
Simulative Evaluation of KPIs in SDN for Topology
Classification and Performance Prediction Models

Nicholas Gray, Katharina Dietz, Tobias Hossfeld
University of Würzburg

Würzburg, Germany
{nicholas.gray, katharina.dietz, tobias.hossfeld}@informatik.uni-wuerzburg.de

Abstract—In recent years Software-defined Networking (SDN)
has gained increased popularity by reducing the complexity of
management operations and increasing the performance of net-
works. As a result, the number of purchasable SDN devices and
their deployment in real world network constantly rises, making a
thorough understanding of their behaviors and interactions even
more important. In this work we analyze distributed controller
architectures via simulation, identify Key Performance Indicators
(KPIs), classify various network topologies with respect to their
impact on SDN, as well as create a prediction model to estimate
the overall performance of the overall SDN ecosystem, which can
be used for network planning.

Index Terms—Software-defined Networking (SDN), Event-
based Simulation, OMNeT++, OpenFlow, Performance Predic-
tion, Network Optimization, OpenFlow OMNeT Suite, Linear
Regression, Principal Component Analysis (PCA)

I. INTRODUCTION

Software-defined Networking (SDN) has been proven to
increase the scalability and flexibility not only in data centers,
but is also applied to Wide Area Networks (WANs) as seen
in Google’s B4 backbone [1]. Due to its centralized network
configuration implemented by separating the control and data
plane, SDN-enabled networks may be managed at a central
point, allowing for quick adaptations via dedicated APIs.

The OpenFlow protocol is often regarded as one of the
pioneers to standardize the communication between the data
and control plane in software-defined networks. Here, the
OpenFlow controller is the decision maker, i.e., represents
the control plane, while OpenFlow switches are the executive
authorities and thus, constitute the data plane. Nowadays,
the controller is usually distributed among several physical
instances to avoid performance bottlenecks [2] and to further
enhance the resiliency of the network, while still maintaining
a logical centralized view.

Yet, these distributed environments impose additional chal-
lenges regarding their performance, their organizational archi-
tecture, the required synchronization overhead as well as the
placement of the individual controller instances. On their own,
these challenges have been investigated by several papers. Yet
a thorough investigation of their impact on the entire SDN
ecosystem in combination with varying controller applications,
data plane traffic patterns, network topologies as well as the

applied distributed controller architecture remains outstanding,
which is vital for efficient network planning.

The contribution of this work is (1) a thorough investigation
of distributed architectures, (2) the identification of Key Per-
formance Indicators, (3) a classification of network topologies
and finally (4) the creation of a performance prediction model,
based on the prior findings.

To achieve these goals and to evaluate a myriad of network
configurations without the potentially high costs and limita-
tions of real world test beds, we utilize the OpenFlow OM-
NeT++ Suite [3] as simulation framework. The suite has been
extended within this work by a library of network topologies
as well as more sophisticated modules for traffic generation
and graph analysis. The KPIs are extracted from the obtained
simulation results and analyzed by using correlation as well
as Principal Component Analysis (PCA), which enable us to
create a performance prediction model via linear regression.

The remainder of this work is structured as follows. In
Section II we start by coarsely outlining the OpenFlow spec-
ifications, distributed controller architectures, as well as the
core functionalities of the OpenFlow OMNeT++ Suite. This
is continued by summarizing related work in Section III.
Section IV provides a description of the improvements to the
OpenFlow OMNeT++ Suite, followed by details about the
utilized scenarios and configurations of the simulation, before
presenting our evaluation results in Section V. This covers
the identification of the KPIs, the classification of various
networks, as well as the derived model for predicting the
network’s performance. Finally, the paper is summarized in
Section VI and we provide an outlook for future research.

II. BACKGROUND

In this section we provide the required background of this
work, by briefly detailing the OpenFlow protocol and dis-
tributed controller architectures as well as their implementation
within in the OMNeT++ simulation framework.

A. OpenFlow & Controller Architectures

Being one of the first enablers of SDN, the OpenFlow
protocol1 specifies the communication between the control and
data plane, i.e., it acts as a southbound interface connecting

1https://www.opennetworking.org/software-defined-standards/978-3-903176-31-7 © 2020 IFIP



the OpenFlow controller and the OpenFlow switches. The
latter are equipped with so-called Flow tables against which
incoming packets are matched. If an entry is successfully
matched, the packets are subject to its configured actions,
which determine its further course and is known as the fast
path. If no matching entry is found, the essential information
of the mismatched packet is extracted and relayed to the
controller, which will then decide how to handle the packet and
may set additional configurations within the reporting switch.
As this process induces additional delay, it is referred to as
the slow path. Therefore, it is highly beneficial to process as
many packets as possible within the fast path to minimize the
delay and to reduce the overall load imposed on the controller.
In addition to the data plane traffic and applied forwarding
mechanisms, further traffic may be afflicted to the control
plane depending on the configured control plane applications
such as topology discovery or network monitoring. To mitigate
a possible overloading of the OpenFlow controller, distributed
architectures aim to divide the traffic among several instances.
Existing architectures can be divided into two groups: hori-
zontal and hierarchical approaches [3]. Whereas the horizontal
approach requires constant synchronization and hence is able
to keep all instances on par with each other, the hierarchical
approach divides the authority among all instances grouped
by hierarchy level, i.e., the root instance is the only node with
the full network view. Representatives for the horizontal and
hierarchical approach are HyperFlow [4] and OpenDaylight2

as well as Kandoo [5] and ONOS3 respectively.

B. Event-based Simulation & OpenFlow OMNeT++ Suite

Having limited access to large scale SDN-enabled testbeds
capable of establishing various topologies, we utilize the
merits of event-based simulation in this work to overcome this
restraint. For this we incorporate the OMNeT++4 framework,
which is component-based, easy to extend, and is mainly
focused on the simulation of networks. In addition, we uti-
lize the INET5 and OpenFlow OMNeT++ Suite (OOS) [3]
extensions, which implement common network protocols and
the core functionality of OpenFlow respectively. The latter is
also equipped with modules for HyperFlow and Kandoo as
well as a collection of control and data plane applications.
Yet, to achieve the goals of this work, OOS has been further
extended, which is detailed in Section IV.

