
Deep Learning Models for Gesture-controlled Drone
Operation

Tahajjat Begum, Israat Haque, and Vlado Keselj
Department of Computer Science, Dalhousie University, Halifax, Canada

Email: tahajjat.begum@dal.ca, israat@dal.ca, vlado@cs.dal.ca

Abstract—Recently Unmanned Aerial Vehicles (UAVs) or
Drones have gained enormous attention in applications like
military, agriculture, industry, etc. One approach of controlling
the operation of a drone is using hand gestures, which enables
designing a low-cost system. However, the accuracy of such a
system highly depends on the gesture recognition models. We can
use a neural network-based gesture recognition model, which is
a widely accepted image recognition scheme. In this work, we
first design three deep neural network-based gesture recognition
models: simple Convolutional Neural Networks (CNN), VGG-16,
and ResNet-50 to uncover the best model for drone control. We
evaluate the proposed models over our generated hand-gesture
images in terms of their accuracy, precision, and complexity.
The analysis reveals that each of the three models has its
advantages and disadvantages while balancing between accuracy
and complexity. For example, Simple CNN offers 92% accuracy on
the testing set validation with the lowest validation loss compared
to VGG-16 and ResNet-50. Thus, users can choose one of the
proposed models to match their drone application.

Index Terms—Convolutional Neural Networks (CNN), Human-
Computer Interaction (HCI), Unmanned Aerial Vehicles (UAV).

I. INTRODUCTION

The usage of drones is not limited to the military use any-
more; instead, the popularity is increasing in different applica-
tions like aerial photography, shipping-and-delivery, entertain-
ment, law enforcement, wildlife monitoring, search-and-rescue,
precision agriculture, disaster management, storm tracking, etc.
[1], [2]. According to the Federal Aviation Administration, the
drone market will reach 17 billion by 2024, and 7 million
drones will reach the sky [3]. Today we are experiencing the
evolution of drone technology from one generation to another.
The next generation of smart drones called Solo is already in
the market to capture visual images [4]. The remote-controlled
drones are gradually transforming into semi or completely
automated devices exploiting the Artificial Intelligence (AI)
based implementation.

Humans usually use hand and body gestures to communi-
cate; e.g., face or hand motion. Thus, gesture recognition can
enable man-machine interactions to realize human-controlled
drone operation. Controlling drones using hand gestures can
give humans an edge to directly interact with the drones and
avoid additional hardware like remote control, which incur
an additional cost. A hand gesture-controlled drone can also
minimize physical labor for humans. As the hand gestures can
be comprised of images or live video streaming, we can design

a system for vision-based drone control that can reduce cost and
avoid any interruptions in the drone operation due to the failure
of hardware like a remote control. Furthermore, the vision-
based drones will be able to provide better data extraction
facility than remote-controlled ones in terms of flexibility and
ease of use [5].

We consider a vision-based gesture recognition system to
control the operation of a drone. In particular, we focus on
applications like navigation, surveillance, and training, where
users do not require a remote control. Instead, they can use
hand gestures to control the drone operation. For instance, DJI
Spark is a hand gesture-controlled drone that helps immature
pilots learn flying [6]. The system consists of an image recog-
nizer to capture gesture images to feed to an image processing
unit. The drone controller reacts to the image processing unit’s
outcome, i.e., the controller controls a drone in real-time
following users’ gestures. Thus, the core component of such
a gesture-controlled system is the image processing unit and
corresponding accuracy.

A deep neural network, such as a convolution neural network
(CNN), is widely recognized as an accurate image classifi-
cation algorithm because of its automatic feature extraction
capability [7]. In particular, CNN learns features by studying
complex hidden layers. It can also effectively reduce the grow-
ing number of parameters without compromising the model
accuracy [8], [9]. Over time researchers have proposed different
CNN architectures for better accuracy, processing time, and
model complexity. We select three architectures varying in the
number of fully connected layers. For example, we consider
a basic CNN architecture with fifteen layers, medium-sized
VGG-16, and a large neural network Resnet-50. We plan to
explore their trade-off in accuracy, complexity, and resource
requirement (CPU, memory, etc.), and based on these recom-
mendations; drone users can choose an appropriate model to
meet their application requirements and available resources.

