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Abstract— A Load balancer is an essential component of a 

clustered web-server system which distributes requests among 
servers. Layer-4 load balancers process requests faster than 
Layer-7 ones, but they cannot provide session-persistent load 
balancing. On the other side, layer-7 load balancers, which are 
known as reverse-proxies, can direct all requests of an 
application-level session to the same server, but they impose a 
high processing cost due to processing requests at the application 
level. We propose a session-persistent load balancing approach 
which uses TLS session data instead of processing at the 
application level. It outperforms existing approaches in terms of 
transaction rate and response time. 

Keywords—Load balancer, Web server, Session persistence, 
HTTP, TLS. 

I. INTRODUCTION 

Data enters rely on load balancers to distribute clients’ 
requests among servers and cope with a huge amount of traffic 
load. Considering the OSI protocol stack layer at which a load 
balancer operates, there are two load balancing approaches: 
Layer-4 (L4), and Layer-7 (L7) load balancing. 

Layer-4 load balancers deal with network-level connection 
information such as IP addresses and port numbers. The main 
issue in the context of L4 load balancing is connection 
persistence (also known as connection affinity), i.e. directing 
packets belonging to the same connection to the same server. 
When an L4 load balancer receives a TCP SYN packet, it 
selects one of the servers based on a load balancing logic, such 
as Round Robin or random, and then forwards the packet and 
all the subsequent packets that have the same 5-tuple to the 
selected server until the connection is closed. An important 
problem associated with L4 load balancers is that they cannot 
recognize application-level sessions. A session is a series of 
transactions issued by the same client during an entire visit to a 
website. This can include filling out a series of forms in a 
website, adding items to a shopping cart, or checking a 
mailbox and sending emails from an account. The transactions 
result in many network-level connections established and 
closed during the time the session is open. A session can last 
from a few minutes to several hours and even days. The 
important point is that sessions cannot be recognized using 
network-level information such as IP addresses and port 
numbers because clients may be behind a NAT/proxy, a 
client’s IP may change due to mobility, or TCP connections of 
a session may use different source ports. 

As a result of session-unaware load balancing, the TCP 
connections of an application session are directed to different 
servers while the session is open. Fig. 1a depicts an example of 
this, where connections C1A and C2A of session A are directed 
to two different servers. Hence, while the session is open, 
clients’ session data, such as cart items in an online shopping 
application, must be saved in a shared database as shown in 
Fig. 1a. When a server receives a connection request, the 
server processes the request up to the application layer and 
determines its session. Then, the server gets the session data 
from the shared database (if the request is related to an open 
session) and saves all modifications to them in the database to 
be used by the next connections of the session which may be 
served by other servers. On the other side, L7 load balancers 

consider and analyze application-level information of requests. 
One of the most beneficial abilities that can be achieved by L7 

 
(a) L4 load balancing 

 
(b) L7 load balancing  

Fig. 1. Clustered web-server system equipped with layer-4 (L4) and layer-7 
(L7) load balancers. There are two client sessions: session A and session B. 
Dashed lines represent connections. 
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load balancing is session persistence (also known as client 
affinity). Being session-persistent means that when an 
application-level session is established between a client and a 
server, the load balancer directs all subsequent TCP 
connections of the client’s session to the same server until the 
session is closed. As a result of having a session-persistent load 
balancer, while a session is open, the server that is in charge of 
the session can save the session data in its internal memory 
rather than a shared database (as depicted in Fig. 1b) and 
consequently process subsequent requests of the session faster. 
To achieve this ability, existing L7 load balancers act as a 
reverse-proxy. A reverse-proxy terminates each incoming 
request (for example, connection C1A in Fig. 1b) up to the 
application-level and processes information such as HTTP 
cookies to identify its session. After selecting its appropriate 
server, the load balancer makes a new connection (C1A′) to the 
selected server and transfers data between the client and the 
server. 

