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Abstract—In the sixth generation (6G) networks, due to the
massive Internet of Things (IoT) connectivity and substantial
growth of communication traffic, an effective Virtual Network
Function (VNF) orchestration scheme is anticipated to function
dynamically and intelligently. Moving beyond the traditional
paradigm of the VNF orchestration and employing VNFs on the
network edge located cloudlets based on the inspiration from
multi-access edge computing can intensify the overall perfor-
mance of delay-sensitive applications. In this paper, we intend
to investigate how to simultaneously leverage the ensembling
of multiple deep learning models for proper calibration to
provide real-time VNF placement solutions. We also address
the challenges associated with state-of-the-art approaches to
deal with dynamic network traffic and topology patterns. Our
envisioned methods, based on Convolutional Neural Networks
and Artificial Neural Networks named as E-ConvNets and E-
ANN respectively, suggest two proactive VNF deployment strate-
gies. These VNF placement strategies demonstrate (simulation
results) encouraging performance (optimality gap nearly 7%)
in terms of minimizing relocation and communication costs,
and high scalability intelligence factor (around 0.93). Moreover,
the presented results are further indications of integrating
edge computing and deep learning-based strategies into similar
research enigmas for future telecommunication networks.

Index Terms—Virtual Network Function, Deep Learning.

I. INTRODUCTION

Based on the expectations to fulfill the demands of ultra-

high processing speed and low communication delay sen-

sitive applications, 6G cellular networks are envisioned to

support an extensive variety of vertical use cases [1]. Some

of the applications can be the massive connectivity of Internet

of Things (IoT), collaborative computing, remote surgery and

machinery, augmented reality (AR), virtual reality (VR), and

autonomous driving [2]. Nevertheless, the current network

service orchestration schemes become incompetent to handle

numerous service specifications and various device types due

to not implying sustainability for real-time applications and

poor administration capability [2]. Thus, Network Function

Virtualization (NFV) [3] pledges to facilitate network service

provisioning at considerably decreased capital costs and oper-

ational expenditure. The intention is to replace the necessity

of proprietary hardware devices with the software enabled

implementation of Virtual Network Functions (VNFs) on

conventional virtualized platforms such as virtual machines

(VMs) running in cloudlets (small scale data centers at the

edge of Internet) [3]. As suggested by the concept of multi-

access edge computing (MEC) or fog computing [4], VNFs

(e.g., firewall, load balancer, WAN accelerator, and intrusion

detection system) placed at cloudlets in closer proximity to

the users diminishes the burden of unnecessary data traversal

and bandwidth consumption through the centralized cloud.

The vision towards future telecommunication networks antic-

ipates that the third parties will designate the content-aware

and user-specific services along with their corresponding

specifications, for example, the highest tolerable latency or

least throughput limits, to the network administrator, expe-

dited by NFV and software-defined networking (SDN) [5].

Mostly, state-of-the-art NFV resource orchestrators consider

the static condition of networks, while ignoring the temporal

differences in network traffic and topology due to mobility of

users or congestion [6] [3]. Moreover, the lack of considering

the re-computation of VNF placements in these methods

makes them ill-equipped to be employed in practical settings,

and often the consequences are violations of the Quality of

Service (QoS) and Service Level Agreement (SLA) [7]. On-

going researches evolve around different optimization formu-

lations using Integer Linear Programming (ILP) and Mixed

Integer Linear Programming (MILP) to outline the VNF

orchestration scheme, which is NP-hard by nature [8] [9], and

fail to offer fast VNF placements decisions at different times.

To approach intelligent VNF orchestration, meta-heuristic

based swarm intelligence algorithm, specifically, Ant Colony

Optimization (ACO), has been proposed in [9]. However, the

family of swarm intelligence algorithms, including ACO, re-

quires extensive parameter tuning of exploitation-exploration

ratios, making them heavy weighted to accommodate for real-

time orchestration [9]. In distinction to the existing works,

we have aimed to propose lightweight and dynamic deep

learning [10] aided strategies for the VNF orchestration and

deployment that facilitates both users and services provides

exclusively by collaborative minimization of communication,

relocation delay and costs in real-time. We have considered

two popularly known approaches, Convolutional Neural Net-

works [10] and Artificial Neural Networks [10] blended with

the twist of ensemble training and prediction fashion [11].
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The pre-trained models can be placed on the cloudlets (local,

device hosted or infrastructure based clouds) so the VNF

orchestration process may be swift and prompt enough for

delay-sensitive IoT applications [2].

