well
as estimate QoE ranges with high accuracy, using either packet-
level or flow-level measurements. In addition, we show that the
device type adds a strong bias to the feasibility of these Web-
QoE models, putting into question the applicability of previously
conceived approaches on single-device measurements. To improve
the state of the art, we conceive cross-device generalizable models
operating at both packet and flow levels, offering a feasible
solution for Web-QoE monitoring in operational, multi-device
networks. To the best of our knowledge, this is the first study
tackling the analysis of Web QoE from encrypted network traffic
in multi-device scenarios.

Index Terms—Web QoE; Smartphone vs. Desktop; Network
Monitoring; Machine Learning; SpeedIndex; Encrypted Traffic.

I. INTRODUCTION

The Web is one of the most relevant components of the

Internet. The performance of the Web is highly relevant to

the success of every online service, as it severely impacts

the engagement and churn of users. The assessment of a web

service as perceived by the end user can be realized through

the corresponding Web Quality of Experience (QoE), which

is very challenging to measure. Different from other services,

such as video streaming or gaming, web browsing is a com-

posite of numerous multimedia components and embedded

services; loading a web page today requires tens of flows

to get the various page resources located in diverse servers

from different content providers. In this complex process, the

network plays a key role impacting users’ Web QoE, forcing

Internet Service Providers (ISPs) to deploy effective means to

monitor Web QoE as perceived by their customers.

The literature on web performance analysis presents a wide

range of objective metrics capturing the performance of web

pages, including metrics such as Page Load Time (PLT),

SpeedIndex (SI), and Above the Fold Time (AFT). However,

all these metrics require access to the application layer, which

is hidden from the eyes of the ISP by the wide deployment of

end-to-end network traffic encryption.

The analysis of Web QoE from purely in-network, encrypted

traffic measurements is yet an under-explored problem; in fact,

we have been the first recently addressing it, for the specific

case of desktop web browsing [1], [2], using packet-level

features as input. By using controlled page-load experiments,

where network data is simultaneously collected with ground-

truth Web-QoE metrics such as SI and AFT, we have shown

the potential of using supervised Machine Learning (ML) to

infer these metrics from features computed on the encrypted

stream of packets. In this paper, we follow a similar approach

to [1], [2], extending the analysis in multiple new directions:

1 – Multi-device models: we consider Web QoE not only

for desktop devices, but include smartphone and tablet Web

QoE, conceiving cross-device generalizable models. The lion’s

share of Internet-access devices today is smartphones, with

nearly three quarters of the world population using exclusively

their smartphones to access the Internet by 2025 [3]. As we

find in our results, a model trained only on desktop browsing

data provides poor Web-QoE estimation performance when

applied to smartphone and tablet measurements.

2 – Web-QoE Estimation: besides training regression

models to estimate Web-QoE objective metrics – in particular

SI –, we rely on real end-user data from previous studies [4]

to build Web-QoE classification models for subjective metrics

– e.g., Mean Opinion (MOS) Scores.

3 – ML Benchmark: we present an extensive benchmark

comparing the performance of different ML models for both

estimation tasks – regression for SI inference, and classifica-

tion for QoE estimation.

4 – Packet and Flow-level Models: we conceive models

working either at the packet-level or at the flow-level; we show

that the proposed flow-level models achieve highly similar

performance to the packet-level ones, but using an order of

magnitude less input features, thus showing strong potential

for a practical monitoring solution.

The remainder of the paper is organized as follows. Sec-

tion II overviews the related work on Web-QoE monitoring

and analysis. Section III presents the overall modeling and

data-generation approach, including a characterization of the

produced datasets for this study. In Section IV, we introduce978-3-903176-31-7 © 2020 IFIP



and evaluate the proposed packet-level ML models for two

different tasks, including Web-QoE inference (SI) and classi-

fication of QoE ranges (excellent, good, poor); here we also

show how models trained on single-device measurements –

e.g., desktop –, result in strong performance degradation when

applied to other device types such as smartphones and tablets.

