
Machine Learning based SLA-Aware VNF Anomaly
Detection for Virtual Network Management

Jibum Hong, Suhyun Park, Jae-Hyoung Yoo, and James Won-Ki Hong
Department of Computer Science and Engineering, POSTECH, Pohang, Korea

{hosewq, sh.park11, jhyoo78, jwkhong}@postech.ac.kr

Abstract—Since the concept of Software-Defined Networking
(SDN) and Network Function Virtualization (NFV) has been pro-
posed, telcos and service providers have leveraged these concepts
to provide their services more efficiently. However, as the virtual
network in the data centers becomes more complex, a variety
of new network management problems arise. To deal with these
management problems, it is necessary to monitor and analyze
resource usage and traffic load of Virtual Network Functions
(VNFs) operating on the virtual network. Recently, there have
been many attempts to develop technologies that enable network
management without human intervention. In this paper, we specify
our anomaly detection problem with scenarios involving SLA vio-
lations to satisfy the practical needs of network management. Also,
we set the real-world NFV environment to generate anomalous
data corresponding to each scenario and extend our approach to
implementing the system for root-cause localization which identi-
fies the exact VNF instance causing the SLA-related anomalies. We
use the datasets collected from the VNFs’ service function chain
scenarios implemented on OpenStack environment, and compare
the accuracy of the anomaly detection models generated by various
machine learning algorithms. Our experimental results show the
best model has F1-measure over 95% for anomaly detection and
93% for root-cause localization.

Index Terms—anomaly detection, root-cause localization, net-
work monitoring, machine learning, NFV management

I. INTRODUCTION

Software-Defined Networking (SDN), Network Function Vir-
tualization (NFV), and Network Virtualization (NV) are giving
us new ways to design, build, and operate networks. With
these technologies, telcos and service providers can reduce
CAPEX and OPEX by replacing the closed network functions
to softwarized Virtual Network Functions (VNFs). In addition,
cloud computing combines these technologies to use comput-
ing resources more efficiently in data centers, and provides
flexibility and agility for application service deployment and
management [1].

With the wide-spread use of these technologies, the number
of VNFs and services operating on virtual networks is increas-
ing significantly. In contrast, these increases can complicate
virtual network operations, and may cause performance degra-
dation, service failures, or system overload problems. For this
reason, the importance of virtual network management in NFV
environment is emphasized.

To solve the management problem in a virtual environment,
several requirements [2] are defined regarding orchestration,
performance, security, etc. In particular, resource management

and fault management techniques have been developed. Re-
source management is to provide optimized computing and
network resource for VNFs such as the allocation or scaling of
virtual resources. Fault management is to recover the system or
network from failures, or to detect abnormal behaviors.

Network administrators can handle these tasks well in small
networks, but in the case of large-size networks and the
networks that have complex dependencies, it requires different
approaches. Therefore, recent research on virtual network man-
agement using machine learning and deep learning techniques
has attracted much attention to solving the above problems.
Several attempts have tried to develop technologies that enable
the network to understand its status and optimally manage the
network without human intervention [3].

We focus on the anomaly detection technique for virtual
networks in NFV environment as a fault management measure.
However, the existing studies are mostly based on binary classi-
fication for detecting VNFs’ anomalies related to performance
bottlenecks such as CPU/memory usage, and throughput. In
this paper, we propose a machine learning-based VNF anomaly
detection and root-cause localization system, considering the
system resource usage and service level agreement (SLA) vio-
lation status both. We use OpenStack testbed to operate various
VNFs in real-world topology. And we derive and deploy the
optimal machine learning model by testing and analyzing the
data collected from the testbed with various machine learning
models and comparing their accuracy.

II. BACKGROUND AND RELATED WORK

A. Background
Traditionally, network management is performed manually

by human administrators. However, as network and service
requirements become more diverse and complex, deploying
or upgrading the services takes a much longer time, and the
demands for human experts for detailed network configuration
increase network operation costs. To solve these problems,
the development of network management technology using
machine learning is attracting great attention [4].