The remainder of this paper has been structured as follows.

We describe the literature review of the subject of our

interest in Section II. Section III includes the explanation

of the model that we have considered. The ILP model of

the optimization framework for VNF deployment problem

is exhibited in Section IV. Section V covers the discussion

of the proposed deep learning aided strategies named, E-

ConvNets and E-ANN. Next, simulation results using dif-

ferent performance metrics for all the placement strategies

are represented in Section VI. Finally, Section VII concludes

the paper.

II. LITERATURE REVIEW

A broad plethora of research studies related to VNF

deployment in the hybrid cloud has been emerging lately

[12] [13]. To enhance the Quality-of-Experience (QoE) of the

users and for massive computation time critical applications,

a large volume of communication resources are required.

Thus, a lot of focus has been drawn towards resource

constraints management based VNF deployment strategies

[14] [15]. The authors of [15] have proposed distributed VNF

deployment by caching resources, yet this mechanism is un-

able to manage dynamic network situations. Moreover, some

researches focus solely on different VNF migration schemes

[7]. Ben et al. have proposed a capacitated VNF migration

scheme with the help of Virtual Network Embedding (VNE)

[7]. However, the main focus has been deviated away from

communication delay concerns that may affect the overall

user experience. A stable matching algorithm to reduce the

execution time by introducing mixed-integer programming

and obtaining the near-optimal results in terms of latency

has been approached [6] [16]. This algorithm can prevent the

failure of the model in extreme cases. Even so, this model

has been designed according to static network arrangements,

which would require to be initiated every time instance

eventually not being feasible for online applications. As a

step closer towards intelligent VNF orchestration, swarm-

based intelligence inspired by the natural behavior of ant

colony has been approached [9], which considers both user

mobility based VNF relocation and communication costs.

However, the difficulty is that these types of algorithms

need a lot of attention towards parameter tuning that require

longer execution times to deal with large scale and real-time

scenarios [17]. To the best of our knowledge, none of the

existing works suggested the use of ensemble deep learning

assisted strategies for VNF orchestration in order to function

within reasonable running time limits, promote scalability,

and support both the providers and users interest mutually,

while approaching towards 6G cellular networks.

III. SYSTEM MODEL

The system model includes two distinct domains. The

cloudlet domain consists of a set of small scale data centers

(DCs), D at the edge of the Internet, having secure and

robust wired connections among them. On exploiting cloudlet

confederation, the connected cloudlet DCs can offer and

receive services from one another.
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Fig. 1: A high level system architecture for VNF orchestra-

tion.

Besides, the domain of Radio Access Network (RAN)

incorporates a set of access points, for example, base stations

termed as evolved NodeB (eNB). A number of users can

be connected to each eNB through radio signal. A base

station controller usually manages a collection of eNBs. A

single eNB is allowed to be connected to only one cloudlet

DC via the Serving Gateway (S-GW) and Packet Data

Network Gateway (PDN-GW) of the particular DC. However,

numerous numbers of eNBs can be connected to a cloudlet

DC. A set of eNBs, E can receive service from its associated

DC. A data center can provide direct services by running

the corresponding VNF of a client or user under the eNB

connected to that cloudlet DC. Moreover, it can offer passive

services via neighbouring DCs, which demands additional

service cost. Due to user mobility, Vj can be considered

as the set of VNFs of eNB, ej ∈ E that are required to

be relocated. The requests for VNF migration usually occur

because of hand off between an eNB, ej ∈ E and other eNBs

that are connected to different cloudlet DCs unlike ej . Table

I exhibits the major notations along with their description

used to implement the optimization framework.