The research in neural network-based drone control is still
in its infancy except for a couple of schemes. Hu et al. [10]
present a framework for neural network-based drone control,
where different images of hand-gestures are classified using an
eight-layer CNN. We extend their work by incorporating VGG-
16 and Resnet-50 and a 15-layer CNN in the image classifi-
cation module of the drone control system to generalize it for
various applications. In addition to measuring the accuracy, we
consider precision, recall, and F1 value in our model evaluation,978-3-903176-31-7 © 2020 IFIP



which are missing in [10]. Hadri et al. [11] use simple CNN
with varying number of fully connected layers. We offer the
above three different neural networks that users can choose
from depending on their application demand. Thus, we present
an extensive evaluation and comparison of these three models:
simple CNN, VGG-16, and Resnet-50.

We consider drone applications where simple hand gestures
like left, right, stop, and forward can control drones for
navigation, surveillance, or training (e.g., an immature pilot).
However, any required hand gestures can be accommodated
in our drone control system. Sensors from a collector (e.g.,
Leap Motion Controller) can capture the gestures to feed to the
image classification module, a neural network in our design.
We collect around five hundred and fifty hand gestures from
different locations at Halifax (NS, Canada) over twenty days.
Seventeen people participated in the image collection phase
to generate images in eight different light intensity (day and
night) for each gesture. We then use 80% of data to train the
above neural networks and the rest of the data for testing. We
used different people and their images for the validity of the
training and testing dataset to ensure the testing images are
entirely different from the images produced for training.

We measure the accuracy, recall, precision, and F1 values of
the three CNNs. The accuracy of the training dataset for VGG-
16 was 100%; however, the validation accuracy and loss value
are worse compared to simple CNN. Based on precision, recall,
validation accuracy, and lose value, simple CNN offers a better
result. We notice that the validation accuracy of simple CNN
increases with the increasing epoch measure while it decreases
for the other two architectures. Also, the validation loss is the
lowest in simple CNN compared to VGG-16 and Resnet-50. It
offers 92.5% accuracy on the testing dataset. We suspect that
simple CNN offers good accuracy in the case of a small dataset
compared to the other two architectures.

The rest of the paper is organized follows. Section II provides
the necessary background. The following section presents the
related work. We outline our methodology in Section IV, and
the next section presents the evaluation results. We discuss
the future research directions in Section VI following the
concluding remarks.

II. BACKGROUND

This section presents the necessary background on the op-
eration of a vision-based drone and three neural networks that
we deploy in this work.

Drones Fundamentals. A drone is an Unmanned Aerial
Vehicle (UAV) without any onboard pilot. The core component
is its flight controller hardware that consists of various sensors
like accelerometer and gyroscope and firmware to control the
drone movement. The drone control system also requires a
ground base station consisting of essential software to install
and set up the firmware at the flight controller. It also calibrates
different parts of the drone. The base-station and the flight
controller communicate over a standard protocol called Micro
Air Vehicle Communication Protocol (MAVLink) [11].

Fig. 1: An example of a gesture-controlled drone system.

In a vision-based drone control system, we need another
component to capture and process the gestures. There are
two approaches to capture gestures: a front-facing camera
mounting on a drone or camera connected to the ground base-
station. In this study, we consider the second option to capture
gestures. For example, a Leap Motion Controller can capture
the gestures to feed to the learning-based image processing unit.
A trained CNN model then classifies the captured gestures to
send an appropriate control signal from the base station to the
flight controller over MAVLink. The entire vision-based drone
control system is depicted in Fig 1.

Deep Learning Fundamentals. The deep learning method-
ology is mostly based on artificial neural networks that are
computational models inspired by the human brain structure.
The neurons are usually organized into several layers, which
are the core entity of a neural network. Each layer has a
collection of neuron nodes, where the information processing
takes place. The information is transferred from one layer to
another over connecting channels called the weighted channel,
where the neurons include a unique bias. The bias is added to
the weighted sum of inputs reaching the neurons, which later
pass through an activation function to activate neurons and
compute the output value. The output of one layer connects
to the next one until it reaches the second last input layer.
Each neuron can consist of one or more output connections
that process information as signals to the next layer. The weight
and bias are adjusted throughout the network to produce a well-
trained neural network, which can recognize patterns.

