2021 17th International Conference on Network and Service Management (CNSM)

ASRE — Towards Application-specific Resource
Ensembles across Edges and Clouds

Hong-Linh Truong
Department of Computer Science, Aalto University, Finland
linh.truong @aalto.fi

Abstract—We research a new abstraction for resources for
applications, called Application-specific Resource Ensembles (AS-
REs), across edge and cloud infrastructures. ASRE encapsulates
diverse types of high-level resources, coupled with management
APIs, that is provided for application-specific contexts. ASRE
is designed with integrated mechanisms to manage its multi-
dimensional quality through monitoring and control techniques.
Instances of ASRE can be provisioned on-demand, with the
elasticity and resilience capabilities, thus help to simplify the
resource management in edge-cloud continuum.

I. INTRODUCTION

A very typical scenario today is to develop an edge-cloud
application, which analyzes data from various IoT devices
in the edge and the cloud or enables the movement of IoT
realtime and logs data from the edge to the cloud [1]. For
such a scenario, the developer would acquire message broker
services (e.g., MQTT), data transfer services (e.g., Apache Nifi
instance), flow engines (e.g., Node-RED engine), streaming
data analytics (e.g, Apache Flink), cloud storage (e.g., Google
Storage), batch processing service (e.g., Hadoop/Spark) and
machine learning service (e.g., a regression model deployed as
a service using Seldon [2]). In many cases, as observed in the
related work and software products, this would be achieved
by (i) acquiring various containers and virtual machines
(VMs) from edge and cloud services, (ii) deploying suitable
software in these containers/VMs [3] to create resources as
services, and then (iii) scaling, controlling and managing these
resources'. However, given that such software services can
be automatically provided by providers, the developer would
like to manage only high-level resources. Figure 1 shows the
applications and their resource providers mentioned above.

Application
Container/ViM M;;sklge Firewall Hadoop | Flow Engine [Machine Learning
Resource Resource Resource | Resourcd Resource |Serving Resource
Provider Provider | Provider | Provider| Provider Provider

Edge Infrastructures Cloud Infrastructures

Fig. 1. A single application utilizing high-level cross-layered resources in
edge and cloud infrastructures

Individual providers can return resources to the developer,
but currently the developer lacks tools to manage such di-
verse types of resources within an application context; these

1Of course, for certain services we can request suitable resources, like
MQTT broker or Hadoop service, in a single step.

978-3-903176-36-2 ©2021 IFIP

resources are not at the same software layer and are spanned
across different infrastructures. To solve this problem, we
introduce application-specific resource ensembles (ASRESs) as
a high-level abstraction of different service capabilities for,
e.g., function execution, data file transfer, message delivery,
database, machine learning serving, and security protection.
ASRE runtime will coordinate resources to deliver these
capabilities to applications. Crucial features, like provision-
ing, security, monitoring and reliability engineering, will be
associated with ASRE runtime for managing ASREs lifecycle,
and an ASRE Management Service will provision elastic and
resilient ASREs for application-specific context.

In this paper, we will present some key aspects of ASRE:s.
We will explain the key requirements for ASREs (Section
II) that ASREs must combine various types of high-level
edge and clouds resources, also IoT data sources and network
functions, for application-specific needs. We can use “resource
slices” [4] to include various types of resources across different
infrastructures to a virtual one. However, resource slices are
not enough for our ASRE concept. Therefore, in our initial
design and implementation (Section III and Section IV),
ASREs must establish their resource slices equipped with
elastic and resilient automation mechanisms. Furthermore,
we need to leverage automation mechanisms for ASREs to
automate the management of disparate resources. Thus, an
ASRE Management Service interfaces to a variety of service
providers in edge-cloud infrastructures and interacts with them
for provisioning resources for specific application contexts,
while allowing the developer to focus on utilizing resources
from best providers, given application requirements. We will
give examples of ASRE scenarios (Section V), discuss related
work (Section VI), and outline our future plan (Section VII).