In this trend, automating the virtual network management in
NFV environment using machine learning generally consists of
the processes as shown in Fig. 1. First, VNFs operate on the
NFV Infrastructure (NFVI) by using its virtual resources, and
Analytics monitors VNF resource usage. ETSI NFV Working
Group presents representative monitoring data that can be col-
lected and used in an NFV environment (e.g. CPU utilization,978-3-903176-31-7 © 2020 IFIP



Fig. 1: Overall process of ML-based NFV management

memory usage, traffic load, etc.) [5]. Then, the monitoring
data are stored in the database. Next, the data are converted
into datasets to train the machine learning algorithm, and the
algorithm generates a model which has a specific purpose. After
that, the model creates policies on how to operate the virtual
network based on the current states. Finally, NFV Management
and Orchestrator (MANO) operates and manages the entire
NFV environment according to the policies.

Among the requirements for network management automa-
tion, our work focuses on VNF anomaly detection, which is one
of the processes for virtual network management automation
in NFV environment. We detect abnormal states of VNFs and
the location of abnormal VNFs based on system and network
resource usage by training monitoring data through machine
learning algorithms when performance bottlenecks and SLA
violations occur.

B. Related Work

There exist many anomaly detection studies in various fields
of network management, but most of the studies are different
from each other in their settings of network environments and
the definition of anomalies. E. Chuah et al. [6] investigates the
effect of high resource usage on system failures using resource
usage monitor and log analysis. In addition, it is very difficult to
get datasets related to abnormal situations because they happen
rarely and unexpectedly as the term ”anomaly” itself implies.
So many studies use fault injection techniques to generate the
software or hardware faults [7], [10], [12], [14].

To automatically detect anomalies, statistical solutions have
been developed. J. Hochenbaum et al. [7] proposes statistical
measures based on the three-sigma rule, moving averages, and
the Seasonal Trend decomposition using Loess (STL) algorithm
and compares their efficiencies of detecting anomalies in cloud
infrastructure data. C. Wang et al. [8] proposes a method called
EbAT which detects anomalies by analyzing the distribution of
arbitrary metrics instead of the thresholds of individual metrics,
and compares its performance with that of the threshold-based
method. J. Chen et al. [9] proposes a MADEL algorithm, which
uses a matrix differential decomposition (MDD) based anomaly
detection and localization in NFV networks through round-trip
time (RTT) and packet loss rate. These statistical approaches

might be efficient for automatic anomaly detection when the
anomaly could be defined by a single threshold value and the
threshold could be set clearly. However, statistical technologies
can not classify those anomalies which are caused by more
complicated conditions.

As more and more attempts to apply artificial intelligence
to network management have increased, many studies use ma-
chine learning techniques to detect anomalies, especially those
related to the performance of VNFs in NFV environment. C.
Sauvanaud et al. [10] proposes the anomaly detection and root-
cause localization model which classifies the states of VNFs
into normal and abnormal, with Random Forest (RF) algorithm
in vIMS environment. PREPARE system [11] provides auto-
matic performance anomaly prevention for virtualized cloud
computing infrastructures by integrating the Markov chain
model with the Tree Augmented Naive Bayes (TAN) algorithm.
Instead of providing a specific machine learning model, J. Qiu
et al. [12] applies Support Vector Machine (SVM), Decision
Tree (DT), RF, and Neural Network (NN) to detect the per-
formance anomalies, and compares the performance of each
model. H. Bouattour et al. [13] proposes the anomaly detection
and root-cause analysis method based on k-means clustering
and a one-class SVM classifier by evaluating the proposed
model with VoIP application. And BARCA [14] framework
detects the distributed system’s abnormal behaviors such as
deadlock and memory leak through online SVM classifiers,
and compares the performance of various feature extraction
methods.

Major differences compared to related work are as follows.
Firstly, most of the existing studies detect the abnormal states
with binary classification related to typical resource overloads
such as CPU and memory. In contrast, our work detects SLA-
related abnormal states with higher accuracy than existing
studies. Secondly, this work provides the root-cause location
of VNF which causes the SLA violations. Thirdly, our work
collects large data for service function chaining scenarios, while
some existing studies use a relatively small number of data for
training and validation.

III. METHODOLOGY AND IMPLEMENTATION

A. Methodology

Fig. 2 illustrates an overview of the proposed anomaly
detection method. The proposed method consists of 3 main
processes: virtual network monitoring, preprocessing, and train-
ing models. We use supervised learning algorithms to learn the
relationship between feature data and labeled data. Through the
main processes, we choose the best model by comparing the
performance among the models.

