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Abstract—The Intent-Based Northbound Interface (NBI) offers
users the ability to express what they want to achieve instead of
how to achieve it, enabling improvements to network management
and reducing operational costs. However, development of an
Intent-Based NBI remains in its infancy. Existing solutions do
not allow users to express high-level operational targets that
appropriately capture business objectives, nor link these to
lower-level management policies and operations. We propose
an extensible Intent-based NBI framework and a higher-level
declarative intent expression to enable service-oriented intents
with different targets. We focus on the creation of intents and
their mapping from high-level expressions to low-level policies,
and consider this from the perspective of an intent developer in
the context of a Cloud CDN use case.

Index Terms—SDN, northbound interface, declarative, intents,
cloud CDN

I. INTRODUCTION

The success of SDN relies on the ability of application
developers to leverage the underlying network to design and
build services. This is achieved through the northbound inter-
face (NBI) [1]. Without an intuitive and efficient NBI, SDN
will fail to reach its potential. It is crucial that SDN gains
momentum within user communities who do not necessarily
have detailed networking backgrounds. Hence, the NBI is the
key enabler for the realisation of the ultimate SDN promise.

Intent-based NBIs can be used by network application de-
velopers and/or users who might not be network experts. They
provide a more intuitive mechanism to express specific service
demands in the form of intents. It is, therefore, unsurprising
that intent-based NBIs are gaining a lot of attention both in
industry and academia. However, there has been little progress
in their development that would enable users to express high-
level targets in terms of business objectives, and linking them
to lower-level management policies and operations. This is
a crucial mechanism that enables users to express what they
want rather than how to do it. It facilitates faster network
management, service deployment, realization of user objec-
tives and lower OPEX due to reduced human involvement.

In this paper, we propose an Intent-Based NBI framework
to address the above challenges. Our contributions are:

1. An outline of the state of the art in Intent solutions (§II-III).
2. An Intent-Based NBI framework architecture (§IV).

3. A declarative intent expression and corresponding decom-
position into prescriptive policies (§V).
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4. An intent cloud CDN use case with experimental results
(§VI-VID).

II. BACKGROUND
A. Intents and policies

An Intent is a declarative expression of the operational
goals or expected outcomes that the system should deliver.
Therefore, ultimately, intents could be used in many domains
and by different users, even non-experts.

In contrast, a Policy is a single or set of rules that govern
system behavior [2]. Typically, a rule consists of events,
conditions, and actions (ECA). These prescriptive policies let
users specify precisely what to do and under which circum-
stances [3]. Unlike intents, policies do not specify desired
goals, but both notions provide system abstraction that could
be technology-agnostic.

B. Different intent types

Intent user requirements can be classified as client-facing
service-layer requirements and operator-facing resource-layer
ones. Network clients tend to express their high-level require-
ments in a service-layer expression that is concerned with
service performance guarantees (e.g., throughput), whereas
network operators use a resource-layer expression to express
internal resource and operational requirements (e.g., energy-
savings). Due to the inherent nature of each, service-layer
requirements should be expressed in a declarative way whereas
resource-layer requirements in a prescriptive fashion. A mech-
anism is needed to decompose high-level declarative intents
to abstract prescriptive policies that define service behavior,
which then gets translated to lower-level commands.

Most existing Intent-Based NBIs are prescriptive, requiring
some knowledge from users. They are still limited and mainly
focused on networking operations (i.e., connectivity), whereas
users’ high-level requirements have now evolved to other
services (e.g., load balancing, placement, etc.). Also, they do
not provide tools to create new intents, limiting extensibility.

In this paper, we focus on Service Consumer intents, which
are developed by service providers who have the technical
knowledge, and understanding of possible user requirements
and desired targets. To narrow down our scope, we focus
on a Cloud CDN scenario, where service providers (CDN
Operators) are the intent and policy developers, while service
consumers (Content Providers) are the intent’s users.



TABLE I: Summary of the results of our meta-analysis of intent-based solutions.

