

Session-persistent Load Balancing for Clustered Web
Servers without Acting as a Reverse-proxy

S. Mohammad Hosseini

Department of Computer Engineering
Sharif University of Technology

Tehran, Iran
smhoseini@ce.sharif.ir

Amir Hossein Jahangir
Department of Computer Engineering

Sharif University of Technology
Tehran, Iran

jahangir@sharif.ir

Sina Daraby
Department of Computer Engineering

Sharif University of Technology
Tehran, Iran

daraby@ce.sharif.ir

Abstract— A Load balancer is an essential component of a

clustered web-server system which distributes requests among
servers. Layer-4 load balancers process requests faster than
Layer-7 ones, but they cannot provide session-persistent load
balancing. On the other side, layer-7 load balancers, which are
known as reverse-proxies, can direct all requests of an
application-level session to the same server, but they impose a
high processing cost due to processing requests at the application
level. We propose a session-persistent load balancing approach
which uses TLS session data instead of processing at the
application level. It outperforms existing approaches in terms of
transaction rate and response time.

Keywords—Load balancer, Web server, Session persistence,
HTTP, TLS.

I. INTRODUCTION

Data enters rely on load balancers to distribute clients’
requests among servers and cope with a huge amount of traffic
load. Considering the OSI protocol stack layer at which a load
balancer operates, there are two load balancing approaches:
Layer-4 (L4), and Layer-7 (L7) load balancing.

Layer-4 load balancers deal with network-level connection
information such as IP addresses and port numbers. The main
issue in the context of L4 load balancing is connection
persistence (also known as connection affinity), i.e. directing
packets belonging to the same connection to the same server.
When an L4 load balancer receives a TCP SYN packet, it
selects one of the servers based on a load balancing logic, such
as Round Robin or random, and then forwards the packet and
all the subsequent packets that have the same 5-tuple to the
selected server until the connection is closed. An important
problem associated with L4 load balancers is that they cannot
recognize application-level sessions. A session is a series of
transactions issued by the same client during an entire visit to a
website. This can include filling out a series of forms in a
website, adding items to a shopping cart, or checking a
mailbox and sending emails from an account. The transactions
result in many network-level connections established and
closed during the time the session is open. A session can last
from a few minutes to several hours and even days. The
important point is that sessions cannot be recognized using
network-level information such as IP addresses and port
numbers because clients may be behind a NAT/proxy, a
client’s IP may change due to mobility, or TCP connections of
a session may use different source ports.

As a result of session-unaware load balancing, the TCP
connections of an application session are directed to different
servers while the session is open. Fig. 1a depicts an example of
this, where connections C1A and C2A of session A are directed
to two different servers. Hence, while the session is open,
clients’ session data, such as cart items in an online shopping
application, must be saved in a shared database as shown in
Fig. 1a. When a server receives a connection request, the
server processes the request up to the application layer and
determines its session. Then, the server gets the session data
from the shared database (if the request is related to an open
session) and saves all modifications to them in the database to
be used by the next connections of the session which may be
served by other servers. On the other side, L7 load balancers

consider and analyze application-level information of requests.
One of the most beneficial abilities that can be achieved by L7

(a) L4 load balancing

(b) L7 load balancing

Fig. 1. Clustered web-server system equipped with layer-4 (L4) and layer-7
(L7) load balancers. There are two client sessions: session A and session B.
Dashed lines represent connections.

2021 17th International Conference on Network and Service Management (CNSM)

978-3-903176-36-2 ©2021 IFIP 360

load balancing is session persistence (also known as client
affinity). Being session-persistent means that when an
application-level session is established between a client and a
server, the load balancer directs all subsequent TCP
connections of the client’s session to the same server until the
session is closed. As a result of having a session-persistent load
balancer, while a session is open, the server that is in charge of
the session can save the session data in its internal memory
rather than a shared database (as depicted in Fig. 1b) and
consequently process subsequent requests of the session faster.
To achieve this ability, existing L7 load balancers act as a
reverse-proxy. A reverse-proxy terminates each incoming
request (for example, connection C1A in Fig. 1b) up to the
application-level and processes information such as HTTP
cookies to identify its session. After selecting its appropriate
server, the load balancer makes a new connection (C1A′) to the
selected server and transfers data between the client and the
server.