III. RELATED WORK

In this section we discuss related research by stating simi-
larities and differences to this work.

OpenFlow Performance Evaluation: The performance of
SDN has been subject of research papers from the very start.
Yet, most publications focus only on a selective part of the
SDN ecosystem, which can be summarized in analogy to the
SDN architecture, i.e., the data and control plane. The authors

2https://www.opendaylight.org/
3https://www.opennetworking.org/onos/
4https://omnetpp.org/
5https://inet.omnetpp.org/

of [6]–[9] investigate how to improve the overall Quality
of Service (QoS) and Quality of Experience (QoE) of the
network by utilizing the advantages of the enhanced control
mechanisms of SDN in combination with expert knowledge
of the applications. [10], [11] zero in on the processing
times of SDN-enabled switches for various tasks, revealing a
wide heterogeneity among switching operations and hardware
vendors. In contrast, the papers [12]–[15] focus solely on
the SDN controller, detailing a large variety regarding the
performance of the particular implementations. While adopting
certain test methodologies and metrics, the focus of this work
is not a single component but rather the entire SDN ecosystem
and the interconnection of all influence factors.

OpenFlow Performance Optimization: The SDN controller
performance is further enhanced via code optimization and
parallelization as stated in [16]–[18]. Another approach is by
shifting static and commonly used rules directly to the switch
[19], [20] or by incorporating several distributed controller
instances, which share the load and maintain a logically
centralized view [4], [5]. In this paper, we examine distributed
controller architectures and show their impact on the overall
network performance, as this has not been investigated exhaus-
tively with regards to different network topologies and traffic
patterns. Furthermore, we reckon that utilizing the fast path
can significantly reduce the load on the SDN controllers and
reduce the end-to-end latency within the network.

Controller Placement: The performance and resiliency of
the network is further influenced by the placement of the SDN
controllers known as as the Controller Placement Problem
(CPP). This is investigated in [21]–[23] by using heuristics or
exhaustive search to optimize a selective set of metrics such
as the controller-to-switch latency (C2SL). For our simulation,
we incorporate optimized placements with respect to the C2SL
and in addition, the results of this work demonstrate that
simple metrics from which the placements are derived may
be insufficient as they are unable to model vital interactions
and side effects, leading to sub par performance results.

Network Modeling: Former analysis have utilized more
abstract network models, which often have their origin in
graph theory. Studies have shown that the graph’s topology
influences the resiliency and performance [24], [25], which
is reflected by various graph metrics. A selection of graph
metrics is summarized in [26], which we also implement
within this work and investigate which of these are incisive
for SDN-enabled networks.

The ability to predict the performance of a network is
valuable, as it allows for cost effective network design and
extends the reaction times in dynamic systems to critical
events. The authors of [27] group prediction methods for
legacy networks by system identification, time series analysis,
machine learning as well as queuing theory. The latter is
applied by [28], [29] to the controller/switch interaction of
SDN. In contrast, we use linear regression based on the results
of a full simulation for predicting the performance of the
entire SDN ecosystem with respect to the network topology,
distributed controller architecture and traffic pattern.



IV. SIMULATION DESCRIPTION AND SETUP

In the following we detail our improvements to the Open-
Flow Suite and describe our simulation setup.

Extension of the OpenFlow Suite: To investigate our re-
search questions, we had to extend the OpenFlow OMNeT++
Suite (OOS), which is briefly discussed in the following. At
first the computation of the graph metrics has been imple-
mented within the GraphAnalyzer module, which is triggered
at the beginning of every simulation and respects the sep-
aration of the data and control plane of SDN scenarios. In
total the module derives 20 distinct metrics and records the
results as scalars. We ported 50 networks based on their size
from the internet Topology Zoo6 (ITZ) to OOS, in order to
investigate the influence of topological features in addition to
the already featured networks AL2S and FatTree, which are
extreme opposites. Whereas the Fat-tree is a common topology
within data center environments due to its symmetrical and
fault tolerant design, we selected topologies from the ITZ,
which represent WANs and have at least 25 up to 40 switch
nodes to increase the variety of our investigations. Another
influence factor is the underlying traffic pattern generated
by the individual hosts in the network. Here, OOS already
features a random ping application and a TCP traffic generator,
which both choose the source and destination of every flow
by an uniform random distribution. As this may have a
negative impact on the distributed controller architectures, we
extended the traffic generators to respect the controller-to-
switch affiliation by introducing locality-aware traffic patterns.
The above changes and other slight improvements have been
merged with the OOS core and are publicly available7.

Simulation Topology and Setup: In the following, the un-
derlying topologies, the module configuration, and the general
simulation setup, as used in this work, is described.

For all simulated topologies, we computed the appropriate
placements with respect to an average minimal C2SL for the
varying amounts of controllers and the investigated distributed
architectures, i.e., HyperFlow and Kandoo. For the networks
taken from the ITZ, the Kandoo root is placed according to the
minimal distance to the local instances. In case of the Fat-tree
scenario, the controllers are all connected to a regular Ethernet
switch, which also connects each switch in the data plane
enabling a more balanced controller-to-switch distribution. In
total 1712 simulation runs have been conducted.