The forward propagation of information through a neuron
defines a set of inputs such as x1, x2, x3, . . . , xm in Fig 2,
which has corresponding weights w1 through wm, respectively.
The weighted sum of the input passes through a non-linear
activation function to produce the final output y. Bias allows
the shift of activation function to the left or right regardless
of the input. Sigmoid Function, Hyperbolic Tangent, Rectified
Linear Unit, SoftMax, etc. are the common types of non-



Fig. 2: An example of artificial neuron computation.

linear activation functions in neural networks. Each neuron’s
value is calculated for each hidden layer based on the weight,
bias, and activation function [12]. The activation function intro-
duces non-linearities into the network, allowing approximating
complex functions arbitrarily into decision boundaries, making
the neural network a powerful method to detect classes. The
number and arrangement of layers distinguish neural network
architectures. The neural network is the most efficient method
to process unstructured data, such as images. As CNN is
a widely utilized deep learning method to analyze visual
images, this paper focuses on comparing three different CNN
architecture for gesture recognition, which can be implemented
in the drone control system.

Simonyan et al. proposed Very Deep Convolutional Net-
works for Large-Scale Image Recognition (VGGNet) [13],
which outperformed AlexNet, the previous state-of-the-art. The
authors showed that having more layers with smaller convolu-
tional kernels can increase a neural network’s accuracy. How-
ever, optimizing models with many layers is inherently difficult
because of the vanishing and exploding gradient problems.
The Residual networks (ResNet) [14] address this gradient
problem. As the name suggests, residual functions form the
building block for these models (see Fig.??). Explicitly adding
the identity function to deepereach convolutional layers appears
to be beneficial during training and improve accuracy. ResNet-
50 network achieves this by adding a skip layer and identity
mapping to add up the previous layer to approximate the final
function F (x) + x.

III. RELATED WORK

In this section, we present and discuss existing literature
related to our proposed design.

The deep neural network-based image classification for
drone operation is getting its momentum in academia and in-
dustry. Industries have started implementing drones in their ser-
vices and proposing to build advanced drone support systems.
For instance, Google AI Blog announces a new framework
for hand and finger tracking, which can be used for real-time
hand perception experiments [15]. They also introduce another
solution to train their provided model to recognize images,

poses, or sound [16]. However, these designs are not for drone
applications.

We notice a couple of drone control systems using neural
networks, specifically CNN. Hu and Wang [10] present a state-
of-the-art gesture recognition system to control a UAV. In their
experiment, the authors focus on three deep neural networks
to recognize dynamic hand gestures. They use skeleton data
from a leap motion controller and split the data among training,
validation, and testing. The former dataset is used to train three
neural networks: 2-layer and 5-layer neural networks and an 8-
layer convolution neural network. The evaluation results reveal
that CNN offers the highest accuracy among the three models
that can be used to control a drone in real-time.

Hadri proposes a similar drone control system deploying
VGG-16 as the image classifier [11]. In particular, the system
uses the Single Shot MultiBox Detector (SSD), which is based
on VGG-16, to detect hand gestures. The gestures are grouped
as a single to five fingers and a close wrist. The author
also discusses different hardware and software-based drone
controlling schemes. However, their accuracy is lower than the
one we report in this work. We compare and contrast simple
and complex CNNs to allow users to select an appropriate
model based on their available data volume and resources.

IV. METHODOLOGY

This section first describes the data collection process. Then,
we focus on presenting data preprocessing and decomposition
for model training and testing.

A. Data Collection and Preprocessing

We captured images (dataset) around Halifax, Nova Scotia,
Canada, in indoor and outdoor settings, where both long and
short distance images are considered to increase posture trajec-
tory. We captured total 544 images in different light conditions,
where 17 people participated in the image capturing. The
dataset includes four types of gestures: forward, stop, right, and
left. Each person provided a total of 32 images in 8 different
lights for each gesture. We used both mobile and webcams to
capture images, and saved in JPG format. Then, we rescaled
the collected images of different sizes into 128×128 pixels as
part of the preprocessing. We then split 544 images into 80%
and 20% for training and testing, respectively. In particular, we
use 344, 88, and 68 images as training, testing, and validation,
respectively. Fig 3 represents the sample of forward, stop, right,
and left gesture images. Thus, our CNN models need to detect
four classes of hand gestures.

B. Deep Learning Models

In our experiment, we started with pre-trained VGG-16 and
ResNet-50 models. However, we created simple CNN based
on a basic CNN architecture. We calculated model parameters,
including the number of epochs, optimizer, number of dense
layers, neurons in the dense layers, activation function, and
dropout layer to deal with the model overfitting problem. For
VGG-16, we started with a pre-trained VGG architecture with
18 weight layers as input, one pooling layer, and three dense



Fig. 3: Examples of different gestures.

Fig. 4: ResNet-50 architecture.

layers; however, to fit our problem, we changed the output
layer into four classes: right, left, forward, and stop. In the
original VGG-16 architecture, the width of convolution layers
(the number of channels) is relatively small. It starts from 64
in the first layer and then increases by a factor of 2 after
each max-pooling layer until it reaches 512. We followed the
same procedure for ResNet-50 (see Fig.4), i.e., we used a pre-
trained ResNet model and kept the same number of input layers
while changed the output layers based on our classification
requirement.

C. Training and Testing

We did not transfer images into gray-scale instead used
the color ones. After the preprocessing step, which was done
using Keras library, the training data is used to build different
CNN models. In simple CNN, the 128 × 128 dimension was
set as width and height and used Convo2d model. We used
ReLu function as an activation function for hidden layers and
the Soft-Max activation function in the final output layer for
multiclass problems. We tested a total of 831780 parameters

during the training of the simple CNN. A similar process has
been followed for the VGG-16 model; however, the default
image size for VGG-16 is set to 224 × 224. VGG-16 is a
published pre-trained model that was trained on the ImageNet,
which showed excellent accuracy result. We simply imported
that model; however, the output layer is modified to fit our
problem, four classes. For the VGG-16 model, a total of 527364
trainable parameters were available to learn within the network.
Adam optimization algorithm was used to optimize the model
and train the deep neural network and used 32 batch sizes
to train the model. Likewise, ResNet-50 used a pre-trained
model built on ImageNet with 128 × 128 weight and height
and 16 batch size, half of the VGG-16 model, and resulted in
34609156 learnable parameters.

All three models used the same activation functions, and
ResNet-50 and VGG-16 use the same optimizer. After training
all three deep neural network models, the accuracy of the model
is tested using the 88 testing sample, which was separated from
the training dataset to ensure the model validity is based on an
unknown dataset. However, before examining the model using
the testing dataset, the validation dataset is used for VGG-16
and ResNet-50 model to reduce the overfitting problem. Testing
the model helped to understand the learning rate or the need
for epochs size adjustment. We used 30 epoch size for Simple
CNN and VGG-16; however, the epoch size for the ResNet-
50 model was adjusted during the experiment for an improved
result. Multiple epochs update the weights of the model as
network biases, and weights are trained to ascertain the final
output layer. The accuracy and validation increased at the end
of epoch training for all the models, which will be discussed
in the next section.

V. EVALUATION

In this section, a complete discussion of three trained models
is presented in terms of accuracy, error, and robustness of each
model.

A. Model Comparison

It is essential to fine-tune weights to reconcile the difference
between the actual and predicted outcomes as weights decide
how quickly the activation function will react. We can adjust
weights using back-propagation to improve the accuracy pre-
diction by calculating the loss function gradient. The validation
and training error are the main two factors to determine the
training time. Model training usually continues until these
two errors start dropping. The increase in the validation error,
however, indicates overfitting. Usually, when validation error
starts to increase, the training needs to be terminated. Another
factor is the number of epochs, which depends on the dataset,
and it controls the number of complete passes of the learning
algorithm through the training dataset. The epochs allow the
learning algorithm to continue looping until it reaches the
minimal model error. In our experiment, the number of epochs
is chosen based on the accuracy and validation loss, which
is 30. However, this hyperparameter can be tested for different



TABLE I: Comparison of the Three Models

Model Simple CNN VGG-16 RestNet50
Training accuracy 0.97 1 0.9389

Training loss 0.119209e-08 0.005770 0.6531
Validation accuracy 0.9250 0.9545 0.8295

Validation loss 0.11921e-08 0.1556 0.7129
Optimizer rmsprop adam adam

TABLE II: Simple CNN Classification Performance.

Precision Recall F1-Score Support
Forward 0.70 0.33 0.29 21

Left 0.29 0.43 0.34 23
Right 0.00 0.00 0.00 22
Stop 0.07 0.05 0.05 22

Avg/Total 0.15 0.20 0.17 88

epochs numbers to compare validation losses for a single model
for a better comparison.

Table I provides the accuracy and loss comparison for the
three models presented in this paper. The results confirm that
Simple CNN offers the lowest training loss, but VGG-16 has
100% or 1.0 accuracy on its training data. In Simple CNN,
the accuracy increases with the increasing epoch measure,
whereas the validation accuracy decreases, which indicates the
model fits the training set better. Furthermore, it has the lowest
validation loss compared to the other two models and offers
92.5% accuracy on the testing dataset. Thus, Simple CNN
best fits to recognize gesture images better than the other two
models in a small dataset like ours.