IV. OPTIMIZATION FRAMEWORK FOR VNF

DEPLOYMENT

The ILP formulated optimization framework considered in

this paper has been proposed in [9]. In order to deploy VNF,

vi ∈ Vj of eNB, ej ∈ E to cloudlet DC, dk ∈ D, the

relocation time Ri
k,j can be calculated using the following

equation:

Ri
k,j = {(1− ǫ

i
k)× b

i
k,j} ×Q

i
k (1)



TABLE I: Description of parameters for the system model

Notation Description

D={d1, d2, ..., dD} The set of cloudlet DCs in the network
E={e1, e2, ..., eE} The set of all eNBs connected to the cloudlet

DC where the system is running
V ={v1, v2, ..., vV } The set of all VNFs

Vj The set of VNFs of eNB, ej ∈ E that are
required to be relocated, where Vj ⊆ V

ϑworst Maximum communication delay toleration limit
of the network

tk,l The communication delay between a cloudlet
DC, dk ∈ D and the cloudlet DC, dl ∈ D,
provided that k 6= l

tj,k The communication delay between eNB, ej ∈
E and the cloudlet DC, dk ∈ D

Si Size of VNF, vi ∈ V
φk Cost to place any VNF to some cloudlet DC,

dk ∈ D
ψk Cost to take service from cloudlet DC, dk ∈ D
Ck Capacity of the cloudlet DC, dk ∈ D for

holding VNFs
σi Execution time of VNF, vi ∈ V
η Priority factor of VNF migration or relocation
τi Transfer time of VNF, vi ∈ V
Nk Number of VNFs that are already executing in

cloudlet DC, dk ∈ D

Υ
i
k,j

Summation of communication, relocation, and
execution time if VNF, vi ∈ Vj of eNB, ej ∈
E is placed at cloudlet DC, dk ∈ D

where, ǫik holds 1, if the VNF instance have been earlier

running on cloudlet, DC dk ∈ D, otherwise 0. Therefore, in

case (1 − ǫik) is 1, the corresponding VNF instance can be

considered for relocating to a cloudlet, DC dk ∈ D. Likewise,

the decision variable bik,j holds 1 if VNF, vi ∈ Vj of eNB,

ej ∈ E is placed at cloudlet DC, dk ∈ D, otherwise 0. The

relocation cost to migrate VNF, vi ∈ Vj of eNB, ej ∈ E to

some cloudlet DC, dk ∈ D can be represented by Qi
k and

calculated as follows:

Qi
k = (1− nik)× τi (2)

Again, ni
k holds 1, if the expected VNF, vi ∈ Vj of eNB,

ej ∈ E is running on the cloudlet DC, dk ∈ D, otherwise 0.

Therefore, upon the value of (1 − ni
k) being 1, we need to

relocate or transfer the VNF from the previous DC. In such

case, the relocation cost is equal to transfer time τi, which

can be calculated using the following equation:

τi =
Si

r
(3)

where, r is the achievable data rate to relocate any VNF and

Si represents the size of the VNF, vi. The communication

delay to get service for a VNF, vi ∈ Vj is calculated from

the following equation:

T i
k,j = bik,j × (tj,k + tk,l) (4)

Here, the summation of communication delay between eNB,

ej ∈ E and the cloudlet DC where the solution is executing

(tj,k) along with the communication delay between cloudlet

DC, dk ∈ D and the cloudlet DC, dl ∈ D, which holds

the running VNF (tk,l) contribute to the total communication

delay. Finally, the objective function formulation using ILP

can be presented as the following:

min
∑

ej∈E

∑

vi∈Vj

∑

dk∈D

{η×Ri
k,j×φk+(1−η)×T i

k,j×ψk} (5)

A trade-off is introduced by estimating the priority factor

denoted as η in the objective function. The objective is to

minimize the overall network relocation and communication

costs of the network. The objective function presented in the

Eq. (5) is subject to the following constraints:

C1 :
∑

dk∈D

bik,j = 1, ∀ej∈E , ∀vi∈Vj
(6)

C2 :
∑

vi∈Vj

∑

dk∈D

bik,j = |Vj |, ∀ej∈E (7)

C3 :
∑

dk∈D

(Ri
k,j + T i

k,j + σi) ≤ ϑworst, ∀ej∈E , ∀vi∈Vj
(8)

C4 :
∑

ej∈E

∑

vi∈Vj

bik,j ≤ Ck, ∀dk∈D (9)