The controller module is governed by several applications
with their corresponding alterations for the distributed ar-
chitectures, as depicted in Figure 1a and 1b. This consists
of the respective distributed controller agents which are re-
sponsible for managing the synchronization. Furthermore, the
LLDPAgent performs network topology discovery and the
LLDPForwarding as well as the LLDPMinHop applications are
responsible for the packet forwarding mechanism by using the
discovered information. Last, the ARPResponder maintains an
IP-to-MAC address mapping and functions as ARP proxy. The

6http://www.topology-zoo.org/dataset.html
7https://github.com/lsinfo3/OpenFlowOMNeTSuite/

stated applications have been chosen, as they either perform a
vital function within the network or are commonly deployed
by default in real-world SDN controllers to reflect a realistic
control plane application mix.

Each simulation run is configured to reflect 30 minutes
of real-world measurements and is repeated four times. The
remaining parameters are set to their default values as specified
by the OOS and have been additionally summarized8.

Whereas, the graph metrics are collected at the initialization
stage, the performance metrics are measured during the sim-
ulation. In this work, we focus on four performance metrics
to represent the key actors of a SDN-enabled network. The
amount of synchronization traffic measures the performance
of the distributed controller architecture. In addition, the
controller and OpenFlow switch efficiency are in coherence
with the amount of induced control plane traffic and the Flow
table hit-to-miss ratio, respectively. Last, the round-trip time
and the connection setup time capture the performance of the
data plane applications as they reflect the end-to-end latency
of the entire system from the user’s perspective.

V. EVALUATION

In this section we evaluate the results obtained in the
simulation runs to determine the main influence factors on the
network’s performance, which are then used to classify various
network topologies to finally create a prediction model for the
network performance based on topological features.

A. Identification of Key Performance Indicators (KPIs)

We start by presenting the results of a parameter study based
on the simulation runs to derive KPIs. For this we vary the
number of controllers, the distributed controller architecture,
the applied traffic patterns as well as the network topology.
In this section we focus on the Fat-tree and Advanced Layer
2 Services (AL2S) topologies only, as these reflect opposite
design patterns and the AL2S is popular in research papers,
which allows for further comparison. A more detailed ex-
amination of the network topologies is presented in the next
section.

The results are shown in Table I and display the mean
values over 4 simulation runs. All results have been verified
for statistical significance by computing the 95% confidence
intervals. All confidence intervals are small, due to the length
of the simulated time span and thus have been omitted for the
sake of brevity. In addition, we dismiss the warm up phase,
which consists of the first 250 s, after which a steady state is
reached within the simulation as all switches have connected
to their respective controllers and the first rounds of topology
discovery have been completed.

1) Fat-Tree: Focusing on the control plane traffic, the table
depicts a reduced load at the specific controller instances for
a rising number of controllers. This is due to the fact that they
now have to manage less switches. However, if one aggregates
the traffic over all controllers different trends for Kandoo

8https://github.com/lsinfo3/cnsm2020



Kandoo Controller: Compound Module

KN_LLDPAgent:

Simple Module

OF_Controller:

Simple Module

KN_LLDPForwarding/

KN_LLDPMinHop:

Simple Module

KN_ARPResponder:

Simple Module

IPMACKandooAgent:

Simple Module

HyperFlow Controller: Compound Module

HF_LLDPAgent:

Simple Module

OF_Controller:

Simple Module

LLDPForwarding/

LLDPBalancedMinHop:

Simple Module

HF_ARPResponder:

Simple Module

IPMACHyperFlow:

Simple Module

(a) Kandoo

Kandoo Controller: Compound Module

KN_LLDPAgent:

Simple Module

OF_Controller:

Simple Module

KN_LLDPForwarding/

KN_LLDPMinHop:

Simple Module

KN_ARPResponder:

Simple Module

IPMACKandooAgent:

Simple Module

HyperFlow Controller: Compound Module

HF_LLDPAgent:

Simple Module

OF_Controller:

Simple Module

LLDPForwarding/

LLDPBalancedMinHop:

Simple Module

HF_ARPResponder:

Simple Module

IPMACHyperFlow:

Simple Module

(b) HyperFlow

Fig. 1: Adjusted controller compositions for Kandoo (a) and HyperFlow (b).

TABLE I: Measured performance metrics for Kandoo and HyperFlow with varying number of controllers (2c-5c).

Fat-Tree AL2S

2C 3C 4C 5C 2C 3C 4C 5C

K
an

do
o

Control P. Traffic (B/s) 2639.7 1684.0 1246.5 976.10 2095.8 1395.7 1066.3 858.71

Agg. Control P. Traffic (B/s) 5279.4 5051.9 4985.9 4880.5 4191.6 4187.1 4265.6 4293.5

Hit-to-Miss Ratio (%) 73.518 74.801 78.250 75.795 83.916 84.076 83.611 83.499

Round-Trip Time (ms) 0.6667 0.6621 0.7415 0.6589 93.714 111.30 119.93 112.05

Sync. Traffic (B/s) 178.62 141.72 113.88 95.117 161.51 122.91 120.92 103.08

Agg. Sync. Traffic (B/s) 357.24 425.17 455.52 475.59 323.02 368.74 483.68 515.41

H
yp

er
Fl

ow

Control P. Traffic (B/s) 3323.8 2522.2 2139.6 1820.1 2134.8 1477.4 1161.3 921.14

Agg. Control P. Traffic (B/s) 6647.6 7566.6 8558.4 9100.6 4269.6 4432.2 4645.3 4605.7