In Section V we present a (per-task) unified, multi-device

model, which achieves high inference/prediction performance

with a strong generalization potential across desktop, smart-

phone, and tablet devices. In this section we also extend the

multi-device models to operate at the flow-level, showing that

the same performance can be achieved using much less, and

easier to compute, input features. Finally, Section VI concludes

this paper. As a conclusion, the proposed multi-device, flow-

level models lay the basis for a generalizable, multi-device,

Web-QoE passive monitoring system.

II. RELATED WORK

Initial Web-QoE models were based on Page Load Times

(PLT) [5], [6], and are still broadly used in the practice to

infer user satisfaction in web browsing, e.g, under ITU-T [7].

However, research has demonstrated that PLT is a poor proxy

to user perception of web-page loading times. Indeed, the

actual web content visible to the user is usually displayed

much earlier, as most web pages often stretch beyond the

browser’s viewport. Additional in-browser metrics have been

accordingly devised to better suit the page display on the

screen. An approach is the so-called Above the Fold Time

(AFT), i.e., the time until the visible portion of a web page has

been fully loaded, which has been also tested within traditional

Web-QoE models [8]. Newer Web-QoE metrics have been

proposed recently, such as the SI, which considers the whole

visual progress of the page loading, by processing a video

capture of the screen. Besides single metric modeling, ML-

based approaches have been explored [4], [9] to model Web

QoE from a combination of metrics.

Another direction in the literature proposes to understand

how external components influence Web QoE. Prior work [10],

[11] has studied the impact of network-quality fluctuations

and outages on user Web QoE. But besides network quality,

other components influence Web QoE. They are linked to the

specific web-page content – usability [12], aesthetics [13], etc.

– as well as device type: desktop, smartphone, tablets [14].

Important to our study, these papers show that smartphones

and tablets have their own characteristics, not only regarding

screen sizes, but also in terms of content rendering and web

designs. Most of these papers focus on Web QoE in controlled,

small-scale lab environments.

Others directly rely on in-browser metrics as a proxy to infer

Web QoE, conducting large-scale active measurement cam-

paigns. For example, the impact of multiple features such as

transport protocols and network performance on PLT and AFT

is studied in [15], based on a set of 244 million measurements

collected during 6 months for the top-10000 Alexa websites.

Other papers also measured the impact of similar features on
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Fig. 1: Diagram and workflow of the proposed solution.

PLT and SI or AFT in different countries and different types

of networks [16], including mobile ones [17].

Most of prior work has stayed at the application level,

which is problematic for ISPs, who have no direct access

to in-browser metrics. In recent years, TLS encryption has

even narrowed the information that ISPs can collect from

the network side, and previous approaches [18] based on

deep packet inspection (DPI) and HTTP-traffic analysis are

no longer applicable. Other papers [19], [20] developed cor-

related approximations to the SI metric, such as Byte/Object-

Index [19] and Pain-Index [20], which can be computed

from statistics of packet- and flow-level measurements, thus

seamlessly operating with encrypted traffic. In recent work [1],

[2], we took a step further to directly infer the SI metric,

using ML techniques mapping network (encrypted) packet-

level traffic features to SI, in desktop devices.

When it comes to the specific case of Web-QoE monitoring

in mobile devices, there have been multiple papers using ma-

chine learning [21]–[24] or simple modeling approaches [25]

to map application-layer metrics [23], [24] or network-QoS

metrics [21], [22], [25] into QoE-related metrics. From these,

two papers [21], [22] are the closest to our work, but both

propose analysis approaches which are no longer applicable

due to HTTP-traffic encryption [22], or do not address the

specific problem of web browsing [21].

In this paper, we deal with an unexplored and so far

neglected issue: understanding the impact of the end-user

device type on the analysis of Web QoE from in-network

traffic measurements. To the best of our knowledge, this is

the first paper addressing this challenge.

III. WEB-QOE DATASETS & MODELING APPROACH

The proposed solution to the Web-QoE monitoring problem

consists of training supervised ML models to map network-

traffic features, extracted from the encrypted network-web-

page traffic, into relevant Web-QoE metrics. The approach

is data-driven, and thus needs datasets containing both the

collected traffic traces – the input – and the targeted Web-QoE

metric – the ground truth. The diagram presented in Figure 1

presents the workflow and the different stages of the solution.