1) Virtual Network Monitoring: To train the anomaly detec-
tion model, we have to monitor the virtual network operating
on NFV Infrastructure. Monitoring functions for the virtual
network generally consist of monitoring agents, a monitoring
service, and a dashboard.

Monitoring agents collect the status data of each VNF in the
virtual network. Monitoring metrics collected by the agents are



Fig. 2: Proposed ML-based anomaly detection method

the subsets of representative metrics [6] such as CPU utilization,
memory usage, and traffic load, etc. Monitoring agents then
transfer the data to the monitoring service, which stores the
collected data into the time-series database. To provide visi-
bility, a simple dashboard is implemented. The stored data are
transformed into the datasets for model training.

When collecting the data from the virtual network, because
anomalies do not occur frequently on the network, we use fault
injection techniques to generate abnormal states with precise
controllability. In particular, we emulate the various software
or hardware faults which exist in the system: 1) generating the
abnormal states to VMs where VNFs operate, and 2) generating
heavy workload which does not guarantee the correct service
such as sending tremendous network traffic.

The first method causes faults directly into the VM where
the VNF operates. The fault situations used in this method
are considered in terms of CPU utilization, memory usage,
disk I/O access, network latency, and network packet loss. The
second method causes heavy overload to the network through
tremendous traffic. This may cause packet processing delay and
packet drop by the kernel. We emulate a large amount of traffic
to VNFs and a large number of accesses to web servers which
pass through the VNFs.

2) Preprocessing: Preprocessing converts the monitoring
data collected through the previous processes into a suitable
form to train models. This process consists of feature selection
and data labeling (Fig. 2). First, feature selection discriminates
the metrics which are most relevant to the criteria for distin-
guishing abnormal states with the metrics collected through
monitoring. Then we remove redundant metrics that are intrin-
sically correlated to each other. In this process, we extracted
the 25 features (described in Table I) for instance information
and resource usage of VNFs through feature selection and used
the features to train models.

Data labeling is a process to distinguish the extracted fea-
ture data into normal and abnormal to train the models for
supervised learning-based machine learning algorithms. In the
case of root-cause localization function, the abnormal states
are labeled more specifically with the location of VNF which
shows abnormal behaviors. However, simply defining abnormal
states as cases in which the metrics such as CPU utilization

TABLE I. Selected features for anomaly detection

are temporarily increased for a very short time causes many
false alarms. So we define abnormal states in 2 cases: 1) VNF
performance bottleneck and 2) SLA violations.

VNF performance bottleneck is represented as packet drops
occurring inside the VNFs due to the lack of available system
resources caused by the fault injection techniques. The packet
drop rate is calculated by comparing the number of incoming
and outgoing packets processed by the VNFs. We labeled the
data as abnormal states when VNFs’ packet drops occurred over
0.1% by fault injection, and labeled the rest as normal.

SLA violations are different for each service, but they gen-
erally include average service time (response time) and service
request failure rate for operating service. For example, web
services require an average response time between 0.5 or 1
second, and availability between 99% or 99.9% [15].

3) Training Models: There are various kinds of supervised
learning algorithms to solve classification problems. To choose
the best anomaly detection algorithm, trained models need to be
tested with the given dataset. Among tens of models showing
the highest performance in a training process, in most of the
cases, Distributed Random Forest (DRF) [16], Gradient Boost-
ing Machine (GBM) [17], Extreme Gradient Boost (XGBoost)
[18], Deep Learning (FNN) [19] based models are included.
First, in the case of DRF model, we adjust hyperparameters
such as the number of trees, depth of trees, and the number of
leaves to optimize the model by minimizing log loss. And in
the case of GBM and XGBoost models, the hyperparameters
are similar to DRF except that we additionally adjust the
row/column sample rate per tree which doesn’t exist for DRF.
Besides, in the case of XGBoost model, one-hot encoding
method is used for categorical features. Lastly, in the case of the
Deep Learning model, we adjust the number of nodes for the
two hidden layers with ReLU (Rectified Linear Unit) activation
function, and then we apply dropout to the neural network to
regularize it.