Hit-to-Miss Ratio (%) 64.508 59.370 50.798 46.642 83.586 82.925 82.057 82.216

Round-Trip Time (ms) 0.6942 0.7280 0.7655 0.7852 78.183 79.948 82.368 70.483

Sync. Traffic (B/s) 157.48 169.59 181.61 193.60 139.23 151.20 162.91 175.09

Agg. Sync. Traffic (B/s) 314.97 508.77 726.43 968.02 278.46 453.61 651.62 875.46

and HyperFlow are visible. The total control plane load is
increasing for HyperFlow the more instances are utilized,
whereas it is decreasing for Kandoo. While the HyperFlow
instances all maintain a global network view, this view may
be inconsistent throughout all devices for certain time periods.
Since the controllers synchronize in cycles, a specific instance
may not have yet received the information of another controller
and hence may perform sub-optimal decisions. In contrast,
in a Kandoo environment the root is the only device with a
global view and the sole authoritative controller for global
decisions. This varying behavior results in a different granu-
larity and consistency regarding the forwarding configuration,
which directly affects the requests to the controller. The less
consistent the forwarding decisions are, the less likely it is
that flow entries are refreshed and remain active within the
flow tables. The decrease of the overall traffic for Kandoo
is explained by the fact that if more controllers are utilized,
more paths are configured by the root instead of the local
instances due to insufficient local views. In return, this results
in a more consistent forwarding configuration. Whereas for
HyperFlow each individual instance becomes more dependent
on the others, since each controller only configures paths under
their respective control and relies on the precondition that all
controllers have the same knowledge base to determinedly

compute the same path configuration.
This effect is also visible when examining the Flow table

hit-to-miss ratio. The hit ratio for Kandoo increases minimally
for more controllers with the exception of the four controller
scenario, while it decreases for HyperFlow. A packet trans-
mission may cause more than one table miss in a HyperFlow
environment, since a packet may be forwarded before the
complete path is established, due to asynchronous authoritative
controller instances, which further worsens the hit ratio.

The anomaly of the hit-to-miss ratio for Kandoo utilizing
four controllers is caused by a logical error within the path
configuration for one of the four simulation runs. The network
traffic is routed over multiple equivalent paths, hence, it may
occur that old Flow entries cause a message to cycle through
the network longer than needed. Since this ping-pong behavior
mostly results in table hits, this does not affect the control
plane traffic and is an example for the complex interaction of
the individual SDN components.

The round-trip times are directly correlated to the hit ratio.
For Kandoo a minor decrease is observed, again, with excep-
tion to the discussed four controller scenario, where packets re-
circulate in the network. For HyperFlow an increase of round-
trip times is shown, since the probability for a packet to be
stalled, due to multiple table misses increases.



Finally, the synchronization traffic of the two architectures
diverges. For Kandoo, the required synchronization decreases
at each instance the more controllers are utilized, as the load
is balanced over more devices. However, when accumulating
the traffic over all controllers, an increase is observed. Since
the network is more fragmented, more synchronization with
the root is required, because the partial views are insufficient.
For HyperFlow, the synchronization traffic increases for more
utilized instances on every level, as all controllers maintain a
global view and have to report their knowledge to all other
instances. Hence, the baseline of the required synchronization
cannot be decreased.

2) AL2S: Similar to the Fat-tree, the control plane traffic
at the individual instances decreases for the AL2S topology
as less switches are handled by each controller. However, the
table depicts two major differences compared to the Fat-tree
scenario. First, the controller traffic for both architectures is
significantly lower in the AL2S scenario. This is caused by
a more consistent forwarding configuration, which is applied
due to the lack of symmetry within the network and hence the
abundance of equal costs paths over which the load could be
balanced. This causes the controllers to only configure a single
path to route the traffic in the network. As a result, this creates
less divergent Flow entries and therefore, increases the chance
that a specific entry gets refreshed. This provides fewer table
misses and in return, less traffic is relayed to the controller.

The second difference compared to the Fat-tree topology
is the similar performance of both architectures, hence the
Fat-tree topology happens to be beneficial for Kandoo and
disadvantageous for HyperFlow. The improved performance of
HyperFlow is also a result of the different forwarding mecha-
nism described before, since the load balancing over multiple
paths amplified the weaknesses of HyperFlow. Nonetheless,
while performing more similar to Kandoo, HyperFlow still
induces up to 380Bps more aggregated traffic, which is
again attributable to the asynchronous authoritative among the
HyperFlow instances.

The observed variations induced to the aggregated control
plane traffic for both architectures are caused by the asymme-
try in the topology, which results in imbalanced controller-
to-switch mappings, as we did not optimize for balanced
switches. Thus, we see no monotonous trends like for the
Fat-tree, where the switches where divided evenly among the
controllers.

As before, the hit ratio is in accordance to the aggregated
control plane traffic and shows the same non-linear trend, since
a table miss results directly in a request to a controller.

Another difference to the Fat-tree is that the round-trip
time increases for Kandoo when utilizing more controllers,
with the exception of the five controller case. The round-
trip time first increases, since a Flow entry time out is less
likely to be handled by a local instance in a more fragmented
network and thus, the root is asked for further assistance more
often. In contrast to the Fat-tree scenario, this has a noticeable
influence on the round-trip times due to higher physical
distances between the sites. E.g., the average link delay for

the shortest paths from local instances to the Kandoo root for
two controllers is remarkably lower with a value of around
6.5ms, while the delay ranges from 8.4ms to 9.2ms for
other scenarios. The improvement of the round-trip time when
deploying five controllers is attributable to the fairer switch-to-
controller mapping, regarding the amount of switches assigned
to an individual controller. For example, in the three controller
scenario, two thirds of the switches are assigned to the first
controller. This imbalance is further increased by asymmetric
traffic flows, e.g., the node representing Chicago handles
around 2.7 times more data plane traffic than the cumulative
mean of the remaining switches. Thus, controllers managing
more and/or switches handling extensive data plane traffic,
have a higher chance of inducing waiting times onto incoming
requests, which are ultimately reflected by higher round-
trip times. For HyperFlow, the round-trip times are generally
lower compared to Kandoo. This is due to the fact that no
information is requested from a root controller. However, as
seen previously, the more controllers are utilized, the more
dependent each controller is on the other instances. Thus, the
round-trip times increase minimally up to four controllers.
Then, just like for Kandoo, the times decrease for the five
controller scenario, due to more balanced switch assignments.