To fully control the generation of such datasets, we built

a measurement testbed based on multiple private instances of
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Fig. 2: Distribution of (a) TTFP, RUMSI, and PLT values, (b) QoE classes per device type, based on (c) real-user MOS scores.
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Fig. 3: Data characterization, per device type, including page size, number of resources, number of root domains, and SI/PLT

ratio. The latter reflects the complexity of the web page in terms of visible content (SI) and full content downloading (PLT).

WebPageTest (WPT) – https://www.webpagetest.org/, the de-

fault, open-source web-performance-analysis tool used both in

industry and academia. Figure 1, rows (1) and (2) describe this

testbed and its usage. Different from previous studies [1], [2],

[15]–[17], [19], which have studied Web QoE exclusively for

desktop browsers and desktop devices (or in some exceptional

cases, emulating mobile devices), our measurement testbed

consists of three different, non-emulated types of devices,

including a smartphone device (Google Pixel 2 XL), a tablet

(Google Pixel Slate), and a desktop computer (laptop), using

WPT agents for Android and Linux. Chrome (last stable

version) is used as browser. Instead of leveraging in-device

WPT traffic-shaping capabilities, devices are connected to the

open Internet through independent network emulators (emu),

which allows for more realistic network-access-performance

configurations in terms of bandwidth, latency, packet-loss

rate, etc. This allows for heterogeneity in the generated mea-

surements. Configurations used in the study include access-

downlink bandwidth up to 10 Mbps, packet-loss rates up to

10%, and RTTs up to 100 ms. Using WPT measurements,

the platform extracts about 90 different KPIs and Web-QoE

metrics, indicated as L7 Web-QoE logs in Figure 1, row

(2), such as PLT, SI, AFT, Byte Index [19], and Time to

Interactive (TTI), as well as content characteristics of the

visited pages. Network traffic is captured at an intermediate

passive monitoring device (netmon) and stored as .pcap traces,

from where model input features are extracted, indicated as

L3 network-traffic features in Figure 1, row (2). For this

study, we generated a per-device-type balanced dataset of more

than 50.000 web page loading sessions (i.e., the loading of

a single page), targeting the top 500 websites according to

the Alexa top-sites list (https://www.alexa.com/topsites). The

same pages are visited multiple times for each device type,

using the same access-network setups. We do not consider the

effect of caching, i.e., tests correspond to a first-view loading

session. As we have recently shown in [1], while caching has

an impact on the performance of inference models, this impact

is limited, and models generalize well across different protocol

and caching settings [1]. We focus on the inference of one

particular Web-QoE metric, the SI, which is today one of the

most accepted metrics reflecting Web QoE. Nevertheless, the

methodology applies to any other similar Web-QoE metric.

As shown in [19], measuring the SI is cumbersome in terms

of computational resources and might introduce bias in the

data capturing/processing, mainly due to the video capturing

and analysis. This is particularly critical on smartphones and

tablets, which are generally resource-constrained; therefore,

instead of focusing on the SI metric, we collect the so-called

RUM SpeedIndex (RUMSI) metric [26], which is a passive

approximation to the SI, computed from the analysis of web-

page resource timings.

To conclude, note that we assume that the measurement

system takes as input network traffic from single web sessions.

In an operational deployment in the wild – see row (3) in

Figure 1 –, the traffic mix of concurrent web sessions must

first be disentangled (step A) to then extract features from the

traffic belonging to each web session (step B) and apply the

trained model(s) (step C). This paper exclusively addresses

steps B and C. Nevertheless, in case of concurrent web

sessions, a classification methodology from the literature [20]

could be applied to disentangle them. While the Web-traffic

identification/disentangling (step A) is out of the scope of this

paper, we have conceived multiple techniques addressing this

problem.



0 0.5 1 1.5 2 2.5 3 3.5 4

time (s)

0

20

40

60

80

100

%
 t
o

ta
l 
d

o
w

n
lo

a
d

 b
y
te

s

desktop, RTTA = 20ms

desktop, RTTA = 100ms

smartphone, RTTA = 20ms

smartphone, RTTA = 100ms

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

time (s)

0

20

40

60

80

100

%
 t
o

ta
l 
d

o
w

n
lo

a
d

 b
y
te

s

(a) https://zoom.us (b) https://cnn.com

Fig. 4: Examples of CBD features or loading curves, using

∆T = 100 ms, and different Access-RTT (RTTA) setups.

