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Abstract—The edge connectivity of a network is the minimum
number of edges whose removal disconnect the network. The edge
connectivity determines the minimum number of edge-disjoint
paths between all nodes. Hence finding the edge connectivity can
reveal useful information about reliability, alternative paths and
bottlenecks. In this paper, we propose a cost-effective distributed
algorithm that finds a lower bound for the edge connectivity of a
network via finding at most c depth-first-search trees, where c is
the edge connectivity. The proposed algorithm is asynchronous
and does not need any synchronization between the nodes. In
the proposed algorithm, the root node starts a distributed depth-
first-search algorithm, and the nodes select next node in the tree
based on their available edges to maximize the total number of
established trees. The simulation results show that the proposed
algorithm finds the edge connectivity with an average of 48%
accuracy ratio.

Index Terms—Distributed Algorithms, Edge Connectivity,
Depth First Search, Spanning Tree.

I. INTRODUCTION

Distributed systems have a wide and increasing range of
applications in various fields such as industrial automation,
internet of things and intelligent structures [1]. The nodes
in a distributed system communicate with other nodes by
sending or receiving multi-hop messages. Each node forwards
the incoming messages to its neighbors until the message
arrive to the target node. Multi-hop communication simplifies
the establishment and scalability of the distributed systems at
the cost of reducing the reliability [2]. Failure of a node or
lost links may affect the communication paths between other
nodes. In the worst case, failure of a node or a link may cut all
paths between a group of nodes and destroy the connectivity
of the network.

A distributed system can be modeled as a graph G(V, E)
where V' is the set of nodes and E is the set of links between
the nodes. An edge can be added between nodes which have
a communication link to each other. In graph theory, the edge
connectivity of given graph is the minimum number of edges
whose removal disconnect some nodes from the graph. The
edge connectivity of a network may provide useful information
about the connectivity robustness, bottlenecks, critical links
and traffic flow of the network. Hence, efficient detection of
edge connectivity of a network has been the subject of many
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studies. Fig.1 shows an example 2-edge connected network
with 11 nodes. Removing the thick edges (4,5) and (1,6)
separates the nodes into two disconnected parts. Similarly,
the vertex connectivity of a graph is the minimum number
of nodes that should be removed to disconnect some nodes
from the graph. A higher edge or vertex connectivity value
shows more connectivity robustness for the network.

Fig. 1: A sample of 2-edge connected network.

Beside the reliability level, finding the edge connectivity
of a network provides other useful information. The edge
connectivity determines the minimum degree of nodes and the
minimum number of edge-disjoint paths between the nodes.
For example, in a c-edge connected network, each node has at
least ¢ neighbors and c edge-disjoint paths to any other node.
Two paths are edge-disjoint if they have no common edge.
Detecting the edge-disjoint paths between the nodes reveals
the available alternative paths between the nodes, which is
important for efficient routing algorithms. In this study, we
propose an efficient algorithm that estimates a lower bound
for the edge connectivity of a given network by finding at
most ¢ spanning trees. In each c-edge connected network, we
have at most c-edge disjoint spanning trees. The spanning
trees are edge disjoint if they have no common edge. Fig.2
shows a sample spanning tree rooted by node O in a 2-edge
connected network, and the resulting disconnected network
after removing the edges of the spanning tree. The established
edge-disjoint spanning trees can also be used to find the edge-
disjoint paths between the nodes.

The remaining parts of this paper have been organized
as follows; Section II, provides a brief survey about the
exiting works. Section III includes the details of the proposed
approach. Section IV provides the experimental results of



Fig. 2: A sample spanning tree and the resulting disconnected
network after removing the edges of spanning tree.

implementing the proposed algorithm on sample networks.
Finally, Section V contains the conclusion and future works.

II. RELATED WORK

Finding the edge connectivity of a given graph is a well-
known problem that has many central deterministic and ran-
domized algorithms [3]-[9]. One of the first and efficient
algorithms for edge connectivity detection is based on the
maximum-flow problem. According to the max-flow min-cut
theorem [10], the maximum flow that can pass between two
arbitrary nodes s € V' and ¢t € V is equal to the minimum cut
size between them. In an unweighted graph, the maximum
possible flow between two nodes (assuming that the weight
of each edge is 1) is equal to the number of edges in the
minimum cut or edge connectivity. Therefore, to find the edge
connectivity of a graph, one can find the maximum flow
between all pairs of nodes and select the minimum among
the detected values.