The synchronization traffic behaves similarly as for the Fat-
tree topology, i.e., whereas it decreases for Kandoo’s local
instances, it rises for HyperFlow at the individual instances
for an increasing number of controllers. Again, the cumulative
synchronization traffic increases for both distributed controller
architectures. Yet, the imbalance of switch mappings is also
reflected in these results, especially looking at Kandoo, as the
synchronization load at a single instance only decreases min-
imally from three to four controllers. This is further reflected
in the accumulated synchronization traffic, since the increase
from three to four controllers is remarkably higher than for
the other scenarios. Examining the controller placement more
closely, the deployment for two and three controllers is similar,
as both scenarios feature a controller that maintains two thirds
of the traffic. Adding a third controller results in an increase
of control plane traffic due to a stronger fragmentation of
the switch mappings. Yet, the configuration of four and five
instances is again similar, since they share three controller
placements, thus resulting in similar balanced traffic patterns.

3) Data Plane Traffic Patterns: To examine the influences
of varying data plane traffic more closely, we first evaluate
the impact of TCP flows instead of pings and then focus on
traffic locality properties, i.e., the amount of flows established
within or across controller boundaries. For the sake of brevity
the results are merely summarized with respect to the main
observed differences compared to the previous section.

Instead of the previously used traffic generator which uses
deterministic intervals to establish connections, the TCP traffic
generator uses a gamma distribution, which has been config-
ured to model the traffic pattern of a real-world dormitory [3].
This is results in connections being around 6.5 times less
frequent while inducing around 50% more traffic into the
data plane. For both distributed controller architectures and



topologies similar trends as seen before are observed. The
main difference here is that even though more data plane
traffic is present, the control plane traffic is reduced to a third
in comparison when using the deterministic ping pattern as
before. This is due to the fact that the flow table hit ratio is
now far higher ranging from 95% to 96% and from 87% to
91% for Kandoo and HyperFlow respectively. In return, this is
caused by the nature of TCP flows, which consist of several
packets in both directions within a short time frame, hence
keeping the table flow entries active once set.

As shown previously, side effects may occur if traffic is
routed across controller boundaries. To investigate this in
more detail, we adapt the selection of communication partners
within the traffic generator, to respect the controller-to-switch
mappings in order to define a certain percentage of flows,
which are kept local, hence not crossing a controller boundary.
For this value a parameter study is performed starting from
100% and ranging down to 0% in steps of 20%. As expected
the control plane traffic for both architectures and deployed
number of controllers first rises with a decreasing locality
value, until it hits a turning point from which it starts declining.
This behavior results from the fact that now hosts are favored
due to their association to a certain controller boundary and
hence their respective flow table entries are refreshed with
an higher likelihood. This effect is even more emphasized in
scenarios using the AL2S topology or a specific number of de-
ployed controllers, which feature more unbalanced controller-
to-switch mappings. Therefore, the turning point is different
for each topology and number of controllers. For the flow table
hit ratio similar observations are made, which also impact the
round-trip times.

B. Classification of Network Topologies

As depicted in Table I, the network topology has a large
impact on the overall performance of the SDN ecosystem.
Hence, we perform an in-depth analysis of selected networks
of the Internet Topology Zoo to generalize our results and to
form a basis for creating a prediction model. We first analyze
the correlation of the performance metrics with the graph
metrics, followed by a visualization and classification of the
individual networks via Principal Component Analysis (PCA).

Note that for all analyses the control plane and synchro-
nization traffic have been normalized with the number of hosts
in the network. This reduces the effect of the sheer number
of participants on the performance and augments the impact
of the underlying topology. Henceforth, the terms control
plane traffic and synchronization traffic refer to the normalized
performance per host.

1) Correlation Analysis: Figure 2 shows the spearman
correlation of the four measured performance metrics to the
graph metrics in a two controller scenario for Kandoo and
HyperFlow, respectively. The full correlation matrix has been
abbreviated for the sake of readability by filtering the metrics
showing no strong correlation in either of the distributed
controller architectures.

Overall, the figure details that the control plane traffic is
highly correlated to the betweenness and the number of links.
Whereas, a higher betweenness indicates a more consistent
forwarding configuration, as more nodes are contained within
the different shortest paths, an increasing number of links
results in more messages sent during the topology discovery.
Hence, an increase of either of these two metrics results
in more traffic at the control plane. Furthermore, a loose
correlation to metrics that measure the longest paths of the
network can be seen, since they are also correlated to the
betweenness. This is due to the fact that longer paths indicate
a less inter-meshed network and hence the traffic has to be
routed along these paths with no alternative routes available.

The correlation of the hit ratio is contrary to the control
plane traffic and thus, has the exact opposite sign of the
influences reflecting the control plane traffic. However, the
correlations for the hit ratio and the graph metrics are generally
stronger except the number of nodes and links, since the hit
ratio is mainly influenced by the layout of the paths and less
by other traffic sources like the topology discovery.

For the round-trip time there are no strong correlations
visible. This is due to the fact that the geographical distances
of the sites vary too greatly over all networks, due to their
physical deployments.

Last, the largest difference between the two architectures is
seen in the synchronization traffic. Although similar trends
within the correlations exist for HyperFlow and Kandoo,
i.e., the control plane traffic or hit ratio, the correlations for
HyperFlow are stronger for the synchronization traffic. As the
betweenness and other indicators of path lengths influence
the number of packets sent by the network discovery, they
also impact the amount of information which needs to be
synchronized to all controller instances.

In contrast, the overall correlation for the required synchro-
nization to the graph metrics is weaker for Kandoo. This is
caused by the fact that the required amount of synchronization
is mainly dependent on the switch-to-controller mappings due
to the partial views of the local instances, which vary from
network to network. E.g., there are networks where only one
switch is assigned to the first and the rest is associated to
the second controller, since the controller placements are not
optimized for balanced assignments as discussed previously.
Again, the correlations have the opposite sign as for the control
plane traffic. In detail, networks with fewer and longer paths
induce a higher synchronization overhead, since packets are
more likely to leave an enclosed controller area. Therefore,
the mismatches can cause more root requests, even though the
overall hit ratio may be higher, depending on the topology.