However, the session persistence ability of existing load 
balancers does not come for free. Taking a web application as 
an example, a load balancer becomes a complete web server 
when it acts as a reverse-proxy. The reverse-proxy must (1) 
terminate each incoming TCP connection, (2) perform 
Transport Layer Security (TLS) handshake and decrypt the 
connection payload, (3) receive and process the HTTP request 
and extract its session ID from cookies, (4) make a new 
connection to the corresponding server, (5) send the request to 
the server, (6) receive the server response, (7) encrypt the 
response, (8) and send the response back to the client. This 
procedure imposes a heavy processing cost and significantly 
limits the request (transaction) rate at which the clustered web 
server system can service. Hence, the clustered web server 
systems that deal with millions of requests per second adopt L4 
load balancing (such as the Maglev solution [1] which is used 
by Google) and handle clients’ intermediate information using 
a shared database. 

In this paper, we propose a session-persistent load balancer 
without acting as a reverse-proxy so that we can achieve a 
high-performance clustered web server system. The proposed 
solution performs load balancing without processing 
information in the application layer or even terminating TLS 
sessions. We use TLS session data to identify client sessions. 
In other words, we add the session persistence feature to L4 
load balancers. Our evaluation shows that the proposed method 
outperforms existing load balancing approaches in terms of 
transaction rate and response time. 

The rest of this paper is organized as follows: in Section II 
we briefly review previous approaches to L4 load balancing. 
Section III presents the proposed method, and in Section IV, it 
is evaluated. In Section V, we discuss some important issues 
regarding the proposed method. Finally, Section VI concludes 
the paper and presents future works. 

II. LITERATURE REVIEW 

Load balancing has been an active area of research since the 
late 1990s, when the Internet faced an explosive growth of 
traffic on the World Wide Web [2]. Software and hardware 
scale-up solutions could not keep pace with the ever-increasing 
demand placed on popular web-based services. As a locally 
scale-out solution, cluster-based web systems emerged [3]. A 
cluster-based web system consists of a collection of servers 
tied together in a data center to act as a single entity serving a 
web service. A front-end node called load balancer receives the 
incoming requests destined to the web system and distributes 
them among servers. 

Traditional load balancers were implemented as dedicated 
hardware devices, and they were not scalable. The need for 
scalable and high available load balancing in large data centers 
led researchers to develop distributed load balancers. A 
challenging problem of distributed L4 load balancers is to 
provide connection persistence, especially when the set of load 
balancers or back-end servers changes due to failure, 
upgrading, or adding/removing to handle different traffic loads. 
The approaches to this problem can be divided into two 
categories depending on whether they store per-connection 
state or not, i.e. stateful or stateless. 

One of the first load balancing solutions that tried to address 
this problem is Ananta [4], a stateful distributed software load 
balancer which runs on commodity hardware. In this solution, 
numerous load balancers can be easily deployed for a service 
in a data center. Ananta relies on border routers and Equal-cost 
multi-path routing (ECMP) to split incoming traffic evenly 
among load balancers. When a TCP SYN packet arrives at an 
Ananta load balancer, it randomly chooses one of the servers 
and forwards the packet to the server. Moreover, the load 
balancer stores the 5-tuple of the packet and the chosen server 
in a local connection table to be used for directing the 
subsequent packets of that connection to the same server. 
However, the solution falls short in terms of connection 
persistence when the pool of load balancers changes. ECMP 
uses a simple hash mechanism to distribute traffic among next 
hops (hash of IP addresses modulo the number of next hops). 
Therefore, if the set of load balancers changes, packets of 
ongoing connections are forwarded to load balancers that do 
not have any state for them, which in turn results in forwarding 
packets to wrong servers and breaking connections [5]. 

Niagara [6] utilizes SDN switches and an Open-flow 
controller to implement a scalable load balancing system. The 
centralized controller can share the connection states among 
load balancers, and consequently, if a packet is forwarded to a 
wrong load balancer by ECMP, the controller can provide the 
load balancer with the correct server of the packet. However, 
the controller not only adds latency overhead but also 
negatively affects forwarding performance. 

Maglev [1] is another stateful distributed software load 
balancer which tries to minimize connection disruptions when 
the pool of load balancers or the set of back-end servers 
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change. To this end, Maglev makes use of a hash method 
named “Maglev hashing” to map packets to servers. Maglev 
hashing, which is an improved version of consistent hashing 
[7], provides two important properties. First, it evenly splits 
new connections among back-end servers. Second, if the set of 
back-end servers changes, packets of connections will likely be 
mapped to the same server as they were before. In other words, 
both the load balancing logic and the connection persistence 
mechanism are carried out by the hashing method. Since the 
hashing method does not guarantee connection persistence, 
Maglev also maintains a connection table. When a Maglev 
load balancer receives a packet for which it does not have a 
state in its local connection table, it determines the destination 
server using Maglev hashing and stores the decision in the 
connection table. 

Beamer [8] is a stateless load balancer which does not use a 
connection table. Similar to Maglev, its load balancing logic 
relies on an improved version of consistent hashing, but it does 
not store per-connection state. Beamer uses a hashing method 
named “Stable hashing” which works better in terms of 
uniform distribution. However, Stable hashing does not 
guarantee connection persistence as well, and when the set of 
load balancers or back-end servers changes, some packets may 
be forwarded to wrong servers. Beamer deals with the problem 
using a mechanism named “daisy chaining”. In this 
mechanism, if a server receives a packet for which it does not 
have a state, the server forwards the packet to another server. 

Cheetah [9] is a new distributed load balancer which does 
not use the connection table as well. To provide connection 
persistence, Cheetah encodes the identifier of the selected 
server into the TCP timestamp options field of packets directed 
towards the client. On the other side, the client is expected to 
include the identifier in the subsequent packets that it sends 
towards the server. However, there is no guarantee that all 
clients echo the TCP timestamp options back to the servers; 
most notably Microsoft Windows does not echo the option 
field as mentioned in the Cheetah paper. 

All the mentioned researches have focused on distributed L4 
load balancers. Their goal is to provide a better L4 load 
balancing system in terms of scalability, availability, uniform 
distribution, and connection persistence. However, none of 
current L4 load balancers can provide session persistence. 
Currently, session persistence load balancing can be provided 
by L7 load balancers. Nginx [10] and HAProxy [11] are the 
most well-known L7 load balancers for web applications. They 
are web server software, and they process requests at the 
application layer. Hence, they are significantly worse than L4 
load balancers in terms of latency and throughput. Moreover, 
their availability is limited and they exhibit a single point of 
failure. If a layer-7 LB fails, all connections handled by that 
LB are reset. Yoda [12] is a high-available L7 LB which tries 
to resolve this problem by storing flow states in a persistent 
storage. However, as with other L7 load balancers, its 
performance is lower than L4 LBs. 

III. PROPOSED METHOD 

We propose a simple but effective solution to L4 session-
persistent load balancing which is based on TLS session 
resumption. It should be noted that a TLS session differs from 
an application session, and a session-persistent load balancer 
aims at application sessions. However, as we discuss in the 
following, TLS session data can be easily utilized to achieve an 
application-level session-persistent load balancer even without 
terminating TLS sessions at the load balancer. 

Before discussing the proposed method, we glance at TLS 
1.2 handshake protocol [13] between a client and a server 
which is shown in Fig. 2. While establishing a new TLS 
session (Fig. 2a), the client and the server exchange some 
messages to acknowledge and verify each other and agree on 
encryption algorithms and session keys (which are called 
session secret). We do not go into detail about the protocol, but 
the important point for us is that the server assigns a session ID 
to the TLS session and sends the ID to the client before the 
encryption starts. The client and the server save the negotiated 
TLS session secret along with the session ID for a specified 
time duration. The client includes the session ID in its 
subsequent TLS connection requests to the server. If the server 
recognizes the session, it replies with the same session ID so 
they can perform an abbreviated handshake as shown in Fig. 
2b. If the server is not willing to resume the TLS session (for 
example due to time expiration), the server replies with a new 
session ID, and consequently, a full handshake is performed. 

