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Abstract—Due to the complexity of the network structure and

the high growth of the transmission speed, the measurement

and management of the network are facing serious challenges.

The traditional bottom-up network telemetry methods are no

longer applicable to complex network scenarios. To bridge this

gap, we propose IntStream, an intent-driven streaming network

telemetry framework to allow network operators to measure and

analyze network traffic. However, there are three key challenges

to building an intent-based telemetry system: (1) The diversity

of network data sources. (2) The complexity of the measurement

tasks. (3) The low overhead requirements of the telemetry

system. IntStream introduces a lightweight component to extract

and parse data from various types of data sources to form a

data stream and divides the data stream conversation process

into local and global stages. IntStream provides a set of rich

expressive primitives to support users to write telemetry tasks

based on intent. By performing part of the telemetry task on

the local stage, the transmission overhead of intermediate data

can be effectively reduced. The evaluation results conducted on

a large campus network show that IntStream can support a

wide range of telemetry tasks while reducing the intermediate

data transmission overhead by 99.64% on average.

Index Terms—Network Telemetry, Intent-driven.

I. INTRODUCTION

Nowadays, it is increasingly challenging to make man-
agement decisions to improve the performance, availability,
security, and efficiency for large-scale networks (e.g., enter-
prise, data center) [1]. To better understand the network to
assist management decision-making, there have been growing
interests in network telemetry. According to the definition of
IETF [2], network telemetry acquires and utilizes network
data remotely for network monitoring and operation. It helps
operators gain better network insights and promotes efficient
and automated network management.

Traditionally, network operators use a bottom-up approach
to perform network telemetry. They use specific network
monitoring tools (e.g., NetFlow [3]) to collect network data
and infer the network-wide state based on these data. This
approach will cause the scope of telemetry tasks to be
limited to the underlying data collection tools, and usually
is a highly manual process that requires operators’ expertise.
Hence, network telemetry should be performed in a top-down

manner [1]. The network telemetry system should provide a
query interface at the upper layer, which provides a set of

primitives to support the operator to define telemetry tasks
based on intent. However, building such an intent-driven
network telemetry system faces several key challenges as
follows:

• Challenge 1: Flexibility. The telemetry system needs
to obtain data from various data sources (e.g., hosts,
switches) in the network. Each type of data source has
its own data extraction and parsing methods. How to
be compatible with various types of data sources in a
flexible way and shielding these details from operators
is challenging. Existing telemetry systems usually obtain
network data from specific data sources and lack a
flexible mechanism to be compatible with other types
of data sources [4]–[10].

• Challenge 2: Expressiveness. For operators to write
telemetry tasks based on intent, the system must provide
a set of primitives with rich expressiveness. Existing
telemetry systems either only provide some domain-
specific primitives to support limited telemetry tasks [8]–
[10], or provide a set of primitives similar to stream
processing (e.g., map, filter) to support some general
stream processing operations [4]–[6]. But few telemetry
systems can support custom processing logic.

• Challenge 3: Scalability. Since telemetry tasks usually
need to be performed in a large network, existing
telemetry systems generally require a global analysis
server (or cluster) [4], [8], [9], [11], [12]. As the scale
of telemetry tasks continues to grow, the transmission
overhead of intermediate data and the load of the global
analysis server will become the bottleneck of the entire
telemetry system.

In this work, we propose IntStream, an intent-driven
streaming network telemetry framework, which addresses all
of the above challenges. IntStream divides the telemetry task
processing into three stages: (1) a lightweight component,
named driver (detailed in Section IV-B), is used in the data
stream extraction stage to be compatible with various types of
data sources in a flexible way. (2) In the local stream process-
ing stage, part of the telemetry task is executed at various data
sources in the network to generate local measurement results.
(3) In the global stream processing stage, local measurement
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Fig. 1. Various types of data sources.

results are gathered and performed global analysis to generate
the final results. As part of the telemetry tasks are completed
locally at the data source, the transmission overhead of
intermediate data and the load of the global analysis server
can be effectively reduced. In addition, IntStream provides a
unified and layered programming model (detailed in Section
III) in both the local and global processing stages, providing
operators with a set of primitives with rich expressiveness to
write a series of complex network telemetry tasks based on
intent. The contributions of this paper are as follows:

• We propose a set of unified and layered network teleme-
try primitives. Operators can use these primitives with
different expressiveness to define the processing logic
in both the local and global processing stages based on
their intentions.