2) Principal Component Analysis (PCA): To classify and
compare the examined networks, we utilize the Principal
Component Analysis (PCA) to reduce the dimensions of the
graph metrics. This allows us to better visualize the networks
as well as to apply clustering algorithms, hence resulting in
groupings of similar networks regarding their performance and
topological features. The clustering was applied to the first
and second principal component, which have been obtained



-0.88

0

0.99

-0.95

0.62

-0.06

-0.91

0.81

-0.67

0.03

0.92

-0.84

-0.62

0.05

0.91

-0.82

-0.61

0.05

0.9

-0.8

-0.61

0.05

0.9

-0.8

0.83

0.29

-0.65

0.58

0.74

0.06

-0.41

0.53

-0.62

0.07

0.89

-0.83

Be
tw
ee
nn
es
s

Clo
se
ne
ss

Di
am
ete
r

Ec
ce
nt
ric
ity

Fa
rn
es
s

Ho
pc
ou
nt

Lin
ks

No
de
s

Ra
diu
s

-1.0

-0.5

0.0

0.5

1.0
Corr.

HyperFlow

-0.89

0.02

0.99

0.63

0.63

-0.07

-0.91

-0.71

-0.68

0.04

0.91

0.69

-0.64

0.05

0.91

0.69

-0.62

0.06

0.9

0.71

-0.62

0.06

0.9

0.71

0.81

0.28

-0.63

-0.23

0.74

0.06

-0.41

0.04

-0.64

0.08

0.9

0.68

Co
nt
ro
l.P
.Tr
aff
ic

Hi
t.R
ati
o

RT
T

Sy
nc
.Tr
aff
ic

Be
tw
ee
nn
es
s

Clo
se
ne
ss

Di
am
ete
r

Ec
ce
nt
ric
ity

Fa
rn
es
s

Ho
pc
ou
nt

Lin
ks

No
de
s

Ra
diu
s

Kandoo

Fig. 2: Correlation of performance and graph metrics for Kandoo and HyperFlow in a two controller scenario.

by the PCA and the number of clusters was first determined
by a majority vote provided by the NbClust R package9. The
resulting final 4 clusters are detailed in the following.

Cluster 1 consists of only three networks, which reflect
the most extreme topologies regarding the longest paths in
the network. Here, the average diameter consists of 15.7
nodes. Since traffic always follows the same long path without
alternative routes, networks within this cluster induce the least
amount of control plane traffic onto the controller on average
and have the highest mean hit ratio for both Kandoo and
HyperFlow. In addition, these networks generate the lowest
mean synchronization traffic for HyperFlow due to less traffic
imposed by the topology discovery, caused by the chain-like
nature of the topologies. Yet, for Kandoo these networks have
the worst performance regarding the average synchronization
traffic. Since the local views are the least sufficient in these
networks, due to the degree of fragmentation imposed by the
lack of node connectivity, the root has to be requested more
frequently. The 13 networks in cluster 2 are more moderate,
with respect to their path lengths and betweenness. E.g., the
networks contained in this cluster have a mean diameter of
around 10.5. Hence, the overall performance of networks
within this cluster is more balanced and an individual metric
is not severely affected in a positive or negative manner. The
path lengths in the networks assigned to the clusters 3 and 4
are even shorter, with diameters of 5.9 and 6.4, respectively,
which is represented by the similar position of the centroids
on the first dimension. The characteristic which differentiates
the networks within these two clusters is their number of
nodes and links. Cluster 3 consisting of 18 networks, generally
contains networks with more nodes, i.e., the average amount of
switch nodes is 35.3, whereas the other clusters have a mean
below 29.7. Furthermore, the intermeshing of the contained
networks as well the number of links is higher with an average
amount of 52 links, while the other clusters contain less than
38 links on average. Therefore, Cluster 3 performs the worst
on average regarding the hit ratio and the control plane traffic,
which is caused by the increased path variety. This is even
more amplified by the higher number of possible target nodes
for pings. For HyperFlow, this also results in more synchro-

9https://cran.r-project.org/web/packages/NbClust/

nization traffic due to more traffic generated by the topology
discovery. For Kandoo’s local instances less synchronization
traffic is induced on average. Cluster 4 is formed of a total
of 16 networks and contains shorter, more diverse paths on
average, hence it behaves similarly to Cluster 3, resulting in
a lower mean hit ratio and higher mean control plane traffic.
On average, it performs the best regarding the synchronization
traffic for Kandoo, as a result of the high interconnections and
lower number of nodes, resulting in a lower path variety versus
Cluster 3, but suitable intra-fragment views.

For the most part, the previous observations hold true for
all observed controller amounts, however, the differences start
to blur with more utilized controllers. Especially the influence
of the synchronization traffic is reduced for more controllers,
as the switch-to-controller mappings become more important.
E.g., for five controllers the required synchronization in clus-
ters 3 and 4 is almost indistinguishable for HyperFlow.

Regardless of a worsened hit ratio and higher control plane
traffic, the majority of networks is contained in the clusters 3
and 4. This stems from the fact that removing links from a
network generally results in a higher round-trip time, since
more service times of switches are induced and a higher
physical distance has to be covered.

To summarize, when designing a network in real-life, the
overall goal is important as the investigated performance
indicators are adversarial. If the goal is to minimize the
control plane traffic and simultaneously to increase the hit
ratio, routing all traffic over the same path, even if it is a
long path, is beneficial. Yet, this is at the cost of the round-
trip time and response times, which is disadvantageous for
the Quality of Service (QoS) for users. In contrast, if the goal
is to optimize for low round-trip times more interconnected
networks are beneficial, yet resulting in a larger load imposed
on the control plane.