The session ID of each TLS session in the set of active TLS 
sessions of a server must be unique. Servers assign a long and 
random string of bytes as session ID (32 bytes in TLS 1.2) to 
each client. Hence, as long as a TLS session is valid, we can 
direct the subsequent connections of the client to the same 
server by utilizing the client’s TLS session ID coming with 
each connection request. As the clients’ requests are directed to 
the same server, we can achieve an application-level session-
persistent load balancing. Therefore, we propose to keep track 
of TLS sessions in the load balancer and use them to 
implement an application-level session-persistence load 
balancing. We maintain a session table in the load balancer to 
store the TLS session IDs issued by each server. Supporting 

(a) Full handshake                               (b) Session resumption 

Fig. 2. TLS 1.2 handshake protocol 
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both session persistence and connection persistence means that 
we also need a connection table in the load balancer because it 
is impossible to forward different connections of a session 
(which have different 5-tuples) to the same server by hashing. 

In our load balancing scheme, all incoming and outgoing 
packets pass through the load balancer. Algorithm 1 represents 
`the procedure carried out for incoming packets. The load 
balancer terminates each incoming TCP connection request by 
sending a SYN/ACK packet to the corresponding client. After 
establishing a TCP connection between a client and the load 
balancer, the client sends a TLS_Client_Hello message. The 
load balancer looks up the TLS session ID of the message in its 
TLS session table. If the message does not contain a session ID 
known to the load balancer, which means a new TLS session 
must be established between the client and one of the servers, 
the load balancer randomly selects one of the servers and 
transfers its endpoint of the connection along with the 
TLS_Client_Hello message to the server using a TCP hand-off 
protocol [14]. The load balancer also adds the 5-tuple of the 
connection to the connection table so the subsequent packets of 
the connection can be easily directed to the same server. 

In response to the TLS_Client_Hello message, the server 
sends a TLS_Server_Hello message containing a session ID. 
The load balancer continuously monitors outgoing packets, and 
if it observes a TLS_Server_Hello message, it adds the 
included TLS session ID into the session table. The subsequent 
connection requests of the client will include the session ID, 
and the load balancer can easily direct them to the same server 
using the session table. 

TLS 1.2 has also another resumption mechanism using 
tickets. In this mechanism, the server does not cache session 
secrets. Instead, it puts an encrypted form of the secrets into a 
ticket and passes it to the client. The client includes the ticket 
in its subsequent TLS_Client_Hello messages. The difference 
for us is that the server sends a ticket in a distinct message 
(TLS_New_Session_Ticket) during the handshake protocol. 

Moreover, the size of a ticket is typically larger than a session 
ID size. Hence, it is better to store a hash of tickets in the load 
balancer’s session table. TLS 1.3 [15], which was published in 
2018, has combined the two resumption mechanisms into one 
mechanism named Pre-Shared Key (PSK). It is very similar to 
the ticket mechanism. Its most important difference is that the 
server sends the ticket after finishing the handshake protocol, 
and consequently, the ticket message will be completely 
encrypted and unclear to the load balancer. To resolve this 
problem, we modified the web server program so that it sends 
a clear copy of the issued TLS tickets to the load balancer. 

IV. EVALUATION 

To evaluate the proposed load balancing scheme, first, we 
prepared seven Linux virtual machines in a host system 
featuring 32 GB of RAM and an Intel Xeon E5-2683 
processor. One of the VMs plays the role of a load balancer, 
another one hosts a database, and the other five VMs are web 
servers. We implemented our proposed load balancer in the 
VM dedicated to load balancing. To compare the proposed 
method with other approaches, we implemented Cheetah (as a 
layer-4 load balancer) and also installed Nginx and HAProxy 
(as layer-7 load balancers) on the VM. 