The maximum flow between two nodes can be found by the
Ford-Fulkerson algorithm in O((n + m)f) , where f is the
flow between the nodes, n is the number of nodes and m is the
number of edges [11]. Therefore, finding the edge connectivity
using the max-flow algorithm can be done in O(n’mf)
time complexity. Usually, applying a central algorithm on a
distributed environment imposes a large amount of message
passing, because the entire topology of the network should
be collected in single node. Goldberg and Tarjan proposed an
asynchronous distributed maximum flow algorithm [12] that
has O(n?) time complexity and O(n?m) message complexity.

Many other distributed algorithms have been proposed for
edge and vertex connectivity detection [2], [13]-[16] that
find the exact or approximate connectivity by sending many
different messages between the nodes. In many applications,
ensuring a certain level of reliability is enough for the correct
working of the application. Hence, in these applications find-
ing a lower bound for the connectivity can provide sufficient

information on the reliability of the network. Most of these
approaches find the edge-disjoint paths between all nodes
and select the smallest value as the edge connectivity. This
method requires at least O(n?) message complexity. Some
other proposed distributed algorithms need to synchronize the
nodes in time periods or rounds [17]-[20]. In these algorithms,
all nodes are notified about the starting of a new round. In each
round, the nodes run a few commands, exchange messages
with their neighbors and wait for starting a new round.
Synchronized algorithms require strict time synchronization,
which is not supported in most distributed systems.

Another set of researches focus on detecting the cut edges
or cut vertices in the networks [21]-[26]. A cut edge or bridge
is an edge which in case of failure separates the network to
the disconnected parts. Similarly a cut vertex is a node which
its failure partitions the network to the disconnected parts.
Generally, finding the cut edges or cut vertices is a restricted
version of edge and vertex connectivity problem which has
lower complexity.

In this paper we propose a cost-effective distributed al-
gorithm that finds a lower bound for the edge connectivity
by finding at most ¢ spanning trees, where c is the edge
connectivity of the graph. The proposed algorithm sends at
most O(An) messages with constant size where A is the
maximum node degree in the network. The algorithm is
straightforward and asynchronous and can be used in almost
all types of multi-hop networks because it does not need any
synchronization between the nodes. We provide a compari-
son between the performance of the proposed and existing
algorithms by implementing them on 88 randoms graph with
different node count and density, and measuring the estimated
connectivity values.

III. THE PROPOSED APPROACH

The proposed approach is based on the iterative establish-
ment of the depth-first-search (DFS) trees in the network and
eliminates the selected edges in each tree. The maximum
number of DFS trees in each network is bounded by the edge
connectivity of that network. Therefore, via finding the number
of DFS trees, we can obtain a lower bound for the edge
connectivity of that network. A traditional distributed DFS
algorithm selects a random neighbor and continues searching
until all nodes are visited [27]. In this algorithm, a root node r
starts the algorithm and sends a token message to a randomly
selected neighbor, say v. Node v then selects another unvisited
neighbor (a neighbor that has not sent token yet) randomly
and forwards the token message to that node. In this way, each
node selects a random unvisited neighbor to forward the token
message. Each node sets the sender of token message as its
parent in the tree. If a node has no unvisited neighbor, it returns
the token to its parent. If a parent node receives a token from a
child node, it forwards the token to another unvisited neighbor
(if any) or returns it to its parent. The algorithm terminates
when the root node receives a token from a neighbor and
has no unvisited neighbor. The details of the distributed DFS
algorithm can be found in [27].



To have a good estimation about the edge connectivity of
the network we should maximize the number of established
DES trees. To increase the number of detected DFS trees, we
use a weighted DFS (WDFS) algorithm that selects the next
node in the tree based on a weight value of the node. The
basic idea is to establish a tree that covers all nodes with a
minimum number of selected edges in each node. In other
words, we want to establish a tree such that the maximum
number of selected edges in each node is minimal. In this
way, the number of available edges in each node for the next
tree will be maximum, and the detected lower bound will be
tighter. To achieve this result, we assign a weight value to each
node, which initially are all 0.