However, the session persistence ability of existing load
balancers does not come for free. Taking a web application as
an example, a load balancer becomes a complete web server
when it acts as a reverse-proxy. The reverse-proxy must (1)
terminate each incoming TCP connection, (2) perform
Transport Layer Security (TLS) handshake and decrypt the
connection payload, (3) receive and process the HTTP request
and extract its session ID from cookies, (4) make a new
connection to the corresponding server, (5) send the request to
the server, (6) receive the server response, (7) encrypt the
response, (8) and send the response back to the client. This
procedure imposes a heavy processing cost and significantly
limits the request (transaction) rate at which the clustered web
server system can service. Hence, the clustered web server
systems that deal with millions of requests per second adopt L4
load balancing (such as the Maglev solution [1] which is used
by Google) and handle clients’ intermediate information using
a shared database.

In this paper, we propose a session-persistent load balancer
without acting as a reverse-proxy so that we can achieve a
high-performance clustered web server system. The proposed
solution performs load balancing without processing
information in the application layer or even terminating TLS
sessions. We use TLS session data to identify client sessions.
In other words, we add the session persistence feature to L4
load balancers. Our evaluation shows that the proposed method
outperforms existing load balancing approaches in terms of
transaction rate and response time.

The rest of this paper is organized as follows: in Section II
we briefly review previous approaches to L4 load balancing.
Section III presents the proposed method, and in Section IV, it
is evaluated. In Section V, we discuss some important issues
regarding the proposed method. Finally, Section VI concludes
the paper and presents future works.

II. LITERATURE REVIEW

Load balancing has been an active area of research since the
late 1990s, when the Internet faced an explosive growth of
traffic on the World Wide Web [2]. Software and hardware
scale-up solutions could not keep pace with the ever-increasing
demand placed on popular web-based services. As a locally
scale-out solution, cluster-based web systems emerged [3]. A
cluster-based web system consists of a collection of servers
tied together in a data center to act as a single entity serving a
web service. A front-end node called load balancer receives the
incoming requests destined to the web system and distributes
them among servers.

Traditional load balancers were implemented as dedicated
hardware devices, and they were not scalable. The need for
scalable and high available load balancing in large data centers
led researchers to develop distributed load balancers. A
challenging problem of distributed L4 load balancers is to
provide connection persistence, especially when the set of load
balancers or back-end servers changes due to failure,
upgrading, or adding/removing to handle different traffic loads.
The approaches to this problem can be divided into two
categories depending on whether they store per-connection
state or not, i.e. stateful or stateless.

One of the first load balancing solutions that tried to address
this problem is Ananta [4], a stateful distributed software load
balancer which runs on commodity hardware. In this solution,
numerous load balancers can be easily deployed for a service
in a data center. Ananta relies on border routers and Equal-cost
multi-path routing (ECMP) to split incoming traffic evenly
among load balancers. When a TCP SYN packet arrives at an
Ananta load balancer, it randomly chooses one of the servers
and forwards the packet to the server. Moreover, the load
balancer stores the 5-tuple of the packet and the chosen server
in a local connection table to be used for directing the
subsequent packets of that connection to the same server.
However, the solution falls short in terms of connection
persistence when the pool of load balancers changes. ECMP
uses a simple hash mechanism to distribute traffic among next
hops (hash of IP addresses modulo the number of next hops).
Therefore, if the set of load balancers changes, packets of
ongoing connections are forwarded to load balancers that do
not have any state for them, which in turn results in forwarding
packets to wrong servers and breaking connections [5].

Niagara [6] utilizes SDN switches and an Open-flow
controller to implement a scalable load balancing system. The
centralized controller can share the connection states among
load balancers, and consequently, if a packet is forwarded to a
wrong load balancer by ECMP, the controller can provide the
load balancer with the correct server of the packet. However,
the controller not only adds latency overhead but also
negatively affects forwarding performance.

Maglev [1] is another stateful distributed software load
balancer which tries to minimize connection disruptions when
the pool of load balancers or the set of back-end servers

2021 17th International Conference on Network and Service Management (CNSM)

361

change. To this end, Maglev makes use of a hash method
named “Maglev hashing” to map packets to servers. Maglev
hashing, which is an improved version of consistent hashing
[7], provides two important properties. First, it evenly splits
new connections among back-end servers. Second, if the set of
back-end servers changes, packets of connections will likely be
mapped to the same server as they were before. In other words,
both the load balancing logic and the connection persistence
mechanism are carried out by the hashing method. Since the
hashing method does not guarantee connection persistence,
Maglev also maintains a connection table. When a Maglev
load balancer receives a packet for which it does not have a
state in its local connection table, it determines the destination
server using Maglev hashing and stores the decision in the
connection table.