Our simple web application makes use of application-layer 
sessions, i.e. it retrieves session data for each request. We 
designed the application so that it retrieves some data as 
session data for each application request. To evaluate different 
workloads, we can change the size of session data. In layer-4 
load balancing, session data is stored in the database, but in 
layer-7 load balancing and also in our method, session data of 
each application session is stored in a web server. 

There are various web server benchmarking tools such as 
Siege [16] and ApacheBench (ab) [17] which simulate many 
clients sending web requests, but a problem with all of existing 
tools is that they cannot associate multiple requests of each 
simulated client to an application session. This is because they 
do not save the application-layer session ID of each client to 
include it as a cookie in the subsequent requests of the client. 
Hence, we modified the source code of Siege to have this 
feature. The modified Siege saves the TLS session ID assigned 
by a server for each client and uses the session ID for all 
subsequent requests of the client. 

Algorithm 1. Procedure of handling client-to-server packets 

Input: Received packet from a client: pkt 
1:   if (pkt is TCP_CONNECTION_REQUEST) then 
2:        Send SYN/ACK packet to the client 
3:   else 
4:        if (pkt is TLS_CLIENT_HELLO) then 
5:             server ← LookUp(SessionID(pkt), sessionTable) 
6:             if (server = NULL) then 
7:                  server ← SelectServer() 
8:             end if 
9:             TCPHandOff(pkt, server) 
10:           AddEntry(FiveTuple(pkt), server, connectionTable) 
11:      else 
12:           server ← LookUp(FiveTuple(pkt), connectionTable) 
13:           if (server = NULL) then 
14:                drop(pkt) 
15:           else 
16:                forward pkt to server 
17:           end if 
18:      end if 
19: end if 

 
Fig. 3. Performance evaluation of the load balancing methods 
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Finally, we evaluated the performance of all the load 
balancers in our testbed using the modified Siege. Fig. 3 shows 
the maximum request rate handled by each load balancer along 
with the average response time of each one. Cheetah, which is 
a layer-4 load balancing scheme, has a higher performance 
than Nginx and HAProxy because it does not act as a reverse-
proxy. However, in layer-4 load balancing, the request 
processing capability of web servers becomes limited by the 
process of retrieving application-layer session data for each 
request. Therefore, the proposed method has achieved a 
significantly higher request processing rate than Cheetah. 
Moreover, the response time of the proposed method is 
considerably lower than the other load balancers. The results 
also show that our method works slightly better with TLS 1.2 
compared to TLS 1.3. 

In the previous experiment, the session data size was 1 MB. 
To evaluate different workloads, we repeated the experiment 
using different sizes of session data. Fig. 4 illustrates the 
transaction rate of the load balancers for different sizes of 
session data. While increasing the session data size does not 
considerably affect the performance of session-persistent LBs, 
it significantly degrades the performance of Cheetah. 

V. DISCUSSION 
The first issue regarding the proposed method is that it only 

works on web servers that employ TLS. However, this 
requirement does not put an obstacle in the way of the 
proposed method because nowadays most of the web-based 
services use TLS, and especially, TLS is critical for the 
applications that need to recognize clients using sessions. The 
other requirement is that both the client and server must 
support the TLS resumption mechanism. By default, the 
mechanism is active in all popular browsers and they use it. 
The TLS resumption lifetime is also important. On the server 
side, this parameter can be set to, for example, one day. TLS 
1.2 [13] has recommended an upper limit of one day for the 
session resumption lifetime while TLS 1.3 [15] has 
recommended an upper limit of seven days. It is also 
noteworthy that TLS_Client/Server_Hello messages are small 
(smaller than 200 bytes), and we do not need to be concerned 
about IP fragmentation or multiple TCP segments. The final 
issue is the problem of deploying the proposed load balancer in 

a distributed manner. Similar to Ananta, since the load 
balancer maps packets to servers only using tables, a change in 
the pool of load balancers can result in directing some packets 
to wrong servers. This problem can be resolved by employing 
the Beamer’s method, i.e. daisy chaining. Further work on this 
is deferred to future research. 