A. Data Characterization

The list of top 500 Alexa pages is assorted in terms of

contents, and as we show next, the type of device being used

has a visible impact on web-page characteristics and timing

performance. Figure 2(a) depicts the distribution of three

relevant Web-QoE metrics, including the Time to First Paint

(TTFP), which accounts for the time at which the first object

is painted on the browser, the RUMSI, and the PLT. Note how

the values are significantly higher for both smartphone and

tablet devices as compared to desktop devices, pointing to a

more complex rendering process in mobile devices. This is

most probably linked to the specific hardware limitations of

smartphones and tablets, as well as the particular character-

istics of the OS and browser combination – native Chrome

in Android. In addition, the way pages are optimized (most

times dynamically) and rendered in mobile devices impacts

loading times. Worse loading performance in mobile devices is

a commonly known issue in practice; see page-speed statistics

at https://backlinko.com/page-speed-stats. Interestingly, when

comparing Android devices, TTFP values are almost identical

for smartphone and tablet, RUMSI is slightly higher for tablet,

while PLT is significantly higher for tablet. As we see next,

this is most probably explained by the fact that web pages

have more content to load in tablets. It is also interesting to

note how PLT significantly overestimates the perceived loading

time of web pages, represented by the (RUM)SI metric.

Figure 3 characterizes the 500 web pages per device type, in

terms of (a) page size, (b) number of resources, (c) number of

root domains, and (d) RUMSI to PLT ratio. The latter reflects

the complexity of the web page in terms of visible content (SI)

and full content downloading (PLT). As expected, web pages

browsed in desktop devices are bigger than those browsed on

smartphones or tablets, which are optimized for smaller screen

sizes. The average page size is 2.7MB in desktop, 2.4MB in

tablet, and 2.1MB in smartphone. Figures 3(b) and 3(c) further

illustrate the richness and complexity of the web pages in

terms of number of embedded contents and their location at

different root domains, with more than 30% to 35% of the

web pages consisting of more than 100 resources, and about

40% of the web pages fetching resources from more than

10 different root domains. The screen size probably plays a

key role in terms of page characteristics, as the number of

resources is higher for desktop, followed by tablet, and finally

by smartphone. The RUMSI/PLT ratio shows not only how

large the overestimation introduced by PLT is in terms of
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perceived page load times, but also how different this is for

the different web pages. Indeed, about 10% of the pages have

a ratio below 0.3 (the visible content loads way faster than the

full content) and less than 5% of the pages have a ratio above

0.9 (the visible content basically corresponds to the full web

page content).

Conclusion: while most of the analyzed pages are very

similar for every device type in terms of size and retrieved

contents from external servers, differences can be significant

for a small share of the pages. In terms of performance,

loading times in Android devices (smartphone and tablet) are

significantly higher than in desktop, a common trend observed

in practice of web page speed analysis.

B. Subjective QoE Analysis

While the SI is a good objective metric reasonably capturing

the Web QoE of real users [8], we resort to previous subjective

Web-QoE studies to better understand the expected QoE for

the generated dataset. In particular, prior work [4] conducted

a subjective study where about 240 participants rated their

browsing experience – loading of individual pages using a

desktop browser –, according to a 5-level Absolute Category

Rating (ACR) MOS score (bad QoE being 1 to excellent being

5). We rely on their publicly available dataset to identify QoE-

related timing thresholds which could translate the RUMSI in

our dataset to broad QoE classes. In Figure 2(c) we depict

the relationship between SI and MOS scores obtained in

that study. While the SI metric was not directly measured,

additional metrics such as the Byte Index where computed,



model MAE-mAE (ms) MRE-mRE (%) PLCC

DT 766 – 288 37 – 18 0.817

ET10 598 – 260 31 – 16 0.879

RF10 602 – 262 31 – 16 0.860

RF100 564 – 249 30 – 15 0.885

Bagging 600 – 266 31 – 16 0.857

Boosting 767 – 426 48 – 26 0.861

Bayes 976 – 491 64 – 29 0.727

kNN 940 – 496 54 – 29 0.752

XGB 774 – 429 48 – 26 0.849

TABLE I: Benchmarking of different ML models for RUMSI

inference, for desktop.