Furthermore, compared to VGG-15 and ResNet-50, Simple
CNN offers better precision and recall value, presented in
Table III, Table II, and Table IV. Model accuracy represents
the number of accurate predictions; however, model accuracy
is not the right predictor to ensure the validity and reliability
of the model. We need to dive deeper into the confusion matrix
to comprehend other classification matrices. It is very crucial
to predict the number of correct and incorrect predictions. We
calculate precision to calculate the positive predictions of the
model, and recall calculates the model reliability to predict
positive outcomes. The combination of precision and recall is
represented by F1 score, which provides a weighted average
of precision and recall [17]. We can understand the number
of actual occurrences of the class in the specified dataset by
checking the support. Simple CNN has better precision for
forward and stop gestures with an average of 68% error rate
to label a negative instance as positive. Table II presents that
the Simple CNN results in 67% recall value, which means that
in 68% of the cases, Simple CNN can find positive instances
compared to the other two models. Table II also shows that the
left and stop gestures positive instances are identified by the
Simple CNN at the rates of 83% and 95%, respectively.

We also investigated the training and validation accuracy
and loss for all three models, where we observe an upward
accuracy trend at the end of the epoch for both training and
testing data. However, VGG-16 shows the highest accuracy
for both testing and training datasets compared to the other

TABLE III: VGG-16 Classification Performance.

Precision Recall F1-Score Support
Forward 0.16 0.14 0.15 21

Left 0.27 0.26 0.27 23
Right 0.17 0.18 0.17 22
Stop 0.30 0.32 0.31 22

Avg/Total 0.23 0.23 0.23 88

TABLE IV: ResNet-50 Classification Performance.

Precision Recall F1-Score Support
Forward 0.26 0.33 0.45 21

Left 0.58 0.83 0.68 23
Right 0.67 0.55 0.60 22
Stop 0.78 0.67 0.65 22

Avg/Total 0.68 0.67 0.65 88

Fig. 5: Gesture prediction of the three models.

two models. The loss presents a fascinating insight, mainly for
Simple CNN. The loss value for simple CNN is better than
VGG-16 and ResNet-50. These two models have fluctuation
in loss value for both training and testing datasets; however,
simple CNN presents similar and very lower loss value for
training and testing. The validation and accuracy curves can
stipulate epoch closure signs if both training and testing values
start to depart consistently. These accuracy and loss values
also support Simple CNN as a more accurate gesture detection
algorithm in our case.

Fig.5 presents the prediction performance of the three mod-
els, which indicates that all three models can accurately predict
different gestures. In particular, we present the prediction
outcome of left and stop gestures, which are predicted correctly.

B. Model Test in a Simulator

In this experiment, we integrate the trained models in a simu-
lator using the Python Turtle library. The Python Turtle module
provides a drawing window where shapes can be drawn with
simple repetitive moves. Fig.6 presents the simulation process:
shapes are moving in the Turtle simulation environment during
the implementation process. All the four gestures: right, left,
stop, and forward, are identified and labeled by the windows
command prompt and Turtle simulation. We also plan to use
graphical software in this simulator in the future. Finally, we
plan to extend this simulation in a testbed deployment, which
we discuss in the following section.



Fig. 6: Gesture prediction in a simulation environment.

VI. DISCUSSION

In this section, we outline a couple of limitations of our work
and discussion on how to mitigate those in the future research.
Dataset. The current dataset includes around 550 gestures as
we could not collect more because of difficulties reaching out
to more participants. We did not use publicly available dataset
as our goal is to generate a dataset for the target applications
from diverse participants (by gender, age, height, etc.). The
CNN models are usually trained on large datasets, especially
ResNet-50 and VGG-16 models. Thus, we plan to conduct
another data collection cycle to gather thousands of gestures
from a wide range of participants. We will then test these
architectures to see the impact of the size of the dataset on their
performance. Another plan is to explore extensively different
hyperparameters and epochs for the three models as they have
a different number of hidden layers; they may converge to the
optimal solution for different hyperparameters and epochs.
CNN based drone system. We plan to integrate the proposed
gesture recognition model in a simulator and real testbed. For
example, we can consider a system presented in Fig.7. In that
system, a leap motion controller acts as a gesture sensor to
capture hand images. These images then feed to the proposed
CNN based image recognition module. The model outcome
next goes to a Raspberry Pi serving as a ground station. The
entire controlling system can be managed using a Python script.
For example, Olympe by Parrot developer [18] provides a
Python interface to connect and control a drone in a simulator
and testbed, so users can write their own control applications.
We can use a customized Python script to control a drone
(e.g., Parrot AR drone). The drone will have a Raspberry Pi
controller attached to it, which will process all the gesture
commands via WiFi networks. We plan to test the proposed
system with the integrated deep NN based gesture recognition
module.