Intent-Based Solution Intent Expression Domain Level
Boulder [3] Subject, Predicate, Object: {Constraints, Conditions} Networking Presc.
ONOS Intent Framework [4] Network Resource, Constraints, Criteria, Instructions Networking Presc.
(NEMO) by Huawei [5] Object + Operation or Networking Presc.
Object + Result (under test and not used yet) Decl.
Group-based Policy (GBP) [6] Endpoint group, contract {subject: {rules: {classifier and action set}}} Networking / NFV Presc.
(NIC) by HP [7] Source Composite Endpoint, Destination Composite Endpoint, Traffic operation ~ Networking / NFV Presc.
and constraints
(DOVE) by IBM [8] Not specified Networking / NFV -
Intent-based virtualisation Platform [9] Resources, Conditions, Priority, and Instructions Networking / NFV Presc.
(INSpIRE) [10] Traffic Type, Source, Destination, Context level, Contexts list Networking / NFV Presc.
Intent-based NBI service-oriented architecture  application-specific language Networking -
[11]
(iNDIRA) [12] Subject (Service or Condition), Relationship (has Arguments), Objects (multiple Networking Presc.
parameters)
(SENSE) [13] Service type, Service alias, Connections: {name,terminals, bandwidth: { Networking / NFV Presc.
qos_class, capacity, unit}}, schedule: {start, end, duration}
Interactive Intent-based Negotiation Scheme Verbs, Nouns, Modifiers Networking / NFV Presc.
[14]
(MD-IDN) [15] Action, Endpoint 1, Traffic type, Endpoint 2 Networking Presc.
Janus system [16] Endpoint-Groupl, Connection attributes: {protocol, port, bandwidth, latency, Networking Presc.
middle-box }, Endpoint-Group 2
Northbound Interface [17] Predicate, Commodity, Target (resources), Constraint, Condition Networking Presc.
Adaptive Service Deployment [19] Verb, Object, Modifiers, Subject General use cases, e.g.  Presc.
storage, caching, IDS
C. Intent-Based NBIs challenges =9
The Intent-based NBIs challenges faced by intent users and o o
Service-oriented (declarative) intent

developers are as follow:

« Service consumers require declarative rather than prescrip-
tive intent expressions.

o Translating service-oriented intents to system operations
needs intermediate interpretation as policies.

« Intent-based NBI has to be platform-independent, extensible
and beyond network-level operations.

III. META-ANALYSIS OF RELATED WORK

We scrutinized various Intent-based solutions that have been
proposed by standard development organizations and academic
researchers. Table I shows an overview of our comparison
based on several criteria: Intent Expression shows how intents
are expressed, Domain indicates the domain that is being
addressed by the intent (network, NFV, general); and Level
classifies intents as either prescriptive (Presc.) or declarative
(Decl.). In general, current Intent-based NBIs are still limited,
ad-hoc and to an extent vendor-specific. Even though they
offer important prescriptive intents for network services like
connectivity and chains of VNFs, they do not allow expressing
declarative intents that handle other requirements beyond
the network-level. Moreover, most current NBIs offer a pre-
defined set of intents and don’t provide the tools to create new
intents and map them to lower-level policies.

IV. INTENT-BASED NBI FRAMEWORK

In order to address the identified gap, we propose an intent-
based framework as depicted in Fig. 1. Its components follow.

Service Consumer Intent API: an interface allowing users
to express (add, update, remove) declarative intents (Step (D).

Intent/Policy Mapper: maps between declarative intents
and corresponding prescriptive abstract policies (Step ), by
referring to Intent and Policy Descriptors which contain the
descriptions and expression templates
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Fig. 1: The proposed intent-based framework.

Intent Developer API: allows intent developers to create
intents and corresponding policies based on their expertise; or
a knowledge base could be used to derive new intents and
policies from previous experience.

Intent and Policy Technical Requirements Calculator:
calculates and dynamically updates operational parameters and
technical requirements of the abstract policies while consid-
ering consumer targets, available resources, etc. It feeds the
Service Orchestrator with the behavioral guideline policies that
dictate the technical requirements (Step 3)), which will get
translated to their corresponding micro-services API calls. It
is also responsible for sending feedback to the consumer about
the intent status and the capability of honoring it (Step (3).

Service Orchestrator: coordinates the service behavior by
regulating the interactions and configurations of the corre-



TABLE II: Basic expression syntax.

Tag Basic Expression
< SERVICE> Caching
<RESOURCES > contents to be cached
< CONJUNCTION> that can handle, that can meet, etc.
<TARGET > <WORKLOAD >
<WORKLOAD > <NUMBER> <UNIT> or <ADJECTIVE> <UNIT> or
<ADJECTIVE> “workload”
< NUMBER > numeric values that can represent the workload
<UNIT> GB/min, requests/sec, etc.
<ADJECTIVE> max, min, dynamic, high, medium, etc.
< CONDITIONS> new caching request, max threshold exceeded, ...
<ACTIONS> allocate cache servers(), scale out(), ...
< CONSTRAINTS> with max storage, with least latency, ...
<PRIORITY> optional indicator of policy priority
< OPERATOR> Policy will be executed in parallel / sequential way

sponding micro-services while considering the prescriptive
policies as guidelines (from Step ).

Monitor and Performance Analysis: monitors intents and
policies performances. It enables the Intent and Policy Tech-
nical Requirements Calculator to keep refining the policies
dynamically (Step @).