B. Implementation

Fig. 3 illustrates the implemented architecture of the anomaly
detection system’s prototype based on the generated model
through the proposed method. The virtual network is configured
on the physical environment by using OpenStack environment,
and operates various services on this NFV Infrastructure. First,
VNFs and network status data are collected and transferred



to the database and dashboard. Next, the anomaly detection
function imports the real-time data from the database and pre-
processes the data for the deployed anomaly detection module
(based on Python) on the system. Then, the anomaly detection
module detects the abnormal status by identifying the processed
real-time data, and localizes the root-cause VNF which has the
anomalies. Finally, the anomaly detection module notifies the
alert to a network administrator or NFV orchestrator to operate
and manage the virtual infrastructures well. To deploy the
anomaly detection module, we trained the anomaly detection
models. The training processes consist of data collection part
and data analysis part.

1) Data Collection: Data collection is to collect the data
from VNFs for anomaly detection model training. It is the
implementation of virtual network monitoring and fault injec-
tion processes in our methodology. We first build VNFs in
our OpenStack-based NFVI environment [20] to configure the
VNFs’ service scenarios. Each scenario emulates the abnormal
state of the VNFs through fault injection techniques as well as
the normal operation of the VNFs. In each fault injection tech-
nique, stress-ng [21] injects faults related to system resource
usages used by the VMs, such as high CPU utilization, lack
of memory, and disk accesses anomalies. Also, Linux tc [22]
generates network latency (packet delay) and packet loss to
perform fault injection related to network anomalies and SLA
violations.

To monitor the VNFs’ normal and abnormal states, we
implemented the virtual network monitoring functions. Collectd
[23] which is a monitoring daemon agent monitors the status
of each VM which VNFs operate (e.g. resource usage, traffic
load, etc.). Then, the monitoring data are stored in InfluxDB
[24], a time-series database. Grafana [25] dashboard provides
the data stored in the database in the form that users request
by sending queries (InfluxQL) to InfluxDB.

2) Data Analysis: Data analysis includes preprocessing and
model training steps. In this part, we train the anomaly detection
models with the exported data. Among the metrics of VNFs’
historical data which are exported from Grafana, we extract 25
features according to the feature selection process (Table I).
Then, we label the extracted feature data as normal and abnor-
mal states. Data labeling is performed based on the occurrence
of SLA violations and each VNF’s abnormal behaviors for root-

Fig. 3: Overall architecture of proposed system

cause localization.
The labeled dataset created by the preprocessing process

guides the models to learn the relationships between feature
data and labeling data through supervised learning-based ma-
chine learning algorithms. In this part, we use the R language
and H2O framework [26] to train anomaly detection models.
Among the many algorithms, we implement 4 algorithms
(XGBoost, GBM, DRF, and Deep Learning), which show the
highest performance in our experiments, by controlling each
model’s hyper-parameters. After each model is generated, we
compare the performance of each anomaly detection model and
finally select the most suitable model.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

To evaluate the performance of the proposed anomaly de-
tection method, we first set up the experimental testbed en-
vironment [20] with similar topology to that of a Multi-
access Edge Computing (MEC) scenario. Fig. 4 illustrates our
experimental testbed. In the testbed, we used the OpenStack
(Rocky release) to construct a virtual network with a monitoring
system, and VNFs’ service function chainings (SFCs) in a
web hosting service and login authentication scenarios. The
SFCs consist of open-source VNFs: firewall (FW, iptables [27]),
intrusion detection system (IDS, Suricata [28]), flow monitor
(FM, ntopng [29]), deep packet inspection (DPI, nDPI [30]),
and load balancer (LB, HAProxy [31]).

(a) web hosting service

(b) login authentication

Fig. 4: Experimental testbed setup based on OpenStack: web
hosting service scenario (a), login authentication scenario (b)

In the web hosting service scenario (Fig. 4a), the client is to
pass through the 5 types of VNFs to access the web servers,
and in the login authentication scenario, the client sends login
requests to the login server which are connected to remote
database (Fig. 4b). We emulated HTTP requests through a web
stress tool (Apache Bench) to generate the client-side HTTP
traffic pattern for web servers.