Fig. 7: A drone control system.

VII. CONCLUSION

In this paper, we have focused on the gesture-controlled
drone operation, where gestures are composed of hand im-
ages. The core of this drone control system is its gesture
recognition component. The accuracy of the recognition system
has a crucial impact on the drone movement. CNN is widely
recognized as an accurate image recognition solution. Thus, we
have implemented and compared the three CNN architectures:
simple CNN, VGG-16, and ResNet-50. We have considered
the most common hand gestures: right, left, forward, and
stop to evaluate the performance of these architectures. The
hand gestures are collected from different participants in a
diverse environment (e.g., indoors, outdoors). We have tested
the trained models over the Turtle simulator to recognize hand
gestures in real-time. The evaluation results have shown that
simple CNN has the best performance. The accuracy of the
training dataset for VGG-16 is 100%, whereas the validation
accuracy and loss value are lower compared to the simple CNN.
We have also proposed a drone controlling system consists of
a leap motion controller, gesture recognition module, and a
Raspberry Pi to control an AR drone, which we envision to
test as part of the future work.

ACKNOWLEDGEMENTS

We would like to thank the anonymous AnServApp review-
ers for their constructive feedback. Also, we would like to
thank Dr. Sageev Oore from Dalhousie University for his useful
comments.

REFERENCES

[1] N. Joshi, “10 stunning applications of drone technology,”
February 27, 2019. [Online]. Available: https://www.allerin.com/blog/
10-stunning-applications-of-drone-technology

[2] D. Joshi, “Drone technology uses and applications for commercial,
industrial and military drones in 2020 and the future,” December
18, 2019. [Online]. Available: https://www.businessinsider.com/
drone-technology-uses-applications

[3] G. Jeremy, “7 reasons why drones are the future of business,” May
05, 2018. [Online]. Available: https://www.inc.com/jeremy-goldman/
7-reasons-why-drones-are-future-of-business.html



[4] F. Stephen, “The next generation 3DR Solo smart drone takes flight,”
September 16, 2016. [Online]. Available: https://www.businessinsider.
com/drone-technology-uses-applications

[5] A. A. A Kumar. Singha, A. Swarupa and D. Singh, “Vision based rail
track extraction and monitoring through drone imagery,” ICT Express,
vol. 5, no. 4, pp. 250–255, December 2019.

[6] F. Jonathan, “7 reasons to choose the DJI spark,” May 20, 2020. [Online].
Available: https://dronerush.com/reasons-to-choose-dji-spark-9807/

[7] P. Mishra, “Why are convolutional neural networks good for image
classification?”

[8] E. AI and V. Alliance, “Vision processing opportunities in drones,”
September 15, 2016. [Online]. Available: https://www.edge-ai-vision.
com/2016/09/vision-processing-opportunities-in-drones/

[9] A. Bonner, “The complete beginner’s guide to deep learning:
Convolutional neural networks and image classification,” February
2, 2019. [Online]. Available: https://towardsdatascience.com/
wtf-is-image-classification-8e78a8235acb

[10] B. Hu and J. Wang, “Deep learning based hand gesture recognition and
uav flight controls,” International Journal of Automation and Computing,
vol. 17, pp. 17–29, 2020.

[11] S. Hadri, “Hand gesture for drone control using deep learning,” 2018.
[12] N. Kang, “Introducing deep learning and neural networks — deep

learning for rookies (1).”
[13] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” in ICLR 2015, 2014.
[14] S. R. Kaiming. He, Xiangyu. Zhang and Jian.Sun, “Deep residual learning

for image recognition,” in The IEEE conference on computer vision and
pattern recognition, 2016.

[15] V. Bazarevsky and F. Zhang, “Google AI blog,” August
19, 2019. [Online]. Available: https://ai.googleblog.com/2019/08/
on-device-real-time-hand-tracking-with.html

[16] Google, “Teachable machine,” 2019. [Online]. Available: https:
//teachablemachine.withgoogle.com/

[17] J. Brownlee, “What is a confusion matrix in machine learning,”
August 15 2020. [Online]. Available: https://machinelearningmastery.
com/confusion-matrix-machine-learning/

[18] P. Developers, “Parrot sdk,” n.d. [Online]. Available: https://developer.
parrot.com/