• We design and implement a network telemetry frame-
work called IntStream, which can be compatible with
different types of data sources in a flexible way. And
we used 10 queries to prove that IntStream has strong
expressiveness and scalability. The evaluation results
show that IntStream can reduce the data transmitted to
the global analysis server by 99.64% on average.

• We implement the prototype of IntStream [13] with 5173
lines of code (LoC) and deploy it in our campus network
for over 6 months.

II. MOTIVATION

As presented in Fig. 1, when network operators perform
network-wide telemetry tasks, they may need to obtain data
from various types of data sources in the network. For
example, network operators may need to analyze data from
the hosts, such as online network interface card (NIC) traffic
or PCAP files. They may also need to analyze switch-side
traffic (e.g., mirrored switch traffic). Besides, operators may
send some active probing packets (e.g., ping or traceroute)
and collect these results for further analysis. Different data
sources have different ways to extract and parse data. So
IntStream should introduce a lightweight component to be
compatible with these various data sources and be able to
shield these processing details from the operator. At the same
time, in order to reduce the transmission overhead, more
analysis and processing should be done locally after the data
is extracted from the data source. In addition, to perform
network-wide telemetry, there should be a global analysis

Fig. 2. Data stream processing stage.

server (or cluster) that gathers the local measurement results
from the network and performs global analysis.

Hence, the key idea of IntStream is to divide the data
stream processing into 3 stages, as presented in Fig. 2:
Data stream extraction. At this stage, the data streams need
to be extracted from different types of data sources. IntStream
introduces a lightweight component called driver. As shown
in Fig. 2, each type of data source has a specific matching
driver to extract the data stream from it.
Local stream processing. The data stream enters the local
stream processing stage after extraction. At this stage, the
data stream will be processed by several transformations
(processing logic defined by the operator) to form the local
measurement result.
Global stream processing. Local measurement results at
different locations in the network will be transmitted to
the global analysis server (or cluster). Similar to the local
stream processing stage, it is further processed by several
transformations to generate the final measurement result.

The driver is used to extract data streams from different
types of data sources, which is imperceptible to operators
(addressing Challenge 1). After extraction, the data stream
has a similar format. IntStream can provide a unified set
of primitives in both the local and global stages to support
operators to write telemetry tasks based on intent (addressing
Challenge 2). And by performing the telemetry task locally as
much as possible, the transmission overhead of intermediate
results and the load of the global analysis server can be
effectively reduced (addressing Challenge 3).

III. UNIFIED AND LAYERED PROGRAMMING MODEL

In this section, we will introduce the programming model
of IntStream, which provides the primitives that can support
operator to define the processing logic of telemetry tasks.

A. Overview

Unified. According to the data stream processing model
(Section II), the telemetry task will be executed in two stages:
local stream processing and global stream processing. Since
the global stream processor needs to aggregate the local
measurement results from various locations in the network.
In order to meet higher throughput and lower processing
delay, IntStream utilizes the distributed streaming framework,
Apache Flink [14], as the global stream processor. Although
the underlying execution of these two stages is different,
IntStream provides a unified programming model that allows
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TABLE I
SUMMARY OF PRIMITIVES

Type Primitive Description
Expressive-

ness

Core

Primitives

key()
Set the aggregation

granularity of the stream Strong
window() Set the time window

transform() Custom processing logic

Streaming

Primitives

filter()
Filter out the items that

meet the given conditions Medium
map()

Convert one item into
another item

flatMap()
Convert one item into

0 or more items

High-level

Primitives

sketch()
API related to

the sketch data structure Weak
bloomFilter()

API related to
the bloom filter structure

sendProbe()
API related to

performing active probing

operators to use the same primitives to define the processing
logic in both stages.
Layered. As shown in Table I, IntStream provides a set of
primitives with different expressiveness. When operators need
to write some highly customized telemetry tasks, they can use
the underlying core primitives, which can customize the pro-
cessing logic in the transform() primitive. The core primitives
have the highest expressiveness, but operators need to write
relatively more code. On the contrary, if they just want to
write some common telemetry tasks, they can use high-level
primitives to reduce the amount of code. But correspondingly,
the expressiveness of the high-level primitives is relatively
low. In short, operators can flexibly combine different levels
of primitives to write the telemetry tasks according to their
intentions.