C5 : bik,j ∈ {0, 1}, ∀ej∈E , ∀vi∈Vj
, ∀dk∈D (10)

The constraint C1 is basically an atomicity constraint,

ensuring the single assignment of each VNF, vi ∈ Vj of

eNB, ej ∈ E to exactly one cloudlet DC, dk ∈ D. Another

constraint C2 specifies that all VNFs, vi ∈ Vj of eNB, ej ∈ E
must be allocated to some cloudlet DC, dk ∈ D. Next, The

QoS constraint C3 guarantees the summation of relocation

delay, communication delay, and execution time of VNFs to

remain below a certain pre-defined threshold ϑworst, which

can be varied according to application nature. The capacity

constraint C4 assures not to overload cloudlet DCs. Hence,

the number of VNFs executing in a cloudlet DC is not

allowed to exceed the capacity of that cloudlet DC. Finally,

the constraint C5 is a binary constraint representing the value

of decision variable bik,j to be 1, in case VNF, vi ∈ Vj of

eNB, ej ∈ E is placed at cloudlet DC, dk ∈ D, otherwise

remains 0.

V. PROPOSED DEEP LEARNING AIDED VNF

DEPLOYMENT

The future of cellular networks and NFV infrastructure

manager expect to exploit AI for offering intelligent or-

chestration and management systems [1]. The concept is to

locate the pre-trained models in cloudlet DCs so that the

deployment decisions induced by the testing phase can offer

real-time solutions with ultra-low execution time required for

prediction.

A. Labeled Dataset Generation

We leverage the ILP optimization framework solver de-

scribed in section IV to optimize different VNF deployment

scenarios, and then record the respective solutions to generate

labeled data for training purpose. We merge the features

along with the decision variable bik,j found by ILP solver

to produce a labeled dataset for training purpose in lines 5-7
of algorithm 1. We denote the labeled dataset as L.



Algorithm 1: Ensemble training phase of deep learn-

ing aided VNF Deployment at each cloudlet DC

dk ∈ D

Input: D, E, Vj , ϑworst, R
i
k,j , T i

k,j , φk, ψk, Ck, σi,

η, τi, and Nk

Result: Set of trained models M∗

1 M∗ ← ∅

2 foreach model mt ∈M do

3 L ← ∅

4 for epoch < total simulation epochs do

5 S ← Generate a random system using input

parameters

6 bik,j ← Assign the decision variable by

solving system S through the ILP optimizer

framework

7 L ← S ∪ bik,j
8 Train the model mt using labeled dataset L
9 M∗ ←M∗ ∪mt

B. Ensemble Convolutional Neural Networks (E-ConvNets)

To generate a well-calibrated model due to the uncertain

nature of the network parameters, we have incorporated the

ensembling technique into the model utilizing E-ConvNets

[11]. The E-ConvNets method consists of a set of alternative

different convolutional network models M. Each model

mt ∈M is trained by different randomly generated datasets

as explained in lines 2-7 of algorithm 1. Finally, at the end

of this algorithm as suggested in line 8, we receive a set

of trained ensemble models M∗ that are further used for

deploying VNF vi ∈ Vj of eNB ej ∈ E to some cloudlet DC

dk ∈ D using algorithm 2. The testing or prediction phase

of ensemble techniques for E-ConvNets have been exhibited

in algorithm 2. We have generated random unlabeled data

U for performance evaluation in line 1. In lines 5-11, we

verify the constraints and apply trained models mt ∈ M
∗

exploiting E-ConvNets on unlabeled dataset U to generate

the confidence scores for placing all VNF, vi ∈ Vj of every

eNB, ej ∈ E to each cloudlet DC, dk ∈ D. We update

this confidence score obtained by each model in variable
ˆYi
k,j that can range between 0.0 and 1.0. We accumulate the

cumulative prediction confidence score of all trained models

for deploying VNFs, vi ∈ Vj of eNB, ej ∈ E to cloudlet DC,

dk ∈ D, and store it in the variable X i
k,j through line 12. In

lines 14-18, we select the cloudlet DC, dk ∈ D that holds the

highest cumulative confidence score generated by all trained

models for every VNF, vi ∈ Vj of eNB, ej ∈ E pair. Finally,

a set of solutions F is constructed iteratively containing

respective eNB, ej ∈ E, VNF, vi ∈ Vj , and selected cloudlet

DC, dk ∈ D in line 19. The sequential styled E-ConvNets

feature a set of typical model designs [10]. Each model

includes several convolutional layers that are followed by a

pooling layer. Batch normalization is performed to enhance

the performance, speed, and stability of models, thus require

less computational complexity. For the convolutional layers,

we select rectified linear (ReLU) activation function, while

Algorithm 2: Ensemble testing phase of deep learn-

ing aided VNF Deployment at each DC dk ∈ D

Input: D, E, Vj , ϑworst, R
i
k,j , T i

k,j , φk, ψk, Ck, σi,

η, τi, and Nk

Result: A set of solutions F
1 U ← Generate a random system using input

parameters

2 F ← ∅

3 X i
k,j ← 0

4 foreach trained model mt ∈M∗ do

5 foreach eNB ej ∈ E do

6 foreach VNF vi ∈ Vj do

7 foreach cloudlet DC dk ∈ D do

8 if (Nk > Ck and Υi
k,j > ϑworst) then

9
ˆYi
k,j ← 0

10 else

11
ˆYi
k,j ← Set the confidence score

between 0 and 1 by applying

trained model mt on U
12 X i

k,j ← X
i
k,j +

ˆYi
k,j

13 foreach eNB ej ∈ E do

14 foreach VNF vi ∈ Vj do

15 tempk ← ∅

16 foreach DC dk ∈ D do

17 tempk ← tempk ∪ X
i
k,j

18 max← argmax
k

tempk

19 F ← F ∪ (ej , vi, dmax)

output layers use softmax function by following the cross-

entropy loss function.

C. Ensemble Artificial Neural Networks (E-ANN)

The Artificial Neural Networks (ANN) [10] is a paradigm

for processing information and usually configured according

to the requirement of applications through the learning phase.

Our proposed E-ANN consists of multiple models mt ∈M.

In order to train the E-ANN models, we apply the algorithm

1 on some randomly generated labeled data L, as explained

earlier in the subsection V-A. The output layer of the E-ANN

has equal number of nodes specifying cloudlet DCs for every

model of the ensemble learning. The output nodes indicate

the probability or confidence score of placing a VNF to each

cloudlet DC. Finally, we place a VNF on the cloudlet DC of

the corresponding output node having the highest cumulative

confidence score summed up from all the trained models.

We employ the same algorithm 2 for the prediction phase of

VNF deployment, while applying the E-ANN architecture.

Instead of employing a single architecture of ANN, we utilize

a set of trained models that altogether contribute to the

final outputs. We assemble these models to accumulate the

confidence score of each output node to interpret the ultimate

set of output nodes for proper calibration [11]. The final layer

of the E-ANN architecture utilizes softmax function under

cross-entropy loss regime, while the nodes from hidden layer

employ hyperbolic tangent function [10].
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Fig. 2: Comparison of the performance impacts of different VNF deployment strategies for varying number of VNFs under

each eNB for 12 data centers in total.

VI. PERFORMANCE EVALUATION

To solve the ILP formulation of the problem, we have used

the Gurobi optimization solver. Python’s TensorFlow libraries

have been utilized to support the experiments concerning our

proposed deep learning-based approaches (E-ConvNets and

E-ANN).

A. Simulation Environment

We have studied a network consisting of 12 cloudlet DCs.

The number of eNBs under each cloudlet DC can differ in

the range of 5 - 25, while the number of VNFs under each

eNB can be between 500 - 2500. The communication delay

between different pairs of cloudlet DCs can vary between

10 - 200 milliseconds. However, to get service from the

cloudlet DC directly connected to the respective eNB, a

trivial amount of time ranging between 2 - 5 milliseconds

has been considered. We assume the data rate of transferring

VNFs between distinct pairs of cloudlet DCs to be 1 -

50 Mbps, and the size of VNFs are allowed from 100 to

300 KB. The value of priority factor η has been selected

as 0.7. All the mentioned network parameters have been

adapted from the existing literature [9]. For the experimental

purpose, we have used three hidden layers each containing

156 nodes, and the number of output nodes being equal

to the number of the cloudlet DCs in the system in case

of E-ANN. Additionally, the number of convolution layers

have been considered as 5. The dropout rate have been

selected as 0.3. These hyperparameters have been selected

through simulation study and tuning. We have used the same

hyperparameters to compile and train each model in order to

retain simplicity.