II. KEY REQUIREMENTS FOR ASRE

The requirements for ASREs are from the need to acquire
resources across systems and layers and then to manage them
as a whole under a high-level virtual entity in edge-cloud
continuum. The resource management for edge-cloud appli-
cation developers needs to support a high-level abstraction
of resources for their applications, while utilizing resources
from different providers. Thus, the developers can leverage
the best offered quality, reliability, security and functionality
for resources from existing providers.

ASRE as a resource as a service: Resources are defined as
high-level service functionalities that are required by applica-

239

2021 17th International Conference on Network and Service Management (CNSM)

tions. At the lowest level, resources in ASREs can be execu-
tion environments based on VMs and containers. High-level
resources are, e.g., container orchestration services, process/-
workflow engines, message brokers, network functions (e.g.
firewall), secret-as-a-service for authentication and identity
management, data transformation services, file-based storage
services, database services, and machine learning models
serving as services. Such resources are provisioned either
by different providers or by combining resources from these
providers with runtime software deployment from existing
software artifacts.

Monitoring capabilities: Monitoring capabilities must be
applied to ASRE as a whole. Currently, individual resources
can be monitored in different ways and a lot of monitoring data
can be collected. Typical monitoring data are CPU/memory
usage, number of containers and processes, number of service
requests, response time, etc. However, they might not indicate
the behavior of ASREs as a whole. For example, it does
not make sense in looking at memory and CPU usages of
all individual resources when they do not shed light on why
the whole ASRE acts poorly. For monitoring ASREs, it is
possible that we have to deploy additional monitoring tools
for ASREs to work with existing monitoring of individual
providers and resources. Furthermore, we need to understand
the dependencies among individual resources within an ASRE
instance in order to evaluate the service quality of the ASRE
instance, such as its reliability, availability and cost.
Elasticity and Resilience: For resilience, we need to change
resources or recover resource failures at runtime. For this
purpose, we must leverage dynamic provisioning (request new
resources for failed ones) of resources in combination with re-
source reconfiguration at different levels, without interrupting
the execution of applications. For elasticity support, typically
operations are to add and remove resources accordingly as
well to change the non-functional capabilities of resources.
In addition, functional capabilities can be added, e.g., a new
data transformation might be deployed, or removed, e.g., an
IoT protocol bridge can be shutdown. This means that the
elasticity will be carried out at two levels: the ASRE Ilevel
for dealing with functional capabilities of the ASRE (cross-
resource and cross-layer elasticity) and the resource level for
internal elasticity of non-functional capabilities.

ITI. ASRE MODELS

From the service viewpoint, ASREs should be provisioned
to the developer through an ASRE Management Service; dif-
ferent ASRE instances have different capabilities for different
application contexts. This leads to a generic view of ASREs
and an ASRE Management Service, shown in Figure 2. We
will briefly discuss these issues in the following:

ASRE’s Resource Slice: A resource slice captures infor-
mation about resources abstracted by ASRE for a specific
application. Since ASREs support different types of resources,
we devise a high-level information model to encapsulate low-
level resource information. Generally, resources in an ASRE
are described as in a “resource slice” in a rich metadata model.

3D

J_CO

AA[OSSIP

:

O—

ASRE Resource]

slice [Processes
control API
Provisionin .
2] [Elasncuy Processes] I—)
Processes
O configuration API
monitoring API - o -

a 2
£ 2
R — = softwarf artefact
= 2 = repository API
=1] 2 P Ty
=3 l\-_/l E =,
[=% " =
il o % B
7 ERN = =3
7] = =
b = 2 B
. [2
E = U_U g