V. INTENT EXPRESSIONS, SYNTAX, AND DESCRIPTORS

As service-oriented intents are high-level descriptions, we
use the following syntax to express the user targets:
<SERVICE><RESOURCES><CONJUNCTION><TARGET>

where each element is defined in Table II. This description is
decomposed into a set of prescriptive policies that work jointly
to achieve the target as:

<SERVICE><RESOURCES>
<POLICY 1><OPERATOR><POLICY 2><OPERATOR>...
{<POLICY k;><OPERATOR><POLICY ko><OPERATOR>...<POLICY k,,>}
<OPERATOR>. . .<POLICY n>

where the curly brackets ({ }) express a block of grouped
policies and each <POLICY i> is expressed as:
<CONDITIONS><ACTIONS><CONSTRAINTS> [<PRIORITY>]

There are two levels of policies (i.e. abstract and technical)
as shown in steps @) and ) in Fig. 1. They both follow the
same syntax but the technical policies determine the micro-
service technologies used in <ACTIONS> and the technical
requirements and operational parameters in <CONSTRAINTS>.

VI. USE CASE: CLoUD CDN

Content Providers (CPs) were early adopters of cloud ser-
vices to meet their end-user demands. Recently, public cloud
vendors started to provide CDN services on a pay-per-service
basis; e.g., Amazon Cloudfront and Microsoft Azure CDN.

Our assumptions for this use case are:

1) The Cloud CDN (CCDN) service type is SaaS; i.e. the CP is
provided with a software-based caching that hides away all
of the infrastructure details, and only express their targets.

2) Elastic virtual resources provisioning, which could dynam-
ically scale based on demand, resources, etc.

3) Caching and infrastructure management is delegated by the
CP to the CDN operator who has direct access and control.

4) The caching scheme is Pull-based, i.e. reactively places
cache content based on demand.

Nowadays, CCDNs do not consider high-level CP targets
(e.g. requests/region) in its caching and resource management.

CCDNs usually carry out several operations: allocate re-
sources, redirect end-user content requests and resize the
caching service. These operations could form up the intent’s
policies. Here, the intent user is the CP and the intent devel-
oper is the CCDN Operator. When an intent developer wants
to create a new intent, he has to decide how users can express
their high-level targets using the declarative intent expression.
Therefore, he can provide several targets that can be achieved
via the equivalent policies and implementation, based on his
knowledge of the CDN, which could be assisted by technical
requirements calculator modules.

For example, the CP’s declarative caching intent (“I want
caching for content X to handle 20 GB/min”) can be decom-
posed into two abstract policies (i.e. allocate and resize the
cache service) and expressed in JSON format as in Listing 1.
They get injected into the Service Orchestrator to translate
them to micro-service API calls.

{ "Resources-Allocation": {
"Conditions": "New Caching Service Request",
"Actions": "Allocate Cache Servers",
"Constraints": "Average Number Of Servers" 1,
"Cache-Service-Resizing": {
"Scale-up": {
"Conditions": "Max Threshold Exceeded",
"Actions": "Add more caches",
"Constraints": "Number Of Caches to Add" },
"Scale-down": {
"Conditions": "Underutilized Threshold",
"Actions": "Remove some Caches",
"Constraints": "Time"

1

JSON Listing 1: Abstract Policies.

VII. EXPERIMENTAL RESULTS AND DISCUSSION

To demonstrate our proposed workload intent for the CCDN
use case, we carry out a functional simulation of the Intent and
Policy Management Layer in Fig. 1.

A. Dataset

We utilized the data from a major ISP that represents
the measurement of the bitrate of data transferred between
the CDN caches (in the ISP’s facilities) and the end-users.
Each measure is average bits/second over the granularity of 1
minute. Our data contains observations from 11-20 Oct 2018.

B. Functional simulation

We assumed that the CCDN provisions cache servers as
VMs. The time required to spin up a VM and start the cache
varies depending on the location of the VM image and the
round-trip delay time [20]. We assumed that the VM image
has to be fetched remotely, resulting in a total of 5 minutes
to spin up and start the cache. Each cache server has a
threshold (i.e. bandwidth, CPU utilization, etc) beyond which
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Fig. 2: Cache cluster size and handled data rate in a reactive
traditional CCDN (without intents) and an Intent-based one.

the server would not be able to handle any new incoming
requests and need some time to relax again, and then resume
serving new requests within its threshold limit. The number of
concurrent caches (i.e. cluster size) is calculated and updated
depending on the incoming request load as obtained from the
aforementioned dataset.