B. Experiment 1: Web Hosting Service

At first, the clients send the HTTP requests to web servers
in our testbed. We configured the number of connections as 10
to 500, and the number of HTTP requests as 1,000 to 50,000
for making traffic patterns. In this experiment, we collected
about 90,000 data which consists of 60% normal data and
40% abnormal data by monitoring every second. In labeling



Fig. 5: ROC curves of experiment 1

SLA violation metrics, we labeled the abnormal data with
the reduced average service time (to 250 ms) and availability
(to 99.95%, represented as a service request failure rate over
0.05%). Because our testbed which resembles the MEC topol-
ogy is relatively smaller than the real MEC environment, we
adjusted the SLA violation standards [24] by applying more
strict ones which are adequate for the testbed size. Finally,
to evaluate the trained models’ performance more precisely,
we gave weight to abnormal data to balance the data classes,
and compared each model’s performance through 5-fold cross-
validation.

We compare each model’s ROC (Receiver Operating Char-
acteristic) curves (Fig. 5). GBM and XGBoost model show the
best performance of 0.996 AUC (Area Under the Curve) value.
DRF model follows the GBM and XGBoost models by a narrow
margin with the AUC value of 0.995. Also, we compare the
mean values of precision, recall, F1-measure, and training time
from the cross-validation process. For all models of selected
top 4 algorithms, the labeled data are classified with an F1-
measure of higher than 0.9. As shown in Table II-a, GBM and
XGBoost show the best performance, followed by DRF and
Deep Learning in order. In the case of XGBoost and GBM, the

TABLE II. Experimental results of web hosting service

(a) Prediction results of trained models

(b) Prediction results of XGBoost with root-cause localization

F1-measures are over 0.96, but GBM requires more training
time.

Based on these results, we apply the XGBoost algorithm
which is used for the best performing model considering
training time and accuracy to root-cause localization prediction.
The abnormal data are labeled into more specific VNFs and
heavy traffic loads which cause the SLA violations. As shown
in Table II-b, the 2 kinds of datasets are used for validation.
For overall labels, The dataset which includes the hop-by-hop
latency feature which can be collected by our testbed shows
slightly better performances than the dataset without the hop-
by-hop latency feature. Among the VNFs which consist of SFC
in this experiment, prediction results for the IDS anomalies are
the worst (0.94), while DPI shows the best prediction results
(0.98).

C. Experiment 2: Login Authentication

In the login authentication scenario (Fig. 4b), the configu-
rations for traffic patterns, monitoring methods, and the model
training processes are the same as in the web hosting scenario.
In this experiment, we collected about 120,000 data and labeled
this dataset into two ways: 1) 250 ms of avg. service response
time, 99.95% of availability, and 2) 200 ms of avg. service
response time, 99.99% of availability. Unlike web hosting
scenario which includes media data, the requests in this scenario
require only login authentication. We could show the avg.
service response time and request failure rate are less than the
values in the previous scenario. So we labeled the abnormal
data with more strict standards, and compared the results of
each model and labeling way.

Like web hosting scenario, we first compare each model’s
performance through the ROC curve (Fig. 6). The results of 2nd
labeling case show slightly lower performance than 1st labeling
case. But in both labeling cases, GBM and XGBoost model
show the best performance at about 0.99 AUC values. Also,
for all models of selected top 4 algorithms, the labeled data are
classified with an F1-measure of higher than 0.9 (90%). In both
labeling cases, GBM and XGBoost show the best performance,
followed by DRF and Deep Learning in order (Table III-a).
XGBoost and GBM models show the F1-measures over 0.95
in 1st labeling case and 0.93 in 2nd labeling case.

Fig. 6: ROC curves of experiment 2: (a) labeled with 250ms
avg. response time and 99.95% availability, (b) labeled with
200ms avg. response time and 99.99% availability



TABLE III. Experimental results of login authentication

(a) Prediction results of trained models

(b) Prediction results of XGBoost with root-cause localization

Also, based on these results, we apply the XGBoost algo-
rithm which is used for the best performing model to root-cause
localization prediction. As shown in Table III-b, we used the 2
kinds of datasets (with and without hop-by-hop latency feature)
in each labeling case like the web hosting scenario. In the aspect
of labeling cases, the overall results of the 1st labeling case
(250 ms of avg. response time and 99.95% of availability) is
slightly worse than the results of the 2nd labeling case (200
ms of avg. response time and 99.99% of availability). In the
aspect of hop-by-hop latency feature, the datasets which include
the hop-by-hop latency feature show better performances than
the datasets without hop-by-hop latency feature. The cause of
heavy traffic overload has the worst prediction results about
0.89 of F1-measure.

D. Discussion

While the target environments and the definition of anomalies
are different, the attained values from our experiments are
similar or relatively higher than any other results of related
work. In all experiments, XGBoost models show the best clas-
sification accuracy with the shortest training time. GBM model
also shows good performance, but it takes longer to train with
a high risk of overfitting. In the aspect of feature importance,
the hop-by-hop latency feature was the most important feature
than other features, and the metrics related to CPU, network
bandwidth, memory, and disk I/O follow.

Also, for the generated model’s generalizability, we validated
the generated anomaly detection model with the test datasets
of different traffic patterns. The test datasets consist of about
20,000 normal data and 20,000 abnormal data for each scenario
by random sampling. The results show about 91% and 90%
of F1-measure for the two scenarios (Table IV-a). However,

TABLE IV. Prediction results with the test datasets

(a) Prediction results of trained models

(b) Detailed prediction results of web hosting scenario

(c) Detailed prediction results of login authentication scenario (200ms
response time, 99.99% availability case)

in root-cause localization results, IDS and LB show similar
prediction results, but other VNFs (FW, FM, and DPI) and
the anomalies caused by heavy traffic load cases show lower
accuracy. To solve this problem, we need to improve the
model’s performance or consider individually training anomaly
detection models for each VNF.

To apply the anomaly detection model in more dynamic
environments, we consider improving our model to deal with
various service scenarios. And to include system or application-
level failures, syslog data or error messages generated by
applications could be used for labeling. By utilizing the pro-
posed anomaly detection function, it could help VNF lifecycle
management decision making such as VNF auto-scaling and
migration functions for network administrators (or NFV orches-
trators).

V. CONCLUSION

The current NFV environment faces various demands for effi-
cient management and operation in a fast-changing network. In
this paper, we propose a machine learning-based VNF anomaly
detection with the root-cause localization system as a step to
automate virtual network management in NFV environment.
We configure the two SFC scenarios in an OpenStack-based
testbed with real-world topology, and evaluate the anomaly
detection model trained by the proposed method. The results of
our experiments show that the F1-measure of the most suitable
anomaly detection model is over at least 95%, and 93% of
the root-cause localization accuracy except for the heavy traffic
load case in login authentication.

For future work, we will extend to our anomaly detection
model to apply more various use-cases such as vIMS environ-
ment or other application services. And we will extend our
model to log analysis to more accurately define and detect
anomalies.



ACKNOWLEDGMENT

This work was supported by Institute of Information & com-
munications Technology Planning & Evaluation (IITP) grant
funded by the Korea government (MSIT) (No.2018-0-00749,
Development of virtual network management technology based
on artificial intelligence).

REFERENCES

[1] O. Sefraoui, M. Aissaoui, and M. Eleuldj, ”Open-stack: toward an
open-source solution for cloud computing,” in International Journal of
Computer Applications, vol. 55, no. 3, pp. 38-42, Oct. 2012.

[2] IRTF Network Function Virtualization Research Group, ”Network Func-
tions Virtualisation – Update White Paper,” [Online]. Available at
https://portal.etsi.org/NFV/NFV White Paper2.pdf.

[3] R. Boutaba et al., ”A comprehensive survey on machine learning for
networking: evolution applications and research opportunities”, in Journal
of Internet Services and Applications, vol. 9, issue 1, 2018.

[4] D. Rafique, L. Velasco, ”Machine Learning for Network Automation:
Overview, Architecture, and Applications,” in Journal of Optical Com-
munications and Networking, vol. 10, issue 10, pp. D126-D143, 2018.

[5] ETSI GS NFV-IFA 027, ”Network Functions Virtualisation (NFV) Re-
lease 2; Management and Orchestration; Performance Measurements
Specification,” 2018.

[6] E. Chuah et al., ”Linking Resource Usage Anomalies with System Fail-
ures from Cluster Log Data,” 2013 IEEE 32nd International Symposium
on Reliable Distributed Systems, pp. 111-120, 2013.

[7] J. Hochenbaum, O. S. Vallis, A. Kejariwal, “Automatic Anomaly Detec-
tion in the Cloud via Statistical Learning,” arXiv:1704.07706v1, 2017.

[8] C. Wang, V. Talwar, K. Schwan, P. Ranganathan, “Online detection of
utility cloud anomalies using metric distributions,” 2010 IEEE Network
Operations and Management Symposium (NOMS), pp. 96-103, 2010.