= a

3 e

Fig. 2. Simplified view of an ASRE Management Service

Various types of metadata from providers and their types of
resources are captured. The data model for ASRE’s resource
slice is an extension of the work in [4]. Metadata types will
be captured by interfacing with service providers and service
discovery services (see Section IV). An ASRE’s resource
slice includes several resources. Such resources are connected
through Connectivity which specifies in AccessPoint
and is implemented with different protocols. From the ASRE
viewpoint, each resource has classes of MonitoringPoint,
ControlPoint, and DeploymentPoint for monitoring,
control and deployment features, respectively. Each class has
multiple points mapping to concrete APIs and has differ-
ent types of metadata. Depending on types of resources,
a resource offers its business functions via APIs under
ResourceBusinessFunction. For example:

« for a sensor resource, providing sensor data is its business
function and a subset of APIs for obtaining sensor data
could be defined under DataPoint.

o for a machine learning service resource: providing in-
ference capabilities utilizing different machine learning
models is its business function. A subset of APIs for
obtaining inferences through different machine learning
models could be defined under InferencePoint.

There is no standard for metadata so that we cannot automati-
cally map APIs into these points. But using service discovery
and metadata, we can map them through software integration
activities (see Section IV). From the resource management
viewpoint, constructing ASRE requires context-specific re-
quirements of applications. Therefore, creating suitable ASRE
instances requires knowledge about providers and resources.

Monitoring API: Monitoring API is designed for the whole
ASRE and its constituting resources. At the ASRE level, mon-
itoring API will allow us to deal with existing ASRE instances.
Operations applied to ASREs, such as, creation, change
and delete, will be logged and structured information of
resources can be obtained. ASRE specific metrics will be

240

2021 17th International Conference on Network and Service Management (CNSM)

monitored. Key APIs are shown in Table I.

APIL Description

/{asre}/get obtain the structure of the ASRE
/{asre}/list list all existing ASREs

/{asre }/logs obtain logs of ASRE operations
/{asre}/metrics/list list ASRE metrics

/{asre}/metricSeries obtain time series of ASRE metrics
/{asre}/pushMetrics push metrics to external monitoring systems

TABLE T
API FOR MONITORING ASRE RESOURCES

At the resource level, monitoring data is based on the
resource’s MonitoringPoint. To obtain the resource mo-
toring data, we follow the best practices that current are
implemented in most resource-as-a-service: (i) the exporter
model, such as like the model of Prometheus exporterz, in
which exporters are configured to obtain monitoring data from
the resource and (ii) the instrumentation model, in which the
resource pushes monitoring data to the monitoring system.
Control API: Control APIs are used to create, modify and
remove ASREs based on application requests. For creating
an ASRE, we will need an initial set of resource descriptions,
which indicate resource types and their connectivity. Based on
resource and provider discovery, an ASRE Management Ser-
vice internally will acquire and/or perform artifact deployment
to create resource slices. Main APIs are described in Table II.

API
[{asre}/createResource

Description
creates an ASRE with a specification of re-
source slice
deletes resources of an ASRE
deletes the whole ASRE
updates resources
TABLE T
API FOR CONTROLLING ASRE RESOURCES

/{asre}/deleteResources
/{asre }/delete
/{asre}/updateResource

Deployment API: the deployment API can be used to deploy
existing ASREs, based on saved ASRE descriptions, or new
resources in selected providers or atop other resources:

o deploy saved ASREs: as long as ASRE descriptions are
saved, we can reuse them when an application needs to
acquire similar ASREs. In this case, the API allows the
application to select and create new instances of ASREs.

o deploy new resources: this situation happens when we
need to deploy a software artefact into an existing re-
source to create a new (high-level) resource. One example
is that ASRE can ask a resource provider, which is a
machine learning (ML) serving platform, to deploy a ML
model to create a ML-as-a-service resource.

When controlling ASREs, Control API can invoke Deploy-
ment API. This feature would require complex operation
processes implemented within an ASRE Management Service.