VI. CONCLUSION 
In this paper, we presented a new approach to session-

persistent load balancing for clustered web servers. The 
proposed method does not process packets up to the 
application level. Instead, it makes use of the TLS session 
resumption mechanism to achieve application-level session 
affinity. Hence, the proposed method can be categorized as a 
layer-4 load balancer. Our preliminary evaluation showed that 
the performance of the proposed method is significantly higher 
than the previous approaches in terms of transaction rate and 
response time. Our future work will focus on developing a 
distributed version of the proposed load balancer. We are also 
going to evaluate a realistic prototype of the load balancer in a 
real and high-demand web-server cluster and compare its 
results with the state-of-the-art L4 and L7 load balancers. 

REFERENCES 
[1] D. E. Eisenbud et al., “Maglev: A fast and reliable software network load 

balancer,” in Proceedings of the 13th USENIX Symposium on Networked 
Systems Design and Implementation (NSDI 16), 2016, pp. 523–535. 

[2] V. Cardellini, and M. Colajanni, “Dynamic load balancing on web-server 
systems,” IEEE Internet computing, vol. 3, no. 3, pp. 28–39, 1999. 

[3] V. Cardellini, E. Casalicchio, M. Colajanni, and P. S. Yu, “The state of 
the art in locally distributed Web-server systems,” ACM Computing 
Surveys (CSUR), vol. 34, no. 2, pp. 263–311, 2002. 

[4] P. Patel et al., “Ananta: Cloud scale load balancing,” ACM SIGCOMM 
Computer Communication Review, vol. 43, no. 4, pp. 207–218, 2013. 

[5] C. Hopps, “Analysis of an equal-cost multi-path algorithm, RFC 2992,” 
2000. 

[6] N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and J. Rexford, “Efficient 
traffic splitting on commodity switches,” in Proceedings of the 11th 
ACM Conference on Emerging Networking Experiments and 
Technologies, 2015, pp. 1–13. 

[7] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. 
Lewin, “Consistent hashing and random trees: Distributed caching 
protocols for relieving hot spots on the world wide web,” in Proceedings 
of the twenty-ninth annual ACM symposium on Theory of computing, 
1997, pp. 654–663. 

[8] V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu, “Stateless datacenter 
load-balancing with beamer,” in 15th USENIX Symposium on Networked 
Systems Design and Implementation (NSDI 18), 2018, pp. 125–139. 

[9] T. Barbette et al., “A High-Speed Load-Balancer Design with 
Guaranteed Per-Connection-Consistency,” in 17th USENIX$ Symposium 
on Networked Systems Design and Implementation, 2020, pp. 667–683. 

[10] “Nginx.” [Online]. Available: www.nginx.org. 
[11] “HAProxy.” [Online]. Available: www.haproxy.org. 
[12] R. Gandhi, Y. C. Hu, and M. Zhang, “Yoda: A highly available layer-7 

load balancer,” in Proceedings of the Eleventh European Conference on 
Computer Systems, 2016, pp. 1–16. 

[13] T. Dierks and E. Rescorla, “The transport layer security (TLS) protocol 
version 1.2, RFC5246,” 2008. [Online]. Available: 
https://tools.ietf.org/html/rfc5246. 

[14] K. Gilly, C. Juiz, and R. Puigjaner, “An up-to-date survey in web load 
balancing,” World Wide Web, vol. 14, no. 2, pp. 105–131, 2011. 

[15] E. Rescorla, “The transport layer security (TLS) protocol version 1.3, 
RFC8446,” 2018. [Online]. Available: https://tools.ietf.org/html/rfc8446. 

[16] “Siege.” [Online]. Available: www.github.com/JoeDog/siege/. 
[17] “ApacheBench.” [Online]. Available: httpd.apache.org/. 

 
Fig. 4. Performance of load balancers for different sizes of session data 
 

2021 17th International Conference on Network and Service Management (CNSM)

364