B. IntStream Primitives

Specifically, as shown in Table I, the primitives of
IntStream have three levels:
Core Primitives. The underlying core primitives provide
a set of primitives commonly used in network telemetry
tasks. window() specifies the length of time window (e.g.,
10 seconds) to divide the data stream. key() specifies the ag-
gregate granularity of the traffic. Network traffic is generally
aggregated at any granularity of 5-tuples (e.g., source IP and
destination IP). But IntStream can aggregate the traffic based
on any fields in the data stream, such as packet length, TCP
flags, etc. After the data is aggregated, operators can freely
define the processing logic in the transform() primitive.
Streaming Primitives. Since network telemetry tasks are
similar to stream processing tasks, some network telemetry
systems (e.g., Sonata [4] and MAFIA [5]) provide primitives
similar to those commonly used in stream processing frame-
works (e.g., Flink [14] and Spark Streaming [15]). IntStream
also provides streaming primitives. For example, map() can
convert each item in the data stream into another item, and
the logic of how to perform the conversion is defined by the
operator.

1 s t r e a m . f i l t e r ( pkt�>p k t . g e t ( TCP . f l a g s ) . e q u a l s ( S ) )
2 . key ( p k t �> p k t . g e t ( IP . d s t ) )
3 . window ( 1 0 )
4 . transform ( ( e l emen t s , o u t ) �> {
5 c n t = 0
6 f o r ( p k t : e l e m e n t s )
7 c n t ++
8 i f ( c n t > t h r e s h o l d )
9 o u t . c o l l e c t ( p k t . g e t ( IP . d s t ) )

10 } )

. Query 1: Detect Newly Opened TCP Connections.

High-level Primitives. IntStream also provides high-level
primitives to provide data structures and operations that are
commonly used in network telemetry tasks. Laffranchini
et al. [5] summarized the common network measurement
tasks and found that sketch [16] and bloom filter [17] are
two commonly used data structures. Therefore, IntStream
provides operations related to these two data structures, such
as update and query operations in sketch. When operators
are writing network telemetry tasks, they can directly use the
relevant primitives of these data structures in the transform()

primitives. In addition, IntStream also provides primitives to
perform active probing. Operators can use sendProbe() in the
local stream processing stage to make the driver send out the
corresponding active probing packet (e.g., ping) and return
the results.

Query 1 gives an example of a simple telemetry task
which detects hosts that have too many recently opened
TCP connections. Query 1 first uses filter() to filter out
all SYN packets (line 1). It then uses key() to specify the
aggregation granularity of the stream as the destination IP and
specifies the time window of the stream as 10 seconds through
window() (line 2-3). At this point, the data stream will be
divided by a 10-second window and all items with the same
destination IP will be aggregated to apply the transform()

primitive. Note that the transform() primitive contains two
parameters: elements includes all aggregated items in the
window and out is the result data stream. The result can
be collected through the out.collect() operation. Therefore,
Query 1 counts the total number of all SYN packets (line
5-7). If it exceeds the set threshold, the destination IP will
be output as the result (line 8-10).

IV. INTSTREAM DESIGN

A. Overview

Fig. 3 presents the architecture of IntStream. The telemetry
tasks (or queries) written with IntStream primitives will be
submitted to Runtime. It then sends the subtasks to the
corresponding drivers and Global Stream Processor (GSP).
After the driver receives the telemetry task, it will extract
and parse the required data stream from the corresponding
data source and send it to the Local Stream Processor (LSP).
LSP performs local telemetry tasks in the local processing
stage and generates local measurement results. GSP aggre-
gates these local measurement results (through Apache Kafka
[18]) and performs global telemetry tasks to generate the
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Fig. 3. IntStream architecture.

Fig. 4. Driver.

final results. Specifically, IntStream has the following main
components:
Runtime. As the control component of the entire IntStream,
Runtime is mainly responsible for task scheduling and the
collection and display of the running status of the system.
Operators can submit tasks through Runtime’s web UI and
view the execution of tasks. Runtime is also responsible for
parsing the telemetry tasks and sending the subtasks to the
corresponding drivers and GSP. Note that if the telemetry task
can be completed in the local processing stage, there is no
need for GSP to participate.
Driver (Section IV-B). The core function of the driver is to
extract, parse and generate data streams from the data source.
As mentioned in Section II, by developing different types of
drivers, IntStream can be compatible with different types of
data sources.
Local Stream Processor (Section IV-C). The LSP receives
the data stream extracted from the driver and executes the
processing logic defined by the operator in the local process-
ing stage.
Global Stream Processor. By aggregating the local measure-
ment results generated by the LSP, the GSP further executes
the processing logic defined by the operator in the global
processing stage. Similar to the existing telemetry system [4],
[12], in order to meet higher throughput and lower processing
delay, IntStream’s GSP is implemented based on the existing
big data framework Flink [14]. We will not introduce the
detailed design of GSP in this section.