B. Performance Metrics

The performance metrics analyzed for the performance

evaluation of different VNF deployment strategies have been

described in the following:

Total Weighted VNF Relocation and Communication Costs:

This metric is the interpretation of objective function value

mentioned in the equation Eq. (5).

Running Time: By reporting the execution times of algo-

rithms, we can recognize how quickly a VNF placement

method can extend its orchestration services to the users.

Number of VNF Relocation: The total number of VNF

relocations required to migrate the VNFs to the selected

cloudlet DC is defined by this metric, which directly impacts

the administration of the whole network.

Scalability Intelligence Factor: To calculate this metric,

we have trained the models on dense and sparse networks

individually and tested on the other way around to illustrate

how much the performance of these models deviate from

the optimization framework. Then, we have normalized the

resultant metric values between 0 and 1. To generate a sparse

network system, we have varied the communication delay 10
times more than the dense networks.

C. Results and Discussion

We have categorized the analysis of the results into fol-

lowing two kinds:

1) Varying number of VNFs under each eNB

Fig. 2 represent the effects on the mentioned performance

metrics associated with the experiment of varying the number
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Fig. 3: Comparison of the performance impacts of different VNF deployment strategies for varying number of eNBs under

each data center for 12 data centers in total.

of VNFs under each eNB. From Fig. 2a, it can be easily seen

that with the growing number of VNFs, the performance

of ACO based deployment strategy declines in terms of

relating to the ILP formulation unlike the smaller instances

of VNFs. However, the E-ConvNets and E-ANN continue to

maintain their performances through the increasing number

of VNFs. E-ConvNets exhibit the most promising objective

function value resembling the ILP formulation for all the

cases. The running time of E-ANN has been shown to

be the lowest in 2b, and the E-ConvNets manifest very

similar execution time as well. Contrarily, the traditional ILP

and ACO-based approaches require higher running time to

take VNF deployment decisions comparatively that is not

suitable for latency sensitive real-time IoT applications. The

number of VNF relocations affect the migration overhead

of networks that have been presented in the Fig. 2c. E-

ConvNets and E-ANN incur migrations ranging between

around 15% - 30%. However, ACO based placement strategy

induces relocations above 40%, while the optimal percentage

of relocations shown by ILP remains approximately 10% -

20% for different numbers of VNFs. For future networks,

orchestration systems demand scalability. Hence, to support

the experiments of E-ConvNets and E-ANN, we train the

models in different settings of sparse and dense networks

and test their performance on vice-versa. Fig. 2d illustrates

that both of the deep learning models perform significantly

well when they are trained using a sparse network.

2) Varying number of eNBs under each cloudlet DC

Fig. 3 illustrates the performance impacts due to the

varying the numbers of eNBs from 5 to at most 25 under

each cloudlet DC, while keeping the number of VNFs fixed

at 1000. The results found in this experiment somewhat

resemble the ones found in the earlier simulations represented

in this paper.

VII. CONCLUSION

The conventional optimization techniques due to the var-

ious drawbacks, mostly lacking agility, fail to be qualified

for real-time adaptions in dynamic network perspectives.

Thus, we have stressed on designing a prompt technique for

intelligent networks to proactively assign VNFs to the edge

cloudlets DCs with best possible relocation and communica-

tion costs as the outcome, while considering the predictable

rapid growth of IoT services in near future. For the sake of

the model calibration process, we have considered utilizing

multiple models instead of relying on a single one for the

training and prediction phase. Hence, we have applied E-

ConvNets and E-ANN in simulated network arrangements

and compared the results with other existing conventional

approaches. Experimental results suggest that E-ConvNets

outperforms all other methods in terms of minimizing costs

and relocation burden with significantly improved scalability

intelligence factor. Although, E-ANN performs best accord-

ing to running time, yet being very close to execution times

of E-ConvNets.
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