After adding each node to the tree, we update the weight of
its neighbors by adding ¢ to their current weights, where i is
the number of unvisited nodes in the graph. So, after adding
the first node to the tree, the weight value of its neighbors is
increased by n — 1 where n is the number of nodes. After
adding the 7’th node to the tree, the weight of its neighbors
is increased by n — . To add a new node to the tree, each
node selects its unvisited neighbor with the lowest weight until
all nodes are visited. If a node has no unvisited neighbors,
it returns the token message to its parent to let the search
continue from there. The search finishes when the root node
receives a token and has no other unvisited neighbors.

Figure3 illustrates the steps of the proposed algorithm on
a sample network with 11 nodes. Initially, the weight of each
node is 0. The algorithms starts at Node O as the root node,
and increases the weight of its neighbors to 10 (the number
of remaining unvisited nodes). Hence, the weight of nodes
1, 2 and 3 becomes 10. Since the weight of neighbors of
node O is identical, node O selects a random neighbor, say
node 1, to send the token message. After receiving the token
message, node 1 increases the weight of its neighbors by 9,
which leads to w(3) = 19, w(2) = 19, and w(4) = 9. Node
1 selects node 4 as the next node, because it has the lowest
weight among all neighbors of node 1. After receiving the
token message, node 4 increases the weight of its neighbors
by 8, which leads to w(3) = 27 and w(5) = 8. Since 5 has the
lowest weight among the unvisited neighbors of node 4, it is
selected as the next node in the tree. After receiving the token,
node 5 increases the weight of its neighbors by 7, resulting
in w(7) =7 and w(8) = 7. As nodes 7 and 8 have identical
weights, node 5 selects one randomly, say node 7, as the next
node in the tree. Node 7 increases the weight of its neighbors
by 6, and the algorithm continues in this fashion until all nodes
are visited. Fig.3m shows the resulting WDES tree.

After finding a tree, the edges used in the tree can be
ignored. To do this, the nodes can mark their links used
for sent/received token messages. By ignoring these links,
the nodes remove them from the network and use other
edges for the next trees. In this way, establishing each tree
removes a complete edge-disjoint path between all nodes. The
root node can start a new WDFS search after completing a
successful search. Obviously, if the current search finishes
without covering all nodes, then there is no need for a new

W@4)=0  w(5)=0 W(4)=0  w(5)=0

Fig. 3: The steps of the proposed algorithm.



search and the algorithm can be terminated. The number of
successful searches determines the lower bound of the edge
connectivity for the network. To control the number of covered
nodes in each DFS tree, we may pass a visited node value in
the token message. Each node that receives the token from a
parent node can increase the visited node count by 1. When
the token returns back to the root node, this node can compare
the number of visited nodes by the total number of nodes in
the network. If the number of visited nodes is equal to the total
number of nodes, then root node can increase the detected edge
connectivity value by 1 and start a new search. Otherwise, the
root node can terminate the algorithm and reports the detected
edge connectivity.

Algorithm 1, shows the steps of the proposed approach.
Initially, the root node sets the edgeConnectivity value to
0, and starts a distributed weighted algorithm to establish
the WDEFS tree T'. After finding a tree, each node marks its
selected local edges in the tree, to ignore them in the next
iteration. Let N (7') be the number of selected nodes in tree 7.
If N(T') = |V|, then T has covered all nodes in the network.
In this case, the root node can increase the edgeConnectivity
by 1 and repeats the algorithm to find a new tree. The root node
stops the algorithm when the established T has less than |V/|
nodes, which means that some of the nodes were unreachable
in the last search.

Algorithm 1: Edge Connectivity Estimation
1: edgeConnectivity < 0.
2: do
3:  Find a distributed weighted DFS tree T'.
Mark the edges in T to ignore them in next iteration.
if N(T') = |V| then
edgeConnectivity < edgeConnectivity+1.
while N(T') = |V].

The proposed algorithm uses DFS, which has O(2n — 2)
time complexity and O(2n — 2) message complexity [27].
After selecting each node, it broadcasts an index message,
containing the remaining number of nodes in the tree, to
update the weight of its neighbors. Each node should broadcast
a notification message to its neighbors to notify them about its
new weight value. So, each node broadcasts at most ¢ index
and A notification messages where c is the edge connectivity
and A is the maximum nodes degree. Hence, the message
complexity of the proposed algorithm is O(2n—2+ An+cn).
Considering that A is an upper bound for ¢, the message
complexity of the proposed algorithm is O(An). Finding all
DFS trees takes O(An) time unit because each node sends
at most A token messages to its neighbor nodes.

IV. PERFORMANCE ANALYSIS

In this section we present the simulation results. To test
the performance of the WDFS, we compare the results with
traditional DFS. Besides, we compute the edge connectivity of
the network via maximum-flow algorithm for benchmarking

purposes. For simulations, we use 88 random graphs [28]
where the number of nodes varies from 100 to 200 and the
density (the ratio of the number of edges and the number of all
possible edges) varies from 30 to 90 for each graph size. Fig.4
shows the edge connectivity of the graphs. As the density of
the graphs increases, naturally the edge connectivity increases
at a certain rate.

Edge Connectivity

Fig. 4: Edge connectivity of the networks against the network
density and number of nodes.

Fig.5 shows the numbers of edge-disjoint trees found by the
traditional DFS algorithm for all instances. Note that, even if
the maximum number of disjoint trees is found for a graph, it
may be still smaller than the edge connectivity. For instance,
the edge connectivity of a cycle graph with 3 nodes equals
to 2, where the maximum number of the edge-disjoint trees
equals to 1.
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Fig. 5: Number of the disjoint trees found by the traditional
DFS against the network density and number of nodes.

We present the number of the edge-disjoint trees found by
the WDES algorithm for all instances in Fig.6. It can be seen
that the results of the traditional DFS are improved by this
algorithm. For a more precise analysis, we average the results
according to the density and size of the graphs.

Fig.7 depicts the average results for each density. The results
indicate that the proposed algorithm finds more trees than the



Disjoint Tree Count

Fig. 6: Number of the disjoint tree found by the WDFS against
the network density and number of nodes.

traditional DFS for each density. For densities 20% and 30%,
both algorithms seem to perform similarly. However, when
the density of the graph increases, the difference between the
WDEFS and the traditional DFS becomes clearer and WDFS
dominates DFS.
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Fig. 7: Average number of detected disjoint trees against the
network density.

Fig.8 shows the average results for each graph size. The
proposed algorithm can find edge-disjoint trees as nearly half
of the edge connectivity. For all instances, the WDFS finds
48% of the edge connectivity, whereas the traditional DFS
finds 41%.

V. CONCLUSION

In this study, we focus on the edge connectivity problem in
distributed networks. We propose a cost-effective distributed
algorithm that finds a lower bound for the edge connectivity of
a network by finding the edge-disjoint spanning trees. To find
the edge-disjoint spanning trees, we use the depth-first-search
algorithm. Moreover, we modify the traditional depth-first-
search by using weighted nodes and improve its performance.
The simulation results show that the proposed algorithm can
find %48 of the edge connectivity. Using Golberg and Tarjan’s
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Fig. 8: Average number of detected disjoint trees against the
number of nodes in the network.

distributed max-flow algorithm, edge connectivity of a network
can be computed in O(n?*) time complexity and O(n*m)
message complexity. In contrast, our proposed algorithm needs
O(An) time complexity and O(An) message complexity to
find a lower bound for the edge connectivity of a given
network.

Simple heuristics with reasonable time and message com-
plexity can be developed to improve the lower bound for edge
connectivity. For instance, before the construction of a tree
an algorithm can be used for selecting the root of the tree,
or using the information from previous searches may bring
improvement. As a future work, we plan to combine our
algorithm with fast heuristics to increase the number of the
edge-disjoint spanning trees detected. Finally, investigation of
the performance of the proposed algorithm on connected unit
disk graphs may be worth studying.
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