B. Driver

In general, there are various types of measurement data
sources within the network (e.g., online NIC traffic and
mirrored switch traffic). In order to be compatible with these
different types of data sources in a flexible way, IntStream
develops a lightweight component, named as driver, which is
responsible for extracting, parsing, and filtering the original
data from it, forming a data stream and sending it to the
LSP for further processing. In addition, if active probing is
required in the task, the driver will send the active probing
packets and return the result to the LSP.

Specifically, in addition to some general operations (e.g.,
interacting with Runtime), the driver has the following three
“pluggable” functional modules (presented in Fig. 4). Op-
erators can implement their own modules as needed. For
example, when operators need IntStream to be compatible
with a new type of data source, they only need to implement
a new data stream extraction module.
Data stream extraction. The driver extracts data from the
original measurement data source and parses the required
data fields. Taking the host’s online NIC traffic as an ex-
ample, the driver can use some packet capture libraries
(e.g., libpcap [19]) to obtain the traffic data. IntStream
implements a general data packet parsing module, which
can parse common network protocols (e.g., the Ethernet
layer, IP layer and TCP / UDP layer) from the original data
packet content. Therefore, any driver can obtain the required
fields (e.g., IP.src and TCP.flags) from the original packet
content through this parsing module. In short, what is finally
transmitted to the LSP can be regarded as a data stream
where each data item contains several key-value pairs, e.g.,
htimestamp = t, IP.src = x, IP.dst = yi.
Filtering. Generally, LSP does not need all the original
data streams extracted by the driver. Operators usually use
the filter() primitive first when writing telemetry tasks. For
example, for Query 1 (in section III-B), the operator first
filters out all SYN packets. If all data items are transmitted to
the LSP and then performed the filter operation, it will cause
excessive transmission and processing overhead. Hence, when
the driver receives the telemetry task from Runtime, it will
automatically perform the filtering operation defined by the
operator in the first step (if any) after data extraction and
parsing. So operators do not need to modify the driver code
specifically to implement the filtering operation, but only need
to define the filtering logic when writing the telemetry task.
Active probing. When operators need to perform an active
probing task (e.g., obtaining the RTT of two hosts in the
network), they can use the sendProbe() in the high-level
primitives during the local processing stage to make the
driver send out the customized probing packets. Specifically,
taking the RTT of two hosts as an example, the operator
can send 10 ping packets to a destination host and get
the average RTT by calling RTT = sendProbe(type =
PING, dst = 1.2.3.4, num = 10). In addition to the active
probing methods supported by IntStream, operators can also
implement their own active probing primitives and use them

2021 17th International Conference on Network and Service Management (CNSM)

476



Fig. 5. Local Stream Processor.

under the IntStream framework.

C. Local Stream Processor

The LSP is usually on the same server as the measurement
data source. If it needs to obtain the switch traffic, it will be
deployed on a server close to the switch. It obtains the parsed
and filtered data stream through the driver and performs cus-
tomized data processing logic in the local processing stage.
LSP is the core component of IntStream. By performing the
telemetry task locally as much as possible, the transmission
overhead of intermediate data and the workload of GSP can
be effectively reduced.

As presented in Fig. 2, the data undergoes several transfor-
mations in the local processing stage, and each transformation
converts a certain data type into another. Note that IntStream
does not limit the scope of data types. It can be transformed
into any user-defined data type during data processing to
achieve rich expressiveness. Specifically, as presented in
Fig. 5, LSP is composed of two main components: pipeline
(responsible for data transmission) and transformer (respon-
sible for performing data transformation):
Pipeline. The pipeline is a blocking first-in-first-out queue,
which is responsible for transmitting data items between
transformers. Each pipeline is assigned a data type, and all
data items in the data stream transmitted in it are of this data
type. As presented in Fig. 5, the data streams transmitted
by the two pipelines at both ends of the transformer are
of different types. Note that when the queue is empty, the
transformer that reads data to it will fall into waiting. On the
contrary, when the data in the pipeline exceeds the queue size,
the transformer that outputs data to it will fall into waiting.
Transformer. To perform stream computing, each item in the
data stream should enter the next transformer for calculation
immediately after it is calculated in a certain transformer.
Therefore, each transformer runs as an independent thread,
which continuously obtains data from the input pipeline,
performs corresponding data transformation and then outputs
the result to the output pipeline. Each transformer always
converts one type of data stream into another type of data
stream. Fig. 5 presents the data processing of the transformer
under the execution of the core primitives. First, it will divide
the data stream according to the time specified by window().
All data items in the same window will be divided according
to the key definition method specified by key(), and all data
items with the same key value will be aggregated together.
For example, key(IP.src+ IP.dst) combines the source IP
and the destination IP as the key value. Then in each window,

1 d r i v e r s = [ d r i v e r �1, d r i v e r �2, d r i v e r �3]
2 / / l o c a l s t r e a m p r o c e s s i n g s t a g e
3 f o r ( d r i v e r : d r i v e r s ) {
4 s t r e a m =env . g e t ( d r i v e r ) . g e t L o c a l S t r e a m ( )
5 . f i l t e r ( p k t �> checkIpRange ( p k t . g e t ( IP . d s t

) ) )
6 . key ( p k t �> p k t . g e t ( IP . s r c ) )
7 . window ( 1 0 )
8 . transform ( ( e l emen t s , o u t ) �> {
9 c n t = 0

10 f o r ( p k t : e l e m e n t s )
11 c n t ++
12 o u t . c o l l e c t ( window . t ime , p k t . g e t ( IP . s r c

) , c n t )
13 } )
14 . sendToKafka ( t o p i c = s k e t c h )
15 }
16 / / g l o b a l s t r e a m p r o c e s s i n g s t a g e
17 s t r e a m 2 =env . g e t G l o b a l S t r e a m ( t o p i c = s k e t c h )
18 . window ( 1 0 )
19 . transform ( ( e l emen t s , o u t ) �> {
20 s = countMinSketch ( )
21 f o r ( e : e l e m e n t s )
22 s . update ( e [ 1 ] , e [ 2 ] )
23 o u t . c o l l e c t ( s )
24 } )

. Query 2: Periodic sketch generation.

all data items with the same source IP and destination IP will
be aggregated. For all these aggregated items, transform() will
be performed to transform the data and output the result to
the next pipeline.

V. CASE STUDY

In this section, we will show how operators write telemetry
tasks under IntStream based on a complete example (Query
2). In this example, operators need to obtain the sketch data
structure by the traffic generated from several measurement
collection points in the campus network. Operators can
further perform some anomaly detection tasks (e.g., heavy
hitters) based on these sketches.

First, the operator needs to specify which driver to obtain
data from (line 1). Note that the driver needs to be registered
when joining IntStream so that the Runtime can interact
with it. Since the operations performed by each LSP in the
local processing stage are the same, the processing logic
can be defined in a loop. Specifically, Query 2 uses filter()

to limit the destination IP to the required network segment
range (line 5). It sets the source IP as the key (line 6) and
specifies the time window as 10 seconds (line 7). Query 2
performs the summation in transform() and sends the result
to a certain topic in Kafka [18] (line 8 to 15). In the global
processing stage, the GSP first obtains the local measurement
results from Kafka (line 17) and uses window() to specify
the time window as 10 seconds (line 18) and generates
the sketch data structure in each window in transform().
Specifically, the operator first initializes a count-min sketch
using countMinSketch() (high-level primitives) and then uses
update() to update the sketch for each data item in the window
(line 19-24).
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TABLE II
THE FLEXIBILITY OF DRIVER.

Function

Module
Custom Function Description LoC

Data stream

Extraction

PCAP extraction Extract data
from PCAP file 113

online traffic
extraction

Extract data
from NIC with

packet capture library
154

mirrored switch
traffic extraction

Extract data
from mirrored switch

traffic captured by
Stenographer [20]

249

Filtering
5-tuple filter Support setting filter

conditions on 5-tuples 135

network segment
filter

Support setting filter
conditions on the range

of IP address
13

Active

Probing

ping Perform ping probing
to obtain RTT 95

traceroute
Perform traceroute

probing to obtain the
routing information

166

VI. EVALUATION

In this section, we will evaluate IntStream from three
aspects: flexibility, expressiveness and scalability.

A. Flexibility

The driver is designed as a lightweight component. In
addition to some common operations (e.g., interacting with
Runtime), it has three main functional modules that can be
customized: data stream extraction, custom filter, and active
probing. When operators need to perform some customized
operations, they can selectively implement these functions.

Table II lists some of the driver functions that IntStream has
currently implemented, which proves the strong flexibility of
IntStream. In terms of data stream extraction, it can be seen
that IntStream is compatible with common data sources in
campus networks, such as online host traffic and mirrored
switch traffic. Note that IntStream can also be compatible
with non-traffic data (e.g., log files). In that case, operators
need to implement their own data extraction and parsing logic
to form a data stream containing the key-value pairs. In terms
of custom filters, IntStream provides a universal 5-tuple filter,
which can support common filtering operations on 5-tuples
of data packets. If operators perform the filtering operation
first in the telemetry task, IntStream will put it in the driver
for execution to reduce the data transmitted to the LSP. In
this way, the operator does not need to modify the code
of driver specifically. In terms of active probing, IntStream
currently provides two common active probing methods (ping
and traceroute), which operators can call directly during the
local stream processing stage. Operators can also implement
their own active probing methods and execute them in the
task.

B. Expressiveness

As presented in Table III, we used 10 telemetry tasks to
demonstrate the expressiveness of IntStream. It can be seen

that by combining several primitives, operators can define the
processing logic of the entire telemetry task, including data
extraction, parsing, filtering, processing, transmission, and
result storage. Due to space constraints, please refer to [13]
for the details of these 10 telemetry tasks. In addition, we also
selected three typical telemetry systems and compared them
with IntStream. MAFIA [5] performs the telemetry tasks in
the programmable data plane, so the supported operations are
limited. Sonata [4] makes comprehensive use of CPU and
ASIC, but its primitives cannot support complex processing
logic. dShark [11] uses CPU to process and analyze traffic
like us and supports custom processing logic, but it only
supports passive telemetry tasks.

However, the primitives provided by IntStream is very ex-
pressive, which can support complex custom processing logic.
As can be seen from Table III, all telemetry tasks use core
primitives (key(), window() and transform()). This is because
the core primitives of IntStream are very consistent with the
basic data processing logic of network telemetry. That is, the
operator will first define the aggregation granularity of the
data in time and space, and then define the processing logic on
the aggregated data. At the same time, operators can also use
streaming primitives to perform common stream calculations,
or use common measurement data structures (e.g., sketch and
bloom filter) and operations (e.g., active probing). In short,
operators can write a series of complex telemetry tasks based
on their intent.

C. Scalability

IntStream performs telemetry tasks by LSP and GSP.
The underlying execution engine of GSP is Flink, a highly
scalable stream processing engine. In addition, the design phi-
losophy of IntStream is to perform the telemetry task locally
as much as possible to reduce the transmission overhead of
intermediate results and the load of GSP. Hence, we focus
on evaluating the scalability of LSP.
Setup. We use the real traffic from our campus network
(which has about 65 million hosts and 3.5 million switches)
as the measurement data source and use Query 1 (Q1) and
Query 2 (Q2) as the telemetry tasks. The server that LSP
runs is equipped with Intel(R) Xeon(R) E5-2650 v2 CPU
(2.60GHz) and 64GB memory. Specifically, we will evaluate
the scalability of LSP from the following three aspects:

1) Data reduction: The processing flow of Q1 and Q2
are similar. First, a filter() is used to filter the original data
stream and then transform() is used for custom processing.
Therefore, we separately count the amount of data processed
in these three stages (the amount of original data, the amount
of data after filter(), and the amount of data after transform())
in each epoch (10 seconds). Fig. 6 and Fig. 7 present
the data reduction of Q1 and Q2. It can be seen that the
amount of data can be effectively reduced after filtering. Since
IntStream optimizes the filtering operation to the driver, it can
effectively reduce the amount of data transmitted to the LSP.
At the same time, the amount of data after transform() will be
greatly reduced. For Q1, the LSP outputs an average of 6223
items per epoch, which is 0.9% of the original data. For Q2,
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TABLE III
SUMMARY OF APPLICATIONS.

# Application Description Primitives used in

IntStream

MAFIA

[5]

Sonata

[4]

dShark

[11]

Int-

Stream

1 TCP new conn
(Query 1) [21]

Hosts for which the number of newly
opened TCP connections exceeds threshold.

filter(), key(), window(),

transform()

! ! ! !

2 Sketch generation
(Query 2) [16]

Generate periodic sketches of the traffic
within a certain network segment.

filter(), key(), window(),

transform(), sketch()

! # ! !

3 Port scan [22] Hosts that send traffic over more than
threshold destination ports.

filter(), key(), window(),

transform()

! ! ! !