which can be used as a good proxy to the real SI [19]. Based

on these subjective QoE results, we define 3 Web QoE classes:

(e)xcellent – MOS ≥ 4 –, (g)ood – 3 ≤ MOS < 4 –, and

(p)oor – MOS < 3 –, resulting in SI thresholds of 2 and

4 seconds. Interestingly, the SI thresholds recommended in

the industry as target for excellent Web performance vary

between 1 second (desktop) and 3 seconds (mobile), which

are in line with the proposed higher QoE class threshold of 2

seconds. It is important to note that our thresholds are derived

for the case of browsing on desktop devices, and one would

expect higher thresholds for Web QoE in mobile devices.

Nevertheless, for this study, we assume the same thresholds

apply to the three device types. Figure 2(b) shows that about

60%/40% of the loading sessions correspond to excellent

QoE in desktop/mobile (smartphone and tablet) respectively,

25%/30% to good QoE, and the remaining 15%/30% result in

poor QoE.

C. Targets and Input Features

We realize the Web-QoE monitoring solution through two

different prediction tasks: (i) inference of the RUMSI metric,

which corresponds to a regression task, and (ii) prediction of

the Web-QoE class {e,g,p}, which corresponds to a 3-class

classification task. We use the same input features in both

tasks, derived from the stream of encrypted packets. To define

input features, we follow the rationale behind the computation

of the SI metric itself, which considers the whole progress of

the page loading. We define the Cumulative Bytes Downloaded

features CBD(i)∆T , as the (normalized) cumulative number

of bytes downloaded from the first collected byte at time t0
up to time t = t0 + i × ∆T , with i = 1, . . . ,m. The CBD

features track the download progress of the page bytes, using

a time resolution ∆T . Figure 4 depicts examples of CBD

features for different network configurations, both for desktop

and smartphone devices, using m = 100 and ∆T = 100 ms.

Pages loading faster have a CBD loading curve rising sharper

and arriving to full loading earlier.

For this study, we take m = 100 samples, and three different

resolutions for the computation of features, using ∆T = 50 ms,

100 ms, and 500 ms, for a total of 300 CBD features. Using

different resolutions helps capture different phenomena in the
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Fig. 7: RUMSI inference performance. Models are trained

using exclusively desktop measurements.

downloading progress, which potentially impact the SI, as well

as allowing to track different page-load durations, in this case

up to 5, 10, and 50 seconds, respectively. We consider n = 11
additional input session features, related to the complete page-

loading session; these include: full session duration (first to last

packet), downlink/uplink session duration (first to last packet

in downlink/uplink direction), total number of packets down-

link/uplink/full, total number of bytes downlink/uplink/full,

and session mean throughput downlink/uplink. While these are

mostly packet-level features, we extend in Section V-A the

study to the implementation of flow-level features, realizing

highly similar results.

Figure 5 depicts the linear correlation between these input

features and the RUMSI metric, for different device types.

Correlation values are rather high for all devices, with stronger

correlations observed for CBD features between 5 seconds

and 10 seconds, as well as for session-duration features.

Figure 6 shows correlation values for the QoE classification

problem, for all devices together; as expected, based on the

considered time-thresholds, higher correlations are observed

between 2 and 5 seconds.

IV. DESKTOP MODELS’ LACK OF GENERALIZATION

We now focus on the Web-QoE estimation tasks. As a

reference for performance evaluation, we begin by training

and evaluating different ML models for the specific case

of desktop measurements. Recall that desktop measurements

represent the most common data source so far used in the

Web-QoE literature [1], [2], [15]–[17], [19]. We then apply

the trained models to both smartphone and tablet data, to

highlight the cross-device lack of generalization and poor

performance realized by single-device models in such multi-

device scenarios. As a general note on the evaluations in

this paper, all performance results correspond to 5-fold cross

validation.

A. RUMSI Inference on Desktop

Table I reports the RUMSI inference performance achieved

by nine different ML models, most of them based on decision

trees. The tested models include single decision tree (DT),

multiple types of ensembles using different numbers of trees,

such as extremely randomized trees (ET), random forest (RF),



model
desktop

ACC R{e} R{g} R{p} P{e} P{g} P{p}

DT 80.3 88.8 66.1 72.8 88.4 66.2 73.8

ET10 84.4 93.1 70.5 75.6 89.6 73.7 81.7

RF10 84.6 93.1 71.6 74.6 90.1 73.1 82.1

RF100 86.9 93.3 77.4 79.1 92.3 76.2 84.7

Bagging 85.7 93.2 74.3 76.8 90.8 74.6 84.8

Boosting 82.9 91.1 70.3 73.7 90.1 69.1 79.3

Bayes 60.1 93.0 11.6 19.5 63.2 38.3 46.7

kNN 74.9 87.3 55.1 62.1 81.8 59.1 72.0

XGB 82.2 90.9 69.0 72.1 89.8 67.9 77.6

TABLE II: Benchmarking of different ML models for Web-

QoE prediction, on desktop. The three levels of QoE corre-

spond to excellent{e}, good{g}, and poor{p} QoE.

device MAE-mAE (ms) MRE-mRE (%) PLCC

desktop 598 – 260 31 – 16 0.879

smartphone 1245 – 721 41 – 28 0.728

tablet 1434 – 724 44 – 28 0.618

smartphone
867 – 592 43 – 29 0.455

RUMSI < 5s

smartphone
2812 – 2000 32 – 27 0.667

RUMSI > 5s

TABLE III: Inference performance per device type. The ET10

model is trained using desktop data.

bagging trees, and boosting including XGBoost [27]. The list

is completed by a plain Bayesian approach, and by the k near-

est neighbors algorithm (kNN). We assess performance using

3 performance metrics for regression problems, including the

absolute error (AE), the relative error (RE), and the linear

correlation (PLCC). We take both mean (M) and median (m)

values for the error metrics, to filter out significantly large

errors. Figure 7(a) additionally depicts the distribution of the

prediction errors.

RF100 attains the best inference performance, with a median

absolute error of 249 ms, and a median relative error of

15%. Absolute prediction errors are below 500 ms for more

than 70% of the sessions. More than 85% of the RUMSI

values are inferred with an error below one second. Similar

performance is realized by smaller ensembles, e.g., RF10,

ET10, and bagging, using 10 instead of 100 trees. Given the

training-speed improvements obtained with the ET10 model,

we take it as the underlying prediction model in subsequent

evaluations.

B. QoE Classification on Desktop

Table II reports the classification benchmark results obtained

for desktop. Again, RF100 provides the best results, with an

overall accuracy (ACC) close to 87%. Recall (R) and precision

(P) are above 90% for the excellent QoE class prediction, but

desktop (D) smartphone (S) tablet (T)

model testing

T

S

D

m
o
d
e
l 
tr

a
in

in
g

598 ms (31%)

260 ms (16%)

0.879

1055 ms (79%)

644 ms (37%)

0.689

1040 ms (79%)

644 ms (38%)

0.745

1245 ms (41%)

721 ms (28%)

0.728

788 ms (28%)

354 ms (13%)

0.859

1028 ms (38%)

526 ms (20%)

0.815

804 ms (25%)

314 ms (11%)

0.867

1139 ms (36%)
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Fig. 8: Cross-device inference performance, using per-device

ET10 as underlying model.
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Fig. 9: Cross-device QoE classification performance. Models

are trained on desktop measurements.

good and poor performance classes tend to be confused by the

predictor. Nevertheless, recall and precision are close to 80%

for these QoE classes.

C. Lack of Generalization for Mobile Devices

Now that we have built the models for desktop, a natural

question is: how good would these models perform in data

collected from other device types? This is critical in practice,

as a significant, and ever growing, share of web-browsing

activity comes from mobile devices. Figure 7(b) depicts the

distribution of inference errors per device type, using the

ET10 model, trained exclusively on desktop data. Table III

summarizes the corresponding performance metrics. There is

a strong inference-performance degradation when applying the

desktop model to both smartphone and tablet data. Median

absolute errors almost triple as compared to desktop per-

formance. The distribution of errors shows that the desktop

model tends to underestimate the RUMSI metric when applied

to other devices, not present at training time. One could

argue that RUMSI on smartphone and tablet is significantly

higher than on desktop (cf. Figure 2), thus the performance

degradation could be linked exclusively to this mismatch.

However, performance degradation is also significant when

only considering smaller RUMSI values, with median errors
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Fig. 10: (a) RUMSI inference and (b) QoE classification

performance, ET10 model training on all-device data.

more than doubling for the example case of smartphone – from

260 ms to 592 ms –, testing only for RUMSI below 5 seconds.

Figure 8 shows how the aforementioned cross-device train-

ing and validation issues also hold when considering different

device types, using the RUMSI inference as example. The

figure reports the usual AE, RE and PLCC metrics arranged as

a training/testing matrix, where rows correspond to the device-

type data used for training, and columns to the device-type

data used for testing. While specialization improves inference

performance – the matrix diagonal –, training a model on

measurements from a particular device type and applying

the resulting model on measurements from a different device

type results in poor inference performance, for all device-

type combinations. Note also how the cross-device lack of

generalization applies to mobile devices, which are closer in

terms of characteristics (cf. Figure 2 and Figure 3); while the

performance degradation is lower when considering cross-data

from smartphone/tablet devices, it is still non-negligible.

Performance degradation is also significant for the QoE

classification problem. Figure 9 reports the classification

performance per device type, again using the ET10 model,

trained on desktop data. Overall classification accuracy drops

from 84% on desktop to 67% on smartphone and tablet.

Recall for excellent QoE degrades only slightly, but strongly

for the other classes, and most importantly, precision for

excellent QoE also drops strongly, meaning that the model

cannot correctly track the classification problem.

device MAE-mAE (ms) MRE-mRE (%) PLCC

desktop 649 – 300 37 – 18 0.874

smartphone 804 – 363 27 – 14 0.855

tablet 798 – 318 25 – 11 0.868

all 750 – 327 30 – 14 0.869

TABLE IV: Multi-device RUMSI inference performance.

Conclusion: RUMSI inference and QoE prediction can be

properly realized using CBD and session-based features, ex-

tracted directly from the stream of encrypted bytes. However,

models so far proposed in the literature for single device

types [1], [2], [15]–[17], [19] might not perform properly in

the wild, where other devices than desktop machines are used

for web browsing.

V. MULTI-DEVICE (FLOW) WEB QOE MODELS

Having shown the lack of generalization and the cross-

device issues introduced by per-device models, we take the

most natural step to conceive multi-device Web-QoE models.

Possible approaches include the usage of stacking/ensembles

of specialized models [28], or the inclusion of a pre-processing

device-type classification task, preceding the main infer-

ence/prediction task. However, the simplest approach, expos-

ing models to all devices data at training time, already provides

high accuracy and generalizes well across devices, which has

high practical appeal as it simplifies deployment.

Considering multi-device RUMSI inference first, Table IV

and Figure 10(a) summarize the performance attained by a

single ET10 model, trained on all-device data. Compared to

per-device specialized models (cf. the matrix diagonal in Fig-

ure 8), there is a marginal degradation for the corresponding

multi-device model, and mainly observed for desktop, with an

error increase close to 10%. Still, performance is consistent

across the three device types, with an overall median absolute

error of 327 ms, and a relative error of 14%. Overall, the

generalization capabilities of the multi-device model outweigh

the accuracy of the specialized models, making it a preferred

choice for Web-QoE monitoring in operational deployments.

Considering multi-device QoE classification next, Fig-

ure 10(b) reports the performance obtained with a single ET10

model, trained on all-device data: again, a slight performance

degradation compared to the specialized desktop model (cf.

Table II), but yields significant gain in terms of generalization

to mobile devices (cf. Figure 9). The overall model accuracy

is 82.2%, with recall and precision values for excellent{e},

good{g}, and poor{p} QoE of about {89%, 73%, 80%} and

{86%, 74%, 82%}, respectively.

Conclusion: multi-device models significantly improve gen-

eralization of the Web-QoE inference across different devices,

with only slight under-performance as compared to specialized

models. As such, multi-device models provide simple, more

accurate, and more reliable monitoring capabilities in realistic

web-browsing scenarios.



A. Multi-device, Flow-level Models

In the last part of the study we focus on improving the

practical application of the proposed Web-QoE inference

models. In particular, we explore the definition of new input

features at the flow level, which could be easier to compute

than the proposed packet-level features so far considered. We

define a set of 21 flow-level features, using similar notions

to the ones which guided the packet-level features. These

include: (i) the total number of flows (all, downlink, uplink),

(ii) the min/mean/median/max flow duration in downlink,

(iii) the min/mean/median/max flow size in downlink, (iv)

the min/mean/median/max flow byte-index in downlink, (v)

the mean/median in-flow, average intra-packets time (MDT)

in downlink, (vi) the mean/median/max flow throughput in

downlink, and (vii) the Flow-Index (FI).

Flow Index (FI): integral based metric, same rationale as BI

Two variants (start with 0 bytes or first flow bytes

Flow level Models Flow Index

time

Cumulative

Flow

Bytes

(normalized)

100

FI

Fig. 11: Flow-level features – flow index.
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Most correlated features

mean/median/max flow duration

mean/median/max flow BI

mean MDT & FI

session duration

Flow level & Session level Features’ Correlation

Fig. 12: Flow-level features, ranked by PLCC.

The flow byte-index uses the standard definition of Byte

Index (BI) [19], but considering only the packets belonging to

a specific flow. The FI feature represents an extension to the

BI, but using flow size and flow ending time instead of packet

size and time. Figure 11 depicts the basic notions behind

the calculation of the FI. Both the FI and BI are integral-

like metrics, similar to the definition of the SpeedIndex. We

refer the reader to [19] for a comprehensive definition of

the BI and the concepts of integral metrics. Flow features

are complemented by the 11 session-level features, previously

defined in Section III-C, adding to a total of 32 input features,

computable at the flow level. For the sake of completeness,

Figure 12 reports the linear correlation between these flow

and session input features and the RUMSI metric. Features

related to flow duration, flow BI, FI, and session duration are

the ones showing the highest correlation to the RUMSI.
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Fig. 13: Multi-device RUMSI inference performance – flow-

level features.

device MAE-mAE (ms) MRE-mRE (%)

desktop 628 – 309 35 – 18

smartphone 815 – 364 26 – 13

tablet 751 – 317 25 – 11

all 732 – 324 29 – 13

TABLE V: Multi-device, flow-level RUMSI inference.

Figure 13 and Table V report and summarize the RUMSI in-

ference performance achieved by a multi-device model, using

as input the new set of 32 features. Results are comparable,

and even slightly better for some device types, than those

achieved by using packet-level features (cf. Table IV), with

the paramount advantage of using an order of magnitude less

features, and at an easier-to-compute and more scalable level.

VI. CONCLUDING REMARKS

We have tackled the problem of Web-QoE monitoring

from the ISP perspective, relying on in-network, passive

measurements. Empirical evaluations on a large, multi-device,

heterogeneous corpus of Web-QoE measurements for the most

popular websites shows that the proposed solution can infer

the (RUM)SI as well as estimate Web-QoE ranges from in-

network traffic measurements with high accuracy. At the same

time, the device type introduces a strong bias in the capabilities

of Web-QoE inference models, causing models trained for

single device types to badly generalize to other devices. We

showed that this cross-device lack of generalization can be

solved by properly training on data coming from a multitude

of devices. Our findings raise awareness of the fact that models

for Web-QoE monitoring must be exposed to multi-device

measurements to achieve proper inference and prediction per-

formance in real network deployments, something generally

neglected in the literature. To the best of our knowledge, we

are the first to unveil the strong impact that the device type

has on such models. The definition of novel flow-level features

which also realize highly accurate predictions is also a key-

contribution of the study.
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