C. Performance Prediction
At last we utilize the results of the prior investigations and

continue by focusing on the prediction of network performance
via graph metrics, enabling the prediction of a network’s per-
formance without need for physical deployment or simulation.

The model is derived by Linear Regression (LR) and the
training set is composed of artificially created networks, which



TABLE II: Performance prediction accuracy.

Kandoo HyperFlow

2C 3C 5C 2C 3C 5C

M
A

PE

Control P. Traffic 0.0538 0.0583 0.0589 0.0526 0.0593 0.0538

Hit-to-Miss Ratio 0.0524 0.0509 0.0483 0.0511 0.0495 0.0506

Round-Trip Time 0.6754 0.6832 0.6970 0.6397 0.6253 0.5663

Sync. Traffic 1.3930 0.7299 0.3770 0.0446 0.0409 0.0353

aim to cover networks from all of the previously identified
clusters. Hence, the challenge of obtaining sufficient data
is strongly reduced. In contrast, the test set consists of the
evaluated Topology Zoo networks. To evaluate the model, the
four performance indicators are examined regarding the Mean
Absolute Percentage Error (MAPE) of the predicted value,
which are detailed in Table II.

For both distributed controller architectures, the prediction
model for the control plane traffic is composed of the average
betweenness and the number of links in a network. While
the number of link represents the traffic caused by network
topology discovery, the betweenness reflects the consistency of
routing and thus, the relayed traffic resulting from mismatched
packets. Here, the table shows for both architectures that the
prediction is accurate. Whereas the precision fluctuates for
HyperFlow for a higher number of deployed controllers, the
overall prediction for Kandoo becomes less precise. However,
the imprecision from three to five controllers does not change
significantly. As more controllers introduce new effects that
are unexplainable by the graph metrics alone, their correlation
weakens and thus results in an overall more similar perfor-
mance of all networks. I.e., a higher fragmentation causes the
switch assignments to be more akin in terms of balance, as
discussed previously, thus a single controller instance is less
dominant regarding the number of managed switches.

The hit-to-miss ratio for Kandoo and HyperFlow is pre-
dicted via the betweenness only. The prediction is generally
more precise than for the control plane traffic, caused by the
high correlation of the betweenness and hit ratio.

Regarding the round-trip time, the model suffers from high
imprecision for both architectures. As seen in the correlation
analysis, none of the proposed graph metrics shows a modest
or high correlation to the round-trip time. Therefore, a new
metric was utilized to build the linear model, namely the
average path delay of shortest paths, which includes service
times and transmission delays at and between switches. Thus,
it can be seen as a weighted version of the average hop count.
Yet, due to the differences for the average transmission delay
of the test training set, the predictions remain inaccurate.
Increasing the number of controllers worsens the accuracy
for Kandoo even further, as the root gains more importance
which is not reflected in the prediction model. As opposed
to HyperFlow, which does not feature a root instance, the
prediction improves due to the more similar behavior of the
networks as explained before concerning the variation for the
control plane traffic.

Last, the prediction model for the synchronization traffic

is examined. For Kandoo, the average closeness is the main
driver of the model, since it is an indicator of how chain-
like a network is and thus, how well the individual fragments
are able to route the traffic within the individual controller
boundaries. For HyperFlow, the model is influenced most by
the betweenness and number of links, since each link creates
a discovery message which needs to be synchronized. For
both architectures, the accuracy increases for more deployed
controllers, as the fragmentation of the network benefits the
prediction of the synchronization traffic. This stems from
the fact that the traffic of all networks becomes increasingly
similar due to more balanced switch assignments as explained
for the control plane traffic previously. Kandoo benefits even
more from this effect, since the root is more likely to be
involved when more controllers are deployed and therefore,
all networks behave more alike in general. However, the pre-
diction is generally worse, since Kandoo is highly dependent
on the switch mappings.

To conclude, the prediction for HyperFlow is more precise
with a few exceptions. The hierarchy of the distributed con-
troller architecture Kandoo imposes an additional complexity
onto the network, which is not solely explainable by the graph
metrics.

VI. CONCLUSION

Motivated by the increasing popularity of Software-defined
Networks (SDN) and real-world deployments, we evaluated
distributed controller architectures, identified Key Performance
Indicators (KPIs), examined their interactions via simulation,
presented a classification of network topologies based on their
graph metrics as well as proposed a prediction model, which
respects the entire SDN ecosystem.

We find that the hierarchical distributed controller archi-
tecture performs better regarding the induced control plane
and synchronization traffic at local instances in comparison
to a flat controller architecture. Yet, this comes at the cost
of additional delays by requesting further information from
the root controller, which is reflected in larger round-trip
times. Here, the flat controller architecture is able to produce
similar or better results. As the network topology has a major
influence on the performance, we used the Principal Compo-
nent Analysis (PCA) to reduce the dimensions of influence
factors and hence applied clustering algorithms to classify a
wide variety of networks into four distinct categories. Using
Linear Regression (LR), we were able to accurately predict
the performance of networks, regarding the control plane and
synchronization traffic as well as the hit ratio of flow tables
based solely on a variety of graph metrics.

In future work, we will focus on applying Machine Learning
to enhance the prediction model to also incorporate non-linear
correlations of the influence factors and incorporate a wider
variety of UDP-based traffic patterns such as QUIC as well as
verifying our results on large scale test beds.



REFERENCES

[1] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, and et al., “B4: Experience
with a Globally-Deployed Software Defined WAN,” ACM SIGCOMM
Computer Communication Review. ACM, 2013.

[2] V. Yazici, M. O. Sunay, and A. O. Ercan, “Controlling a Software-
Defined Network via Distributed Controllers,” Computing Research
Repository (CoRR), 2014.

[3] N. Gray, T. Zinner, S. Gebert, and P. Tran-Gia, “Simulation Framework
for Distributed SDN-Controller Architectures in OMNeT++,” in 8th
EAI International Conference on Mobile Networks and Management
(MONAMI 2016), Springer, 2016.

[4] A. Tootoonchian and Y. Ganjali, “HyperFlow: A Distributed Control
Plane for OpenFlow,” in Proceedings of the 2010 Internet Network Man-
agement Conference on Research on Enterprise Networking, USENIX,
2010.

[5] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A Framework for Efficient
and Scalable Offloading of Control Applications,” in Proceedings of the
First Workshop on Hot Topics in Software Defined Networks, ACM,
2012.

[6] M. Jarschel, F. Wamser, T. Hohn, T. Zinner, and P. Tran-Gia, “SDN-
based application-aware networking on the example of youtube video
streaming,” in 2013 Second European Workshop on Software Defined
Networks, IEEE, 2013.

[7] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, “OpenQoS:
An OpenFlow controller design for multimedia delivery with end-to-end
Quality of Service over Software-Defined Networks,” in Proceedings
of the 2012 Asia Pacific signal and information processing association
annual summit and conference, IEEE, 2012.

[8] P. Xiong, H. Hacigumus, and J. F. Naughton, “A software-defined
networking based approach for performance management of analytical
queries on distributed data stores,” in Proceedings of the 2014 ACM
SIGMOD international conference on Management of data, ACM, 2014.

[9] C. C. Machado, L. Z. Granville, A. Schaeffer-Filho, and J. A. Wickboldt,
“Towards SLA policy refinement for QoS management in software-
defined networking,” in 2014 IEEE 28th International Conference on
Advanced Information Networking and Applications, IEEE, 2014.

[10] A. Van Bemten, N. Ðerić, A. Varasteh, A. Blenk, S. Schmid, and
W. Kellerer, “Empirical Predictability Study of SDN Switches,” in 2019
ACM/IEEE Symposium on Architectures for Networking and Communi-
cations Systems (ANCS), IEEE, 2019.

[11] A. Nguyen-Ngoc, S. Lange, S. Geissler, T. Zinner, and P. Tran-Gia,
“Estimating the Flow Rule Installation Time of SDN Switches When
Facing Control Plane Delay,” in International Conference on Measure-
ment, Modelling and Evaluation of Computing Systems, Springer, 2018.

[12] Y. Zhao, L. Iannone, and M. Riguidel, “On the performance of SDN
controllers: A reality check,” in 2015 IEEE Conference on Network
Function Virtualization and Software Defined Network (NFV-SDN),
IEEE, 2015.

[13] M. Jarschel, F. Lehrieder, Z. Magyari, and R. Pries, “A flexible
OpenFlow-controller benchmark,” in 2012 European Workshop on Soft-
ware Defined Networking, IEEE, 2012.

[14] A. Nguyen-Ngoc, S. Raffeck, S. Lange, S. Geissler, T. Zinner, and
P. Tran-Gia, “Benchmarking the ONOS Controller with OFCProbe,” in
2018 IEEE Seventh International Conference on Communications and
Electronics (ICCE), IEEE, 2018.

[15] J. B. Silva, F. S. D. Silva, E. P. Neto, M. Lemos, and A. Neto,
“Benchmarking of mainstream sdn controllers over open off-the-shelf
software-switches,” Internet Technology Letters, 2020.

[16] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,
“On Controller Performance in Software-Defined Networks,” in 2nd
{USENIX} Workshop on Hot Topics in Management of Internet, Cloud,
and Enterprise Networks and Services (Hot-ICE 12), USENIX, 2012.

[17] E. G. Renart, E. Z. Zhang, and B. Nath, “Towards a GPU SDN con-
troller,” in 2015 International Conference and Workshops on Networked
Systems (NetSys), IEEE, 2015.

[18] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, “SDN controllers:
A comparative study,” in 2016 18th Mediterranean Electrotechnical
Conference (MELECON), IEEE, 2016.

[19] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based
networking with DIFANE,” ACM SIGCOMM Computer Communication
Review. ACM, 2010.

[20] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling flow management for high-
performance networks,” in Proceedings of the ACM SIGCOMM 2011
conference, ACM, 2011.

[21] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” ACM SIGCOMM Computer Communication Review. ACM,
2012.

[22] G. Wang, Y. Zhao, J. Huang, and Y. Wu, “An effective approach to
controller placement in software defined wide area networks,” IEEE
Transactions on Network and Service Management. IEE, 2017.

[23] D. Hock, S. Gebert, M. Hartmann, T. Zinner, and P. Tran-Gia, “POCO-
framework for Pareto-optimal resilient controller placement in SDN-
based core networks,” in 2014 IEEE Network Operations and Manage-
ment Symposium (NOMS), IEEE, 2014.

[24] P. Mahadevan, D. Krioukov, M. Fomenkov, X. Dimitropoulos, K. Claffy,
and A. Vahdat, “The Internet AS-level topology: three data sources
and one definitive metric,” ACM SIGCOMM Computer Communication
Review. ACM, 2006.

[25] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W. Will-
inger, “Network topology generators: Degree-based vs. structural,” ACM
SIGCOMM Computer Communication Review. ACM, 2002.

[26] J. M. Hernández and P. Van Mieghem, “Classification of graph metrics,”
Delft University of Technology: Mekelweg, The Netherlands, 2011.

[27] M. Yang, X. R. Li, H. Chen, and N. S. Rao, “Predicting internet end-to-
end delay: an overview,” in Proceedings of the Thirty-Sixth Southeastern
Symposium on System Theory, IEEE, 2004.

[28] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia,
“Modeling and performance evaluation of an OpenFlow architecture,”
in 2011 23rd International Teletraffic Congress (ITC), IEEE, 2011.

[29] J. Ansell, W. K. Seah, B. Ng, and S. Marshall, “Making queueing
theory more palatable to SDN/OpenFlow-based network practitioners,”
in NOMS 2016-2016 IEEE/IFIP Network Operations and Management
Symposium, IEEE, 2016.