Beamer [8] is a stateless load balancer which does not use a
connection table. Similar to Maglev, its load balancing logic
relies on an improved version of consistent hashing, but it does
not store per-connection state. Beamer uses a hashing method
named “Stable hashing” which works better in terms of
uniform distribution. However, Stable hashing does not
guarantee connection persistence as well, and when the set of
load balancers or back-end servers changes, some packets may
be forwarded to wrong servers. Beamer deals with the problem
using a mechanism named “daisy chaining”. In this
mechanism, if a server receives a packet for which it does not
have a state, the server forwards the packet to another server.

Cheetah [9] is a new distributed load balancer which does
not use the connection table as well. To provide connection
persistence, Cheetah encodes the identifier of the selected
server into the TCP timestamp options field of packets directed
towards the client. On the other side, the client is expected to
include the identifier in the subsequent packets that it sends
towards the server. However, there is no guarantee that all
clients echo the TCP timestamp options back to the servers;
most notably Microsoft Windows does not echo the option
field as mentioned in the Cheetah paper.

All the mentioned researches have focused on distributed L4
load balancers. Their goal is to provide a better L4 load
balancing system in terms of scalability, availability, uniform
distribution, and connection persistence. However, none of
current L4 load balancers can provide session persistence.
Currently, session persistence load balancing can be provided
by L7 load balancers. Nginx [10] and HAProxy [11] are the
most well-known L7 load balancers for web applications. They
are web server software, and they process requests at the
application layer. Hence, they are significantly worse than L4
load balancers in terms of latency and throughput. Moreover,
their availability is limited and they exhibit a single point of
failure. If a layer-7 LB fails, all connections handled by that
LB are reset. Yoda [12] is a high-available L7 LB which tries
to resolve this problem by storing flow states in a persistent
storage. However, as with other L7 load balancers, its
performance is lower than L4 LBs.

III. PROPOSED METHOD

We propose a simple but effective solution to L4 session-
persistent load balancing which is based on TLS session
resumption. It should be noted that a TLS session differs from
an application session, and a session-persistent load balancer
aims at application sessions. However, as we discuss in the
following, TLS session data can be easily utilized to achieve an
application-level session-persistent load balancer even without
terminating TLS sessions at the load balancer.

Before discussing the proposed method, we glance at TLS
1.2 handshake protocol [13] between a client and a server
which is shown in Fig. 2. While establishing a new TLS
session (Fig. 2a), the client and the server exchange some
messages to acknowledge and verify each other and agree on
encryption algorithms and session keys (which are called
session secret). We do not go into detail about the protocol, but
the important point for us is that the server assigns a session ID
to the TLS session and sends the ID to the client before the
encryption starts. The client and the server save the negotiated
TLS session secret along with the session ID for a specified
time duration. The client includes the session ID in its
subsequent TLS connection requests to the server. If the server
recognizes the session, it replies with the same session ID so
they can perform an abbreviated handshake as shown in Fig.
2b. If the server is not willing to resume the TLS session (for
example due to time expiration), the server replies with a new
session ID, and consequently, a full handshake is performed.

The session ID of each TLS session in the set of active TLS
sessions of a server must be unique. Servers assign a long and
random string of bytes as session ID (32 bytes in TLS 1.2) to
each client. Hence, as long as a TLS session is valid, we can
direct the subsequent connections of the client to the same
server by utilizing the client’s TLS session ID coming with
each connection request. As the clients’ requests are directed to
the same server, we can achieve an application-level session-
persistent load balancing. Therefore, we propose to keep track
of TLS sessions in the load balancer and use them to
implement an application-level session-persistence load
balancing. We maintain a session table in the load balancer to
store the TLS session IDs issued by each server. Supporting

(a) Full handshake (b) Session resumption

Fig. 2. TLS 1.2 handshake protocol

2021 17th International Conference on Network and Service Management (CNSM)

362

both session persistence and connection persistence means that
we also need a connection table in the load balancer because it
is impossible to forward different connections of a session
(which have different 5-tuples) to the same server by hashing.

In our load balancing scheme, all incoming and outgoing
packets pass through the load balancer. Algorithm 1 represents
`the procedure carried out for incoming packets. The load
balancer terminates each incoming TCP connection request by
sending a SYN/ACK packet to the corresponding client. After
establishing a TCP connection between a client and the load
balancer, the client sends a TLS_Client_Hello message. The
load balancer looks up the TLS session ID of the message in its
TLS session table. If the message does not contain a session ID
known to the load balancer, which means a new TLS session
must be established between the client and one of the servers,
the load balancer randomly selects one of the servers and
transfers its endpoint of the connection along with the
TLS_Client_Hello message to the server using a TCP hand-off
protocol [14]. The load balancer also adds the 5-tuple of the
connection to the connection table so the subsequent packets of
the connection can be easily directed to the same server.