IV. ASRE MANAGEMENT

Resources and Provider Discovery: Being able to obtain
resources from different providers requires an ASRE Man-
agement Service to discover available providers and resources.
This is the subject of a huge body of research and tools so we
just reply on existing mechanisms for resources discovery:

Zhttps://prometheus.io/docs/instrumenting/exporters/

o for resource providers without discovery support: we
capture enough information about the service provider,
especially the APIs and libraries for acquiring resources,
monitoring, and control.

« for resource providers with discovery support: we inter-
face with discovery systemsand capture metadata about
services. This case usually happens for high-level ser-
vices, VMs and containers managed by a single large-
scale provider.

In both situations, while resource information can be obtained
automatic, dealing with semantics of the provider and resource
information still requires integration work.

Resource Acquisition: For acquiring resources we must con-
sider various real-world integration situations:

¢ resource acquisition through known APIs and protocols,
such as REST and MQTT: in this case, resources can be
obtained through a single step of calling corresponding
APIs and will be ready for ASREs.

« resource acquisition through known client libraries: client
libraries are very popular with existing cloud providers.
Such libraries have to be integrated into an ASRE Man-
agement Service through software integration tasks.

e resource acquisition through software deployment: re-
quired resources are not available but an ASRE Manage-
ment Service can acquire infrastructural containers and
VMs and deploy suitable services to create the required
resources. For example, ASRE can request a container
from Kubernetes and deploy MQTT into the container.

As discussed before, not all tasks can be done automatic
without certain manual integration. Adaptors can be used as
a component to interact with resource providers and resources.
We develop various adaptors to interface to existing types of
providers in order to acquire resources. Shown in Figure 3,
the way how an adaptor works with resource providers and
resources is similar to how the developer would manually
program APIs for resource acquisition. However, using a set
of adaptors (which can be updated, changed, and reused), we
can bring various types of resources for ASRE. Given that
resources can be simple or complex (e.g., a Hadoop cluster is
a complex resource), ASRE can also interact with resources
directly. To implement Adaptors we leverage containerized
microservices and serverless functions.

ASRE Management Service E ——deploy software/control

v
Adaptor E

configure/control
A
k. J k. J

Resource

deploy software’

acquire contral

R

: monitoring data
provider and

respurce information
'

! l
Resource Provider —create.-'conlml;‘configure—T

Fig. 3. Resource acquisition for ASREs: both Resource Provider and Resource
must offer well-defined APIs (not necessary REST-based APIs)

241

2021 17th International Conference on Network and Service Management (CNSM)

Management States of Resources: We distinguish two situ-

ation in managing states of resource providers and resources:

« monitoring capabilities offered by resource providers

and resources: resource providers and resources usually

have their own monitoring capabilities. In this case, we

just leverage the monitoring capabilities by subscribing

APIs. Partially shown in Figure 3, states can be received

via monitoring API. When states are published through

external monitoring systems, such as Prometheus, we will
receive states from these systems.

« monitoring capabilities instrumented: this is for resources
whose components are partially deployed by an ASRE
Management Service. For example, when an ASRE Man-
agement Service requests containers and deploys specific
software artifacts onto these containers to create specific
resources, we also deploy monitor plugins and configure
the plugins to work with a monitoring system.

Monitoring and Metrics: The first aspect is how to obtain
enough monitoring data for analyzing and managing ASRE.
We develop two different mechanisms for monitoring re-
sources within ASREs. The first one is based on runtime
service information from existing providers, whereas the sec-
ond one is based on a combination of service providers and
possible artifact deployment. Monitoring data will be obtained
through: (i) querying internal monitoring data from service
providers, (ii) intercepting interactions among resources, and
(iii) deploying additional monitoring within resources when
an ASRE Management Service deploys artifacts. This requires
us to perform various integration to existing tools and APIs.
In addition, for ASRE, aggregating monitoring data is not
enough, we also need to define which metrics can be used
to characterize ASRE as a whole. Currently, we support some
conventional metrics but develop new evaluation, especially,

for the following ASRE-as-a-whole metric:
Metrics | Evaluation

cost determined from all resources. The cost for the
whole ASRE is complex due to the involve-
ment of multiple resources at different levels
determined based on the availability of indi-
vidual resources and the ASRE topology
determined based on the reliability of individ-
ual resources and the ASRE topology

we breakdown the topology of the ASRE re-
source slice and determine elasticity for each
region (e.g., capabilities to add/remove re-
sources and costs) and for the whole ASRE.
To evaluate the metrics, we gather monitoring information
and the structure of ASRE’s resource slices and define
user-defined functions for evaluating metrics.

Elasticity: As ASREs manage resources for the developer,
ASRE elasticity must be supported. Hence elasticity for AS-
REs is not just infrastructural resource elasticity (for containers
and VMs) but a multiple dimensional elasticity with a focus
on high-level resources. Two important aspects for ASRE
elasticity are (i) to change resource capabilities and (ii) add
new capabilities. For the first case, ASRE elasticity model

availability

reliability

elasticity

is designed based on a coordination of elasticity whereas we
leverage the elasticity capability of individual providers. To
implement it, severless-based coordination may be a right
choice but currently we are only at the design phase for
the cross-layered resource coordination algorithm. To support
adaptation and change of ASRE functional capabilities at
runtime, we utilize service mesh techniques [5].

Resilience: With respect to resource failures, we consider
various failures mentioned in [6] but currently for dealing with
failures of a resource we just apply a retry mechanism with
the resource provider or a new provider, assumed that each
provider has its own resilience mechanisms for its resources.
Secret Management for ASRE: Various resources in one
ASRE will have different ways for authentication/authoriza-
tion when resources are invoked (for monitoring/control or
business functions). Usually, they have secrets (e.g., API keys,
certificates, and communication keys) for communication and
management. To manage these secrets for an ASRE in an
transparent manner to the application is also important for
automating management tasks of ASREs, such as control and
deployment of resources. ASRE assumes that such secrets can
be managed by leveraging existing secret-as-a-service, such as
Vault®>. We are investigating how to integrate common secret-
as-a-service and the SPIFEE* to support this feature.

V. EXAMPLE OF AN APPLICATION SCENARIO

The working prototype for ASRE is based on our rsiHub?

where we leverage existing resource slices and rsiHub man-
agement services to implement our ASRE concepts.
Description: A seaport analytics can invoke several types of
resources at the edge (inside the seaport), such as containers
for running analysis of gate access of trucks, MQTT and
RabbitMQ for message brokers to obtain monitoring data
about gate access of trucks, data resources about seaport light
information, weather information and vessel positions, and
Node-RED engines for event analytics. We can have different
ASRE:s for typical analytics with the seaport, such as a seaport
schedule, but also for emergency situation, such as an accident
with container trucks.
Implementation: Figure 4 shows some key resource
providers, which offer resources in the edge (e.g., sensor and
MQTT broker) or resources based on real cloud services (e.g.,
Google Big Query and cloudamgp.com). ASRE resources are
created by controlling the corresponding providers. ASRE
resources are interacted to support the application feature (such
as a realtime sensor-broker-ingestion-database pipeline) and to
control infrastructures (e.g., firewall-resource controls
the edge kubernetes system).

VI. RELATED WORK

Existing research works are focused on models for man-
aging VMs and containers for the application, assuming that
other high-level services atop containers and VMs are under

3https://www.vaultproject.io/
“https://github.com/spiffe/spiffe
SGitHub: https://github.com/rdsea/HINC

242

2021 17th International Conference on Network and Service Management (CNSM)

ASREManagementService

/

\‘Tﬂ sensor-provider

firewall-provider

firewall-resource

I amqp-provider

bigquery-provider ontrol mqtt-provider

4

I cloudamqp.com I SENSor-resource

google-bigquery

Fig. 4. Different types of ASRE resources in the seaport scenario (a solid
line denotes control actions, a dashