
Quality estimation for DASH clients by using Deep
Recurrent Neural Networks

Bita Kheibari
Ege University

International Computer Institute
Izmir-Turkey

bita.kheibari@gmail.com

Müge Sayıt
Ege University

International Computer Institute
Izmir-Turkey

muge.sayit@ege.edu.tr

Abstract—Dynamic Adaptive Streaming over HTTP (DASH) is
a technology designed to deliver video to the end-users in the most
efficient way possible by providing the users to adapt their quality
during streaming. In DASH architecture, the original content
encoded into video streams in different qualities. As a protocol
running over HTTP, the caches play an important role in DASH
environment. Utilizing the cache capacity in these systems is an
important problem where there are more than one encoded video
files generated for each video content. In this paper, we propose
a caching approach for DASH systems by predicting the future
qualities of DASH clients. For the prediction, we use learning
model, and the qualities that will be cached are determined by
using this model. The learning model is designed using Recurrent
Neural Networks (RNNs) and also Long Short Term Memory
(LSTM) which is a special type of RNNs with default behavior
of remembering information for long periods of time. We also
utilize SDN technology to get some of the outputs for the learning
algorithm. The simulation results show that predicting future
qualities helps to reduce the underruns of the clients when cache
storage is utilized.

Index Terms—DASH Streaming, SDN, LSTM , caching

I. INTRODUCTION

One of the most popular Internet applications, video stream-
ing systems, adapt to quality regarding the various network
conditions in order to provide the best Quality of Experience
(QoE) under the constraint of available network resources. In
these systems, the encoded video is sent over HTTP. Quality
adaptation is provided by producing quality alternatives on the
server side and by selecting different qualities over time on the
client’s side. The selection of the quality of the video is done
by an algorithm which is called ” rate adaptation algorithm ”.

In HTTP adaptive video streaming systems, the same video
file is encoded at various bitrates to provide quality alter-
natives, called representations. The small partitions of the
representations, i.e. segments, enable the clients to send HTTP
requests for downloading the selected segments. The informa-
tion about segments and representations such as their timing,
URL addresses, media characteristics like video resolution
and bit rates are kept in a file called Media Presentation
Description (MPD). MPEG Dynamic Adaptive Streaming over
HTTP (DASH) standard covers the main aspects of such
systems related to storage, transmission and parsing of the

MPD file. The rate adaptation algorithm of the clients are not
within the scope of DASH standard.

Software Defined Networking (SDN) is a new generation
of network technology which allows separating the control
and data plane. SDN reduces hardware dependency and in-
creases software and network intelligence capabilities. In SDN
domains, the network is managed by the controller via the
communication protocol between the control plane and the
data plane such as OpenFlow [1]. SDN technology can be used
to implement application specific approaches at the network
layer as well as providing abstracted network conditions
information to the applications.

In order to increase the performance of DASH systems,
network elements such as SDN controller or DASH aware
middleboxes can provide help to the clients. MPEG group’s
recent standard Server and Network Assisted DASH (SAND)
developed by considering these and introduces DASH aware
network elements can be given as example for this purpose
[2]. Caches are one of the main elements in video stream-
ing systems. Therefore, the caching approaches using DASH
specific knowledge can provide improvement of QoE.

In this paper, we propose an approach for deciding the
representations that are cached for improving the performance
of the DASH clients running over an SDN domain. The cache
implementation runs as a northbound application at the SDN
controller. For deciding which qualities will be cached, Super-
vised Learning with RNNs is used. The clients communicates
with the controller periodically to provide internal parameters,
which, in turn are used as inputs to the learning model.

There are a lot of caching strategies, which address to
determine the video files to be cached, which has been
proposed in the literature and with these approaches cache
hit ratio is remarkably increased [3]. In DASH systems, since
there are more than one representation for each video content,
the selection of the representations is for caching another
problem. Different from the existing work, in this study we
focus on selecting the quality alternatives, i.e. representations,
to be cached, rather than the video files. Our approach
can be easily combined with the approaches proposed for
determining video files to be cached. The selection of the
video files and selection of the representation of a video file
have different characteristics. While user preferences play a978-3-903176-31-7 © 2020 IFIP



role for selecting the video files, the selection of the video
quality is done by the client’s software. Different from the
literature, the proposed learning model for predicting the future
representations of DASH clients considers the type of the rate
adaptation algorithm and utilizes SDN technology. However,
the details of the rate adaptation algorithm is not known,
the learning algorithm infers the actions of the client and
predicted representations are cached. We show that the caching
strategy by utilizing the proposed learning model can reduce
the underruns on the client’s side. We also implement basic
schemes for deciding the future representations and provide
comparative results about caching strategies utilizing future
representation predictions.

The rest of the paper is organized as follows: Section 2
will review related work of the study. In sections 3 and 4 an
overview of the proposed architecture and the relevant analysis
of our RNN model will be explained in detail respectively. The
conclusion of the study has been provided in section 5 with
the following references.

II. RELATED WORKS

In this section, we provide an overview of the most relevant
works, improving the QoE by reducing the re-buffering time
for the video being streamed.

A. Recurrent Neural Networks

The developments of softwarized and autonomous network
technologies in recent years lead researchers to develop ma-
chine learning based network solutions to increase the per-
formance of the network applications. There are three types
of learning: Supervised, Unsupervised and Reinforcement
learning. In Supervised learning, agents learn from the feed
of labeled data. The learning works by explicitly given the
inputs and the outputs being based on the inputs. Unsupervised
learning models run without having pre-knowledge or a guid-
ance, and the data is not labeled accordingly. The model finds
undetermined patterns in order to make predictions about the
output. On the other hand, in Reinforcement learning, an agent
interacts with its environment and discovers its characteristics
based on the received punishments or rewards.

Neural Networks are set of algorithms which are akin to
the human brain and are devised to detect patterns. A cluster
of neurons collaborating so closely with each other in order
to resolve an issue, build a concept which is referred to an
artificial neural network.

Recurrent Neural Networks (RNN) is recurrent in nature as
it performs the same function for every input of data while the
output of the current input depends on the past computations.
After generating the output, it is copied and sent back into the
recurrent network. To make a decision, it considers the current
input and the output that it has learned from the previous input.
In other neural networks, all the inputs are independent of each
other but in RNN, all the inputs are related to each other. In
this study, we use supervised approach by utilizing a model
with RNN.

Fig. 1: An Unrolled Recurrent Neural Network.

As shown in Fig. 1, in the first step, the model takes the X(0)
from the sequence of inputs and then computes and generates
the h(0) as output which together with X(1) is the input for
the next step. In fact, the h(0) and X(1) are the input for
next(second) step. In a similar way, h(1) from the next (second)
step with X(2) are the inputs for next (third) step and so on.
In this way, it keeps remembering the context while training.
”A” is the arithmetic part of each neurons, which calculates
the output based on our input parameters.

The formula for the current state is :

ht = f(ht−1, Xt)

To remember past data memory easier, Long Short-Term
Memory (LSTM) networks are applied. Long Short-Term
Memory (LSTM) is a specific RNN architecture that was
designed to model temporal sequences and their long-range
dependencies are more accurate than conventional RNNs. The
vanishing gradient problem of RNN is rectified by utilizing
LSTM which is proper to organize, process and anticipate time
sequences, time lags of indistinct duration. It keeps fixing the
model by using back-propagation. In an LSTM network, three
gates are present:

• Input gate: Explores what value from input has to be
utilized to modify the memory.

• Forget gate: Probes what details to be discarded from
the block.

• Output gate: Output is determined based on the input
and the memory of the block.

In neural networks the responsibility of a neuron is to
provide an output by applying a function on the inputs
provided. The function used in the neuron is generally termed
as an Activation function. The most commonly used activation
function in deep learning models is Rectified Linear Unit
(Relu) [4] . The function returns 0 if it receives any negative
input, but for any positive value x, it returns that value back
[5]. So, it can be written as f(x)=max(0, x).

Relu(x) =

{
0 x < 0
x x >= 0

As it can be seen from the formula, this activation function
doesn’t have high complexity and it’s easy to be implemented



and used. The learning process is fast and easy, which is an
important aspect of a learning algorithm to be used in a highly
dynamic environment such as DASH.

B. Utilizing Learning Models for DASH Systems

One class of the machine learning based applications de-
signed for DASH systems is based on the idea of developing
rate adaptation algorithms with ML. In [6], the authors pre-
sented a framework (D-DASH) that combines deep learning
and reinforcement learning techniques to improve the qual-
ity of experience of DASH. Different learning architectures
are proposed by combining feed-forward and recurrent deep
neural networks. LSTM is a good alternative to predict the
performance of the DASH systems due to its characteristics
depending on time series. Another rate adaptation algorithm,
maximizing a chunk wise subjective QoE model by utilizing
it as the reward function in reinforcement learning (RL) is
proposed in [7]. In [8], the authors proposed an LSTM based
model in order to estimate optimal quality for the further
segments. This model is used by the DASH clients within the
rate adaptation algorithm and the purpose of the model is to
define the quality under the constraint of internal parameters.
Hence, the model, the input, outputs and the aim of the study
is different from this current work. In general, learning models
are developed for the rate adaptation algorithms used in the
client’s software, and differ from our study since our approach
is run by the cache.

The other class of the machine learning based approach
developed for DASH systems focus on the improvements on
the network side or on the network elements. In that sense, the
performance of DASH systems can be increased by utilizing
SDN and machine learning techniques. In [9], by using Multi-
Criteria Decision Making (MCDM) method, an approach that
aims to improve the quality of the buffered video on the
client’s side is proposed. The authors utilize SDN for deciding
the weights of the MCDM method according to this SDN
controller runs a machine learning algorithm by using its
knowledge about current network conditions as an input of the
learning algorithm. An SDN-based architecture framework that
targets to optimize the QoE for video streaming in SDN net-
works for DASH is designed in [10]. A learning model is run
by using the information at the controller, and the output is the
quality that provides the best QoE. In [11], authors presented a
machine learning model that by using the client-side features
included the current bitrate, the current bandwidth, and the
current buffer size could distinguish the target quality level.
To reach this aim they also used Supervised classification.
Their model could be successfully utilized within a DASH
client for selecting the optimal quality for each client based
on the client’s current capabilities. Caching strategies are not
addressed in any of these studies.

Using the prediction mechanisms for proactive caching is
a problem which is widely studied. In general, the studies
proposed a prediction model for determining the popularity
of the videos so that the popular contents can be cached in
advance by analyzing data such as historical user demands [12]

or content quality [3]. The prediction of the future segments
of DASH clients has been getting the researchers’ attention
because it might help to increase cache hits by caching future
segments, which in turn provide to use cache storage more
effectively. As one of the premier studies based on this idea,
in [13], the authors propose an approach for predicting future
segments, which determines the future quality selections by
using bandwidth estimations and the knowledge of the rate
adaptation algorithm. In [14], the authors provide a proactive
caching approach having Markov property. The model consid-
ers the network conditions to predict the segment which will
be requested in the future. However, it is assumed that the
cache knows the client’s rate adaptation as well as the client’s
actions and the details rate adaptation algorithm might not be
known even by the users. Different from these studies in the
literature, in this current work, we develop an approach based
on LSTM, which aims to predict the future segments of the
clients without the necessity of having knowledge about the
rate adaptation algorithm run by the clients.

There are also a few studies proposing to select repre-
sentations for cache prefetching without the need for having
knowledge about rate adaptation algorithm of the clients.
For the selection of the representations to be prefetched,
the authors propose to cache representations according to
the outputs of an optimization model in [15]. This MILP
based model provides the representations maximizing the
QoE, however, the rate adaptation algorithms of the clients
may not select the representations maximizing QoE due to
the reasons such as internal parameters and the lack of the
knowledge about real network capacity. In [16], the authors
proposed a learning based edge-cache platform. Their system
collects clients’ information such as throughput, obtained QoE
values, requested video type and then prefetching is done
by considering QoE gain. In the current study, we simply
focus on predicting the client’s representation selection rather
than focusing on QoE because each rate adaptation algorithm
has different policy to maximize QoE. Although QoE is not
directly addressed in the model, the proposed approach helps
to increase QoE on client’s side due to the minimization of
the latency between the resource and the client.

III. THE PROPOSED SYSTEM ARCHITECTURE

A. The Prediction of Future Segments with RNN

In this study, we consider the clients connect to the SDN
domain which is managed by a controller. The controller, as
a point having the information about network such as the the
end-to-end paths within its domain and real-time traffic volume
over these paths, has a cache implementation running as an
application.

After the clients connected to the network and started
downloading the segments, they periodically send the values of
buffer fullness, calculated throughput, segment size, segment
ID and selected qualities to the controller after downloading
each segment. When the learning algorithm is at the dataset
collection stage, the controller gathers this information sent
by the clients. These parameters are used as the inputs to the



learning model. The reason for why we use segment ID as
an input is that, using this value helps the learning model to
infer initial waiting time. In general, the first few segments are
buffered during the initial waiting time and the quality of these
segments are minimum regardless of the estimated throughput
in order to minimize the initial waiting period. The learning
model utilizes the segment ID value information in order to
predict segment quality at the beginning of the stream.

As explained in the previous sections, the learning model
is based on Recurrent Neural Network. Because of the special
properties of LSTM, which is designed to store and access
information better than the general-purposed neural networks,
the model is built by using LSTM. Unlike the traditional
recurrent neural networks in which the content is rewritten
at each time step, in a LSTM recurrent neural network, the
network is able to decide on saving the current memory
through the introduced gateways. Such neural networks are
particularly useful for processing the sequential data in which
each neuron or processing unit is able to maintain the internal
state or memory to retain information related to the previous
input. This feature is especially important in various functions
of the sequential data, which fits the selected qualities in
DASH system because the consecutive segments correlated to
each other due to the similar throughput or buffer level values
within consecutive request times.

The Recurrent Neural Network Model used in this study
is made up of 3 hidden layers. The first hidden layer has 30
neurons while the second and third layers have 40 neurons,
respectively. Consequently the next output representation is
predicted by using this model. We used ReLu activation
function, which is the most used activation function in the
studies recently, to measure the output for each layer. The
illustration of the designed RNN is shown in Fig. 2.

Fig. 2: The Neural Network Model.

In the training phase, the parameters of the learning model
is finalized. After that, the parameters are started to be used
by the cache application. However, at this stage, some inputs
of the learning model such as throughput and current buffer
level are not known by the controller since the model predicts
future qualities. At this stage, the clients continue to send
internal parameters to the controller. The inputs of the learning
model which are going to be used after it’s trained are

client’s expected throughput, segment ID and client’s buffer
fullness value. The output is the quality of the future segments.
Expected throughput is calculated by dividing the related
segment size to the available bandwidth. Available bandwidth
is measured by the basic network functions within the SDN
controller. Future segment sizes are obtained from the MPD
file. Note that, this cache application can be an application
from a video streaming company. Hence, MPD file can be
provided by the company to the cache application.

B. Cache Implementation and SDN Architecture

In network architecture designed in this study, SDN con-
troller has cache application as the northbound applications
as well as basic network functions providing network related
information for these applications. The illustration of the SDN
based architecture is given in Fig. 3. The clients connected to
SDN domain and the SDN controller architecture are shown
in the figure. Basic network service functions of the controller
are responsible for fundamental management functions of the
network, such as measuring the traffic volume, tracking the
host connections or sending the necessary commands to the
switches. Our proposed cache application is run as one of
the business applications, and at the controller there might
be other business applications from the 3rd parties as well.
The controller communicates with these business application
by using its North-bound Interface (NBI). As also seen from
the figure, the messages carrying the client’s information are
directed to the learning module if the system is in the training
phase and are directed to cache application to be used as inputs
for the learning model within the cache.

Fig. 3: General Illustration of the Proposed Architecture.

If the rate adaptation algorithm is known for the newly
connected client, the cache implementation starts utilizing
the learning model. Note that, the knowledge about the rate



adaptation algorithm is not related to how the algorithm works,
it’s the type of the client’s software such as DASH-JS [17] or
Apple’s HLS. The clients periodically send information about
their buffer levels and measured throughput values as well as
the current segment ID. These information is used as input to
the learning model and the output gives the prediction for the
next segment quality. The segments with the predicted quality
is downloaded from the original server. Hence, this reduces
the cache miss ratio. However, because the time required for
caching the predicted segment equals to the sum of the running
time of learning algorithm and the time for downloading, the
learning model can also be used for the prediction of the
further segments.

IV. PERFORMANCE EVALUATION

A. Dataset Preparation and Simulation Parameters

As the first step, we generated a dataset for training the
learning model. The rate adaptation algorithms are throughput
based, buffer based or hybrid based by using both throughput
and buffer values. If a rate adaptation algorithm selects the
next representation by considering only throughput or buffer
level, its selections are based on one-to-one mapping between
some predetermined range of the related values and the
representation, hence it is easier to predict the selections after
detecting its nature. In order to measure the performance of
the proposed learning model by using a more complicated rate
adaptation algorithm, we select a hybrid based algorithm. For
this purpose, SARA (Segment Aware Rate Adaptation Algo-
rithm), a well-known rate adaptation algorithm proposed in the
literature is selected [18]. SARA uses estimated throughput
and buffer values in order to select the representation. In this
algorithm, the buffer is divided into smaller parts. There are
different selection strategies for each part that follow a rule
set when the buffer reaches the desired range. To predict the
representations that will be selected by this algorithm, the
learning model should infer that it uses both throughput and
buffer values and acts regarding the buffer ranges.

Dataset is generated by running tests with SARA algorithm
and collecting its outputs, i.e. representation selections. It
should be noted that, the higher the number of tests, the
higher the learning accuracy and subsequently getting more
accurate results, so it’s still room for some improvements of
the learning algorithm by producing a better data set. The
tests are conducted on Mininet platform. Mininet is a network
emulator which creates a network of virtual hosts, switches,
controllers, and links. Mininet hosts run standard Linux net-
work software, and the topology consists of OpenFlow enabled
switches which communicates with the SDN controller [20].

In this study, the topology used in the experiments consists
of a cache, an original server, four switches and two clients as
shown in Fig. 4. Since there are more than one available paths
in the topology, the controller selects the streaming path for
the clients by considering the available bandwidth of the paths.
However, the clients always use the same streaming paths. The
reason for that is to provide the learning algorithm to learn the
results when there are competing TCP flows which affect the

selected representations [19]. After joining the network, the
clients connect to the cache and requests a video. Our test
video is “Big-Buck-Bunny” which contains 299 segments and
each segment’s length is 2 seconds. There are 6 representations
available for the same video, whose bitrates are 2500, 3000,
4000, 5000, 6000 and 8000 (Kbps).

In order to generate the dataset, 100 series of tests were
performed with different network conditions, in which avail-
able bandwidths of the links changes dynamically. Hence,
based on the different bandwidth settings, the clients have
different buffer values and request different representations
during streaming, which helps the learning model to train
properly. Link bandwidths are set as in the range of 1 to
8 Mbps and are dynamically changed every 30 seconds in
random manner. For the training phase, all representations are
cached for simplicity. After training with the prepared dataset,
the Recurrent Neural Network is used for the prediction
of the future segments for newly connected clients. In the
next section, we give the performance results of the learning
algorithm when it is used for prediction.

Fig. 4: Network Topology.

B. Performance Evaluation and Experimental Results

In order to measure the prediction performance of the
learning algorithm, we run the algorithm for predicting seg-
ments selection of the newly connected clients. In this first
set of tests, we measure the accuracy of the predictions of
the algorithm. In addition to these measurements, to present
the advantages of the representation selection for caching, we
present the performance results in terms of client’s experience
when the proposed learning model used for caching.

In the first set of tests, after clients connect to the network,
they periodically send their buffer values, measured through-
put, segment ID and segment bitrate. When the controller
receives these parameters from a client, it runs the learning
algorithm to estimate the future segment for that client. All
tests whose results are given in this section are conducted five
times and the results are averaged.

According to the first stage of the tests, we compared
the predictions of the learning algorithm and the client’s



selections. The learning algorithm is used for the predicting of
the representation selection for the next (x+ 1)st, (x+ 2)nd,
(x + 3)rd, (x + 4)th and (x + 5)th segments after a client
sends the information related to its xth segment selection.
The predictions were compared with the client’s representation
selections for the segments from (x+ 1)st to (x+ 5)th. The
results are given in Fig. 5 and Fig. 6. We provide two different
graphs for the first and the second client because even if
the clients share the same streaming paths, their individual
observation may differ due to the effects of TCP congestion
algorithm. Hence, we present the prediction accuracy in order
to show the prediction performance for comparing it to the
selection of the clients having different partial knowledge of
the same network conditions. In the figure, (x+n)th prediction
refers to the prediction of (x + n)th segment when the
parameters related to xth segment is provided. The differences
refer to the difference between the representation predicted by
the learning algorithm and the representation requested by the
client. When we examine the accuracy of the predictions, we
observe that the prediction for the next segment and for the
next 5th segment is 70% and 65%, respectively.

In addition to these graphs, we also give the comparison of
the selecting representations as a function time for a specific
test. In Fig. 7, the compared values of predicted and real
values for representation selection are shown for the next
five segments. As it can be seen from the figure, in most
cases, very accurate estimates have been made, but sometimes
the predictions are quite different from the original requested
representations. The first reason of this is that the future
network conditions are not available in the dataset and the
model has to estimate the future conditions which could
be sometimes far from the expected conditions. The second
reason is the sudden changes in bandwidth and sudden buffer
level changes on the client’s side. Because buffer level value is
an input of the learning model and current buffer level values
are used for the prediction of future representations, it leads
to wrong predictions.

Fig. 5: The Prediction Accuracy Distribution of the Learning
Model for Client 1.

After observing the prediction accuracy of the learning
algorithm, in order to see its effects on the QoE, we run

Fig. 6: The Prediction Accuracy Distribution of the Learning
Model for Client 2.

additional tests on Mininet. In these tests, the cache prefetches
the representations based on the output of the algorithm. Ac-
cording to the observation on prediction accuracy, we consider
the optimal approach as caching the predicted representations
as well as next higher and next lower quality representations.
Therefore, the cache only prefetches 3 representations out of
6 representations. This approach provides increase in the hit
ratio compared to the case which only predicted representation
is cached. We consider to cache for the next five segments;
therefore, there will be sufficient amount of time for SDN
controller to collect the clients’ metrics, to run the algorithm
and to prefetch the segments.

For the performance evaluation of the proposed learning
based caching approach, we also implemented three caching
strategies and compared the results. Since we focus on which
representation to cache in this study, we also implemented
Most Recently Used (MRU) and Most Frequently Used (MFU)
strategies. For the implementation with these strategies, the
clients’ selections are collected periodically. While MRU
caches the recent representations for the next 5 segments,
MFU caches the mostly selected representation for the next
5 segments. In addition to that, we provide results for random
caching.

In Table I, the QoE parameters related to the underrun
metrics are given for the four strategies. In the table, total
underrun represents the averaged underrun values observed
in the clients in one session. While max underrun represents
the max underrun value observed in a client, min underrun
value is the min value of the underrun values observed at
the clients. The test results are obtained under the same
network conditions for four strategies. As it can be seen from
the table, random has the highest total underrun value while
the learning algorithm based caching has the lowest total
underrun values. The obtained results show that, representation
prediction provides the decrease in undderrun. Furthermore,
the learning based approach can provide up to 51% decrease
in the underrun values when compared to random strategy.



(a) First Prediction

(b) Second Prediction

(c) Third Prediction

(d) Fourth Prediction

(e) Fifth Prediction

Fig. 7: Comparison of the predicted and real representation
selections for the next five segments.

TABLE I: Underrun Metrics

Underrun
Metrics Clients Random MFU MRU Learning

Total Underrun Client 1 180S 125S 104S 93S
Client 2 162S 116S 98S 92S

Max Underrun Client 1 12S 11S 15S 14S
Client 2 15S 13S 12S 15S

Min Underrun Client 1 5S 6S 6S 6S
Client 2 6S 5S 7S 6S

Underrun Count Client 1 21 15 11 11
Client 2 19 14 10 10

V. CONCLUSION
The main purpose of this article is to use the facilities

and benefits of learning neural networks in order to predict
the most appropriate video quality representation and con-
sequently increase the QoE. To achieve our goal, we used
deep recurrent neural networks, which is a kind of supervised
learning. In supervised learning, a set of prior information is
required, and we used the SARA algorithm to generate a data
set. These algorithms offer an appropriate representation by
measuring series of criteria such as buffer occupancy, current
bandwidth, and previous segment size. We designed a model
using deep recurrent neural networks and since our data is
sequential data we used LSTM networks. The parameters
of the learning model were tuned by using the tests under
various network circumstances and analyzing the results. The
simulation results show that representation prediction can help
to reduce underruns on the client side.

In the future work, we plan to measure the performance
of the proposed caching approach by also using different
rate adaptation algorithms. We plan to enhance the proposed
learning model by adding future buffer level estimations to
increase the prediction accuracy.

ACKNOWLEDGMENT

This work is funded by the Scientific and Technological Re-
search Council of Turkey (TUBITAK) Electric, Electronic and
Informatics Research Group (EEEAG) under grant 115E449.

REFERENCES

[1] Open Networking Foundation. Software-Defined Networking: The New
Norm for Networks. White paper , Palo Alto, CA, USA, Open Network-
ing Foundation; 2012.

[2] E. Thomas, M.O. van Deventer, T. Stockhammer, A.C. Begen, M.
Champel, O. Oyman, ”Applications and deployments of server and
network assisted DASH (SAND)”, IET Conference Proceedings, 2016.

[3] H. S. Goian, O. Y. Al-Jarrah, S. Muhaidat, Y. Al-Hammadi, P. Yoo and
M. Dianati, ”Popularity-Based Video Caching Techniques for Cache-
Enabled Networks: A Survey,” in IEEE Access, vol. 7, pp. 27699-27719,
2019.

[4] Agarap, A. F. (2018). Deep learning using rectified linear units (relu).
arXiv preprint arXiv:1803.08375.

[5] Jeff Heaton , Deep Learning and Neural Networks , December 31, 2015/
[6] Gadaleta, M., Chiariotti, F., Rossi, M., Zanella, A. (2017). D-DASH:

A deep Q-learning framework for DASH video streaming. IEEE Trans-
actions on Cognitive Communications and Networking, 3(4), 703-718.

[7] Liu, J., Tao, X., Lu, J. (2018). QoE-oriented rate adaptation for DASH
with enhanced deep Q-learning. IEEE Access, 7, 8454-8469.

[8] A. Lekharu, S. Kumar, A. Sur and A. Sarkar, ”A QoE aware LSTM
based bit-rate prediction model for DASH video,” 2018 10th Inter-
national Conference on Communication Systems Networks (COM-
SNETS), Bengaluru, 2018, pp. 392-395.



[9] Ozcan, S. G., Sayit, M. (2019, February). Improving the QoE of DASH
over SDN: A MCDM Method with an Intelligent Approach. In 2019
22nd Conference on Innovation in Clouds, Internet and Networks and
Workshops (ICIN) (pp. 100-105).

[10] Abar, T., Letaifa, A. B., Elasmi, S. (2018, May). Enhancing QoE
based on machine learning and DASH in SDN networks. In 2018
32nd International Conference on Advanced Information Networking
and Applications Workshops (WAINA) (pp. 258-263).

[11] Alzahrani, I. R., Ramzan, N., Katsigiannis, S., Amira, A. (2018). Use
of Machine Learning for Rate Adaptation in MPEG-DASH for Quality
of Experience Improvement. In 5th International Symposium on Data
Mining Applications (pp. 3-11). Springer, Cham.

[12] P. Yang, N. Zhang, S. Zhang, L. Yu, J. Zhang and X. Shen, ”Content
Popularity Prediction Towards Location-Aware Mobile Edge Caching,”
in IEEE Transactions on Multimedia, vol. 21, no. 4, pp. 915-929, April
2019.

[13] P. Juluri and D. Medhi, ”Cache’n DASH: Efficient Caching for DASH”,
ACM Conference on Special Interest Group on Data Communication
(SIGCOMM), NY, USA, 2015, pp. 599–600.

[14] R. Coutinho, F. Chiariotti, D. Zucchetto and A. Zanella, ”Just-in-
time proactive caching for DASH video streaming,” 2018 17th Annual
Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), Capri,
2018, pp. 1-6.

[15] A. Araldo, F. Martignon and D. Rossi, ”Representation selection prob-
lem: Optimizing video delivery through caching,” 2016 IFIP Networking
Conference (IFIP Networking) and Workshops, Vienna, 2016, pp. 323-
331.

[16] W. Shi, Q. Li, C. Wang, G. Shen, W. Li, Y. Wu, and Y. Jiang, ”LEAP:
learning-based smart edge with caching and prefetching for adaptive
video streaming”. In Proceedings of the International Symposium on
Quality of Service (IWQoS), NY, USA, 2019, pp. 1–10.

[17] B. Rainer, S. Lederer, C. Müller and C. Timmerer, ”A seamless Web
integration of adaptive HTTP streaming”, EUSIPCO, 2012.

[18] Juluri, P., Tamarapalli, V., Medhi, D. (2015, June). SARA: Segment
aware rate adaptation algorithm for dynamic adaptive streaming over
HTTP. In 2015 IEEE International Conference on Communication
Workshop (ICCW) (pp. 1765-1770).

[19] C. Cetinkaya, K. Herguner, C. Hellge, M. Sayit, ”Segment-aware dy-
namic routing for DASH flows over software-defined networks”, Int J
Network Mgmt., 30:e2102, 2020.

[20] http://mininet.org