In response to the TLS_Client_Hello message, the server
sends a TLS_Server_Hello message containing a session ID.
The load balancer continuously monitors outgoing packets, and
if it observes a TLS_Server_Hello message, it adds the
included TLS session ID into the session table. The subsequent
connection requests of the client will include the session ID,
and the load balancer can easily direct them to the same server
using the session table.

TLS 1.2 has also another resumption mechanism using
tickets. In this mechanism, the server does not cache session
secrets. Instead, it puts an encrypted form of the secrets into a
ticket and passes it to the client. The client includes the ticket
in its subsequent TLS_Client_Hello messages. The difference
for us is that the server sends a ticket in a distinct message
(TLS_New_Session_Ticket) during the handshake protocol.

Moreover, the size of a ticket is typically larger than a session
ID size. Hence, it is better to store a hash of tickets in the load
balancer’s session table. TLS 1.3 [15], which was published in
2018, has combined the two resumption mechanisms into one
mechanism named Pre-Shared Key (PSK). It is very similar to
the ticket mechanism. Its most important difference is that the
server sends the ticket after finishing the handshake protocol,
and consequently, the ticket message will be completely
encrypted and unclear to the load balancer. To resolve this
problem, we modified the web server program so that it sends
a clear copy of the issued TLS tickets to the load balancer.

IV. EVALUATION

To evaluate the proposed load balancing scheme, first, we
prepared seven Linux virtual machines in a host system
featuring 32 GB of RAM and an Intel Xeon E5-2683
processor. One of the VMs plays the role of a load balancer,
another one hosts a database, and the other five VMs are web
servers. We implemented our proposed load balancer in the
VM dedicated to load balancing. To compare the proposed
method with other approaches, we implemented Cheetah (as a
layer-4 load balancer) and also installed Nginx and HAProxy
(as layer-7 load balancers) on the VM.

Our simple web application makes use of application-layer
sessions, i.e. it retrieves session data for each request. We
designed the application so that it retrieves some data as
session data for each application request. To evaluate different
workloads, we can change the size of session data. In layer-4
load balancing, session data is stored in the database, but in
layer-7 load balancing and also in our method, session data of
each application session is stored in a web server.

There are various web server benchmarking tools such as
Siege [16] and ApacheBench (ab) [17] which simulate many
clients sending web requests, but a problem with all of existing
tools is that they cannot associate multiple requests of each
simulated client to an application session. This is because they
do not save the application-layer session ID of each client to
include it as a cookie in the subsequent requests of the client.
Hence, we modified the source code of Siege to have this
feature. The modified Siege saves the TLS session ID assigned
by a server for each client and uses the session ID for all
subsequent requests of the client.

Algorithm 1. Procedure of handling client-to-server packets

Input: Received packet from a client: pkt
1: if (pkt is TCP_CONNECTION_REQUEST) then
2: Send SYN/ACK packet to the client
3: else
4: if (pkt is TLS_CLIENT_HELLO) then
5: server ← LookUp(SessionID(pkt), sessionTable)
6: if (server = NULL) then
7: server ← SelectServer()
8: end if
9: TCPHandOff(pkt, server)
10: AddEntry(FiveTuple(pkt), server, connectionTable)
11: else
12: server ← LookUp(FiveTuple(pkt), connectionTable)
13: if (server = NULL) then
14: drop(pkt)
15: else
16: forward pkt to server
17: end if
18: end if
19: end if

Fig. 3. Performance evaluation of the load balancing methods

2021 17th International Conference on Network and Service Management (CNSM)

363

Finally, we evaluated the performance of all the load
balancers in our testbed using the modified Siege. Fig. 3 shows
the maximum request rate handled by each load balancer along
with the average response time of each one. Cheetah, which is
a layer-4 load balancing scheme, has a higher performance
than Nginx and HAProxy because it does not act as a reverse-
proxy. However, in layer-4 load balancing, the request
processing capability of web servers becomes limited by the
process of retrieving application-layer session data for each
request. Therefore, the proposed method has achieved a
significantly higher request processing rate than Cheetah.
Moreover, the response time of the proposed method is
considerably lower than the other load balancers. The results
also show that our method works slightly better with TLS 1.2
compared to TLS 1.3.

In the previous experiment, the session data size was 1 MB.
To evaluate different workloads, we repeated the experiment
using different sizes of session data. Fig. 4 illustrates the
transaction rate of the load balancers for different sizes of
session data. While increasing the session data size does not
considerably affect the performance of session-persistent LBs,
it significantly degrades the performance of Cheetah.