C. Evaluation

CP and CCDN Interaction via Intents: Our solution
allows CPs to proactively inform the CCDN of their expected
workload target through the intent. However, the CP’s intent
could be under-, over-, or well- estimated.

Traditional CCDNs (without using intent) plan resources
reactively without prior knowledge of the estimated demand,
which led to 3.21% of unhandled requests (~ 1 TB of lost
data) when the average workload was 21.63 GB/min. When
the CP under-estimates the average workload to 15 GB/min,
the unhandled requests drop to 2.88% (~ 898 GB of lost data),
and this number decreases to 2.25% (~ 702 GB of lost data)
when the CP well-estimates the workload to 22 GB/min.

We compared the baseline solution (without intent) with
our approach (under- and well-estimated workload intent); see
Fig. 2. In the traditional CCDN, the cluster would start at
1 cache and add/remove caches reactively (grey area). Each
time the CCDN adds a new cache to the cluster (4 times),
the number of handled requests drops (blue line). Using the
under-estimated workload intent, the system avoids the first
dropping (around 15:00) by proactively resizing the cluster
to two caches (green area). With the well-estimated workload
intent, the system avoided two of these drops by proactively
resizing the cluster to two then to three caches (orange area).

Policy refinement: In order to maximize the number of
handled requests, the intent system would refine the intent’s
policies based on its analysis of the previous demand pattern,
cluster size changes, and times. One way to achieve this is
to scale out/in proactively and start new caches earlier than
actually needed. Therefore, two approaches can be taken: a
conservative method, which aims to preserve the additional
cost of deploying extra caches by sacrificing the handled
requests, and a greedy method, which handles more requests
at the expense of increasing the extra-deployment cost.

Fig. 3 shows an example of the initial abstract policies and
their refinement. Since the greedy approach is more costly

Policy 1:
Condition: if a new caching request is received
Action: proactively allocate caches.
Constraints: number of caches that can handle the requested average load
ﬂ Operator: Sequential
2 Policy 2:
E Condition: if the cache thresholds are exceeded
" Action: scale out the cluster
=] Constraints: number of caches to be started
E Operator: Parallel
Policy 3:
Condition: if the caches are underutilized
Action: scale in the cluster
Constraints: number of caches to be stopped }
{
Policy 1:
Condition: if the current day is a weekday AND the optimistic thresholds are exceeded
Action: scale out the cluster
Constraints: af time X;
Operator: Parallel
Policy 2:
2 Condition: if the current day is a weekday AND the caches are underutifized
B Action: scale in the cluster
E Constraints: underutilization time > X; ¥
Operator: Parallel
k-]
al {
§ Policy 3:
Condition: if the current day is a weekend AND the pessimistic thresholds are exceeded
& Action: scale out the cluster
Constraints: at time X;
Operator: Parallel
Policy 4:
Condition: if the current day is a weekend AND the caches are underutilized
Action: scale in the cluster
Constraints: ilization time > Xx }

Fig. 3: Abstract intent policy refinement.

compared to the conservative one (for the additional caches’
uptime), the CDN operator can alternate between them by
applying the conservative cluster resizing (Policy 1 and Policy
2) during the weekdays and the greedy policies during the
weekend (Policy 3 and Policy 4).

CP Intent Update: Our solution allows the CP to keep
interacting with the CDN to express his changing needs. For
example, if a CP expects a workload of 42 GB/min instead
of 22 GB/min, he can update his previous intent with a new
average workload target. The results show that the traditional
approach has resulted in 4.46% (~ 2.6 TB) unhandled requests
in 24h. The conservative approach reduces this loss to 1.20%
(~ 718 GB) with a cost of 77mins and the greedy to 0.41% (~
285 GB) with a cost of 417mins. For a comparison purpose,
an oracle solution will handle all the requests at a cost of
40mins. It is the CCDN operator’s responsibility to tune
the thresholds and constraints to minimize the cost. These
optimization problems are beyond this paper’s scope.

VIII. CONCLUSION AND FUTURE WORK

We proposed a Service Consumer Intent declarative ex-
pression along with its corresponding prescriptive policy ex-
pressions. Unlike current intent expressions, our intent allows
service consumers with limited technical knowledge to express
their operational targets that are beyond network-level. We
discussed our proposed Intent-Based NBI framework and
workload intent, and its corresponding policies in the context
of a Cloud CDN use case. We discussed some possible intent
calculation and refinement to maximize achieving the intent’s
workload target with respect to different cost alternatives. In
our future work, we plan to implement the workload intent
and the intent-based framework in a real cloud-based testbed
along with the required APIs and translations. Different targets
could be investigated as well to discuss how can Cloud
CDNs leverage this solution in their futuristic communication
mechanisms with content provider.
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