[9] J. Chen, M. Chen, X. Wei, and B. Chen, ”Matrix Differential
Decomposition-Based Anomaly Detection and Localization in NFV Net-
works,” in IEEE Access, vol. 7, pp. 29320-29331, 2019.

[10] C. Sauvanaud, K. Lazri, M. Kaaniche, K. Kanoun, “Anomaly Detection
and Root Cause Localization in Virtual Network Functions,” 2016 IEEE
27th International Symposium on Software Reliability Engineering (IS-
SRE), pp. 196-206, 2016.

[11] Y. Tan, H. Nguyen, Z. Shen, X. Gu, ”PREPARE: Predictive Performance
Anomaly Prevention for Virtualized Cloud Systems,” 2012 IEEE 32nd
International Conference on Distributed Computing Systems, pp. 285-
294, 2012.

[12] J. Qiu et al., ”Performance Anomaly Detection Models of Virtual Ma-
chines for Network Function Virtualization Infrastructure with Machine
Learning,” 2018 27th International Conference on Artificial Neural Net-
works (ICANN), LNCS 11140, pp. 479-488, 2018.

[13] H. Bouattour, Y. B. Slimen, M. Mechteri, H. Biallach, ”Root Cause
Analysis of Noisy Neighbors in a Virtualized Infrastructure,” 2020 IEEE
Wireless Communications and Networking Conference (WCNC), pp. 1-6,
2020.

[14] J. A. Cid-Fuentes, C. Szabo, K. Falkner, ”Adaptive Performance Anomaly
Detection in Distributed Systems Using Online SVMs,” in IEEE Trans-
actions on Dependable and Secure Computing, pp. 1-14, Apr. 2018.

[15] Grid Resource Allocation Agreement Protocol Working Group, ”Web
Services Agreement Specification (WS-Agreement),” [Online]. Available
at https://www.ogf.org/documents/GFD.192.pdf.

[16] M. Guillame-Bert and O. Teytaud, ”Exact distributed training: Random
forest with billions of examples,” in arXiv preprint, abs/1804.06755, 2018.

[17] A. Natekin and A. Knoll, ”Gradient boosting machines, a tutorial,” in
Frontiers in neurorobotics, vol. 7, pp. 1-21, Dec. 2013.

[18] T. Chen and C. Guestrin, ”Xgboost: A scalable tree boosting system,”
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 785–794, 2016.

[19] J. Schmidhuber, ”Deep learning in neural networks: an overview,” in
Neural Networks, vol. 61, pp. 85-117, 2015.

[20] DPNM, ”Network Intelligence Project,” [Online]. Available:
https://github.com/dpnm-ni.

[21] ”Stress-ng - a tool to load and stress a computer system,” [Online].
Available at https://manpages.ubuntu.com/manpages/artful/man1/stress-
ng.1.html.

[22] ”tc - show/manipulate traffic control settings,” [Online]. Available at
http://man7.org/linux/man-pages/man8/tc.8.html.

[23] ”collectd - the system statistics collection daemon,” [Online]. Available
at https://collectd.org/.

[24] S. N. Z. Naqvi, S. Yfantidou, E. Zimányi, ”Time series database and
influxdb,” Studienarbeit, Université Libre de Bruxelles, 2017.

[25] ”Grafana,” [Online]. Available at https://grafana.com/.
[26] The H2O.ai team, ”H2O: Scalable Machine Learning,” [Online]. Available

at http://www.h2o.ai.
[27] The netfilter.org project, ”iptables,” [Online]. Available at

http://ipset.netfilter.org/iptables.man.html.
[28] OISF, ”Suricata - Open source IDS/IPS/NSM engine,” [Online]. Available

at https://suricata-ids.org/.
[29] The ntop team, ”ntopng - High-Speed Web-based Traffic

Analysis and Flow Collection,” [Online]. Available at
https://www.ntop.org/products/traffic-analysis/ntop/.

[30] L. Deri, M. Martinelli, T. Bujlow and A. Cardigliano, ”nDPI: Open-
source high-speed deep packet inspection,” 2014 International Wireless
Communications and Mobile Computing Conference (IWCMC), Nicosia,
pp. 617-622, 2014.

[31] ”HAProxy - The Reliable, High Performance TCP/HTTP Load Balancer,”
[Online]. Available at http://www.haproxy.org/.