4 Super spreader [23] Hosts that contact more than threshold
unique destinations.

key(), window(),

transform()

! ! ! !

5 TCP retransmission
[24]

Find out frequently retransmitted TCP con-
nections and get the RTT of them.

filter(), key(), window(),

transform(), flatMap(),

sendPing()

# # # !

6 SYN flood [21] Hosts for which the number of half-open
TCP connections exceeds threshold.

filter(), key(), window(),

transform()

! ! ! !

7 RTT measurement Obtain the periodic RTT between two hosts. filter(), window(),

flatMap(), sendPing()

# # # !

8 Two-phase heavy hit-
ter [5]

Two-phase heavy hitter detection based on
sketch and bloom filter.

window(), transform(),

sketch(), bloomFilter()

! # ! !

9 TCP incomplete flows
[21]

Hosts for which the number of incomplete
TCP connections exceeds threshold.

filter(), key(), window(),

transform()

! ! ! !

10 DDoS Detection [25] DDoS detection based on sketch and
hellinger distance

key(), window(),

transform(), sketch()

# # ! !

Fig. 6. Data reduction of Q1. Fig. 7. Data reduction of Q2. Fig. 8. CPU utilization of Q1 and Q2.

Fig. 9. Memory usage of Q1 and Q2. Fig. 10. CPU utilization under multiple tasks. Fig. 11. Memory usage under multiple tasks.

the LSP outputs an average of 106 items per epoch, which
is 0.018% of the original data. Although the specific ratio of
data reduction is related to telemetry tasks, for all telemetry
tasks in Table III, IntStream can reduce the data sent to GSP
by 99.64% on average. Hence, LSP can greatly reduce the
transmission consumption of intermediate data and the load
of GSP, which improves the scalability of IntStream.

2) Resource consumption (single task): Since the LSP is
usually deployed on the same host as the measurement data
source, when the LSP performs the telemetry task, it should
take up fewer resources (e.g., CPU and Memory) to avoid a
significant impact on the collection of the measurement data
or other programs. Therefore, we recorded the changes of the
CPU utilization and memory usage during the execution of

Q1 and Q2, as shown in Fig. 8 and Fig. 9. It can be seen
that the CPU utilization rate of LSP is low when performing
telemetry tasks, which is within 3% to 5% on average. In
a few cases, the CPU utilization rate may exceed 10%. In
addition, the memory consumed by the LSP is generally
about 5GB, which is used for internal data transmission and
processing. In general, LSP occupies fewer system resources
when performing telemetry tasks and will not cause a signif-
icant impact on other tasks on the host.

3) Resource consumption (multiple tasks): If the ad-
ministrator performs multiple telemetry tasks simultaneously,
there may be several tasks running on the same LSP. There-
fore, we evaluated the resource consumption by the LSP
when it performs multiple tasks at the same time. Fig. 10

2021 17th International Conference on Network and Service Management (CNSM)

479



TABLE IV
COMPARISON WITH OTHER METHODS.

Telemetry System
Flexibility Expressiveness Scalability

Compatible to vari-
ous data source

Support active prob-
ing

Expressiveness of
the primitives

Support network-
wide telemetry

Support local data
processing

Trumpet [9] ! # Domain-specific ! !

NetQRE [21] ! # Streaming ! !

Sonata [4] # # Streaming # !

Newton [7] # # Streaming ! !

Everflow [8] ! ! Domain-specific ! #

dShark [11] # # Generic ! #

IntStream ! ! Generic ! !

presents the CPU utilization of LSP under multiple tasks.
It can be seen that as the number of tasks increases (less
than 4), the average CPU utilization (ACU) of each task
basically stabilizes at 3.5%. When the number of tasks is 4, it
decreases to 2.5%. The total average CPU utilization (TCU)
of the LSP increases as the number of tasks increases. Fig. 11
presents the memory usage of LSP under multiple tasks. It
can be seen that as the number of tasks increases, the average
memory usage (AMU) of each task is basically stable at about
5GB, and the total average memory usage (TMU) of the LSP
increases as the number of tasks increases. In general, when
the number of parallel tasks is less than 4, its performance is
relatively stable. Hence, in practice, we can also control the
number of parallel tasks of LSP within 4.