V. DISCUSSION
The first issue regarding the proposed method is that it only

works on web servers that employ TLS. However, this
requirement does not put an obstacle in the way of the
proposed method because nowadays most of the web-based
services use TLS, and especially, TLS is critical for the
applications that need to recognize clients using sessions. The
other requirement is that both the client and server must
support the TLS resumption mechanism. By default, the
mechanism is active in all popular browsers and they use it.
The TLS resumption lifetime is also important. On the server
side, this parameter can be set to, for example, one day. TLS
1.2 [13] has recommended an upper limit of one day for the
session resumption lifetime while TLS 1.3 [15] has
recommended an upper limit of seven days. It is also
noteworthy that TLS_Client/Server_Hello messages are small
(smaller than 200 bytes), and we do not need to be concerned
about IP fragmentation or multiple TCP segments. The final
issue is the problem of deploying the proposed load balancer in

a distributed manner. Similar to Ananta, since the load
balancer maps packets to servers only using tables, a change in
the pool of load balancers can result in directing some packets
to wrong servers. This problem can be resolved by employing
the Beamer’s method, i.e. daisy chaining. Further work on this
is deferred to future research.

VI. CONCLUSION
In this paper, we presented a new approach to session-

persistent load balancing for clustered web servers. The
proposed method does not process packets up to the
application level. Instead, it makes use of the TLS session
resumption mechanism to achieve application-level session
affinity. Hence, the proposed method can be categorized as a
layer-4 load balancer. Our preliminary evaluation showed that
the performance of the proposed method is significantly higher
than the previous approaches in terms of transaction rate and
response time. Our future work will focus on developing a
distributed version of the proposed load balancer. We are also
going to evaluate a realistic prototype of the load balancer in a
real and high-demand web-server cluster and compare its
results with the state-of-the-art L4 and L7 load balancers.

REFERENCES
[1] D. E. Eisenbud et al., “Maglev: A fast and reliable software network load

balancer,” in Proceedings of the 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), 2016, pp. 523–535.

[2] V. Cardellini, and M. Colajanni, “Dynamic load balancing on web-server
systems,” IEEE Internet computing, vol. 3, no. 3, pp. 28–39, 1999.

[3] V. Cardellini, E. Casalicchio, M. Colajanni, and P. S. Yu, “The state of
the art in locally distributed Web-server systems,” ACM Computing
Surveys (CSUR), vol. 34, no. 2, pp. 263–311, 2002.

[4] P. Patel et al., “Ananta: Cloud scale load balancing,” ACM SIGCOMM
Computer Communication Review, vol. 43, no. 4, pp. 207–218, 2013.

[5] C. Hopps, “Analysis of an equal-cost multi-path algorithm, RFC 2992,”
2000.

[6] N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and J. Rexford, “Efficient
traffic splitting on commodity switches,” in Proceedings of the 11th
ACM Conference on Emerging Networking Experiments and
Technologies, 2015, pp. 1–13.

[7] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D.
Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web,” in Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing,
1997, pp. 654–663.

[8] V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu, “Stateless datacenter
load-balancing with beamer,” in 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), 2018, pp. 125–139.

[9] T. Barbette et al., “A High-Speed Load-Balancer Design with
Guaranteed Per-Connection-Consistency,” in 17th USENIX$ Symposium
on Networked Systems Design and Implementation, 2020, pp. 667–683.

[10] “Nginx.” [Online]. Available: www.nginx.org.
[11] “HAProxy.” [Online]. Available: www.haproxy.org.
[12] R. Gandhi, Y. C. Hu, and M. Zhang, “Yoda: A highly available layer-7

load balancer,” in Proceedings of the Eleventh European Conference on
Computer Systems, 2016, pp. 1–16.

[13] T. Dierks and E. Rescorla, “The transport layer security (TLS) protocol
version 1.2, RFC5246,” 2008. [Online]. Available:
https://tools.ietf.org/html/rfc5246.

[14] K. Gilly, C. Juiz, and R. Puigjaner, “An up-to-date survey in web load
balancing,” World Wide Web, vol. 14, no. 2, pp. 105–131, 2011.

[15] E. Rescorla, “The transport layer security (TLS) protocol version 1.3,
RFC8446,” 2018. [Online]. Available: https://tools.ietf.org/html/rfc8446.

[16] “Siege.” [Online]. Available: www.github.com/JoeDog/siege/.
[17] “ApacheBench.” [Online]. Available: httpd.apache.org/.

Fig. 4. Performance of load balancers for different sizes of session data

2021 17th International Conference on Network and Service Management (CNSM)

364