VII. DISCUSSION AND LIMITATION

At present, many telemetry systems are based on pro-
grammable switches. Thanks to ASICs, they can obtain the
ability to process the data packets at a high speed. However,
due to the limited functions provided by the programmable
switch, it cannot provide operators with rich expressive
primitives. To address the challenges mentioned in Section
I, IntStream puts the LSP on the CPU to achieve strong
flexibility and expressiveness.

Although IntStream cannot process the data packets at a
high speed like ASICs, IntStream still makes many efforts to
improve the scalability (e.g., data reduction at LSP). Even if
each packet needs to be processed, usually only certain fields
in the packet are needed for calculation. So in most cases,
IntStream can achieve performance improvement through
data reduction in the local stage. If IntStream needs to be
compatible with some data sources with high throughput
(e.g., switch), operators can use load balancing and deploy
multiple drivers and LSPs. For example, we used 16 drivers
and LSPs to process our campus traffic (up to 40 Gbps).

In short, compared to those telemetry systems based on
programmable switches, IntStream has extremely strong flex-
ibility and expressiveness, ensuring that administrators can
write a series of complex telemetry tasks based on their
intentions. Although IntStream cannot rely on a single point
to process the data packets at a very high speed, it can also
achieve this goal by adding hardware.

VIII. RELATED WORK

Network telemetry. According to the main execution lo-
cation of the telemetry task, the existing telemetry systems
can be divided into: (1) End-host. These works [9], [10],
[21], [26] use the resources and programmability of the end-
host to perform network telemetry tasks. They use the CPU
to achieve strong expressiveness but the packet processing
rate is limited. (2) Programmable data plane. These methods
either implement approximate measurement by using limited
resources in the programmable switch [23], [27]–[32], or
implement stream processing primitives (e.g., map, filter,
window) in the programmable switch to support operators to
define a series of complex telemetry tasks [4]–[7], [33], [34].
Due to the limited operations that programmable switches
can support, the expressiveness of these telemetry systems is
relatively weak. (3) Global analysis server (cluster). Some
systems [8], [11], [12], [35]–[38] perform network-wide
telemetry tasks in the global analysis server (cluster) of a
large-scale network. Everflow [8] and dShark [11] trace the
path of the network traffic by collecting mirrored packets.
Vtrace [12] and NetSight [35] use programmable switches
to add metadata to the packets to obtain the telemetry
information. Unlike these works, IntStream is compatible
with different measurement data sources and provides very
powerful expressive primitives in both the local processing
stage and the global processing stage, which can support
operators to write a series of complex network-wide telemetry
tasks.
Intent-driven primitives. In order to be able to support
operators to write telemetry tasks based on intent, existing
telemetry systems generally provide a set of primitives. But
the expressiveness of each set of primitives is different:
(1) Domain-specific primitives (DSP). These works [8]–[10]
usually perform some specific telemetry tasks, so the primi-
tives they provide are also highly customized. For example,
Trumpet [9] uses predicates and some aggregate functions
to detect whether certain events have occurred. (2) Stream
processing primitives. These works [4]–[6] usually provides
some primitives commonly used in stream processing (e.g.,
filter, map). Compared with DSP, it can perform some more
general operations. But it cannot support operators to write
more complex and customized processing logic. (3) Generic
primitives. It has the highest expressiveness and can support
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operators to freely define the processing logic. dShark [11]
uses C++ callback function to process the aggregated traffic
and supports user-defined processing logic. Different from
these primitives, IntStream provides a unified and layered
programming model. Operators can use core primitives to
freely define the processing logic, or use streaming primitives
or some high-level primitives (encapsulated measurement
data structures and operations) to simplify the telemetry tasks.
Comparison. As presented in Table IV, we have selected
some representative works from the three types of telemetry
systems and compared them with IntStream in terms of
flexibility, expressiveness, and scalability. It can be seen
that the existing works have varying degrees of deficiencies
in these three aspects. Unlike these systems, IntStream is
an intent-driven network telemetry framework that satisfies
flexibility, expressiveness, and scalability simultaneously.

IX. CONCLUSION

In this paper, we propose IntStream, an intent-driven
streaming network telemetry framework. IntStream uses a
lightweight component, driver, to be compatible with various
types of data sources. And IntStream provides a set of
powerful expressive primitives which support operators to
define the processing logic in both local and global processing
stages based on their intentions. As part of the telemetry tasks
are completed in the local processing stage, the transmission
overhead and the load of the global analysis server can be ef-
fectively reduced. The evaluation results show that IntStream
can support a wide range of telemetry tasks while reducing
the intermediate data transmission overhead by 99.64% on
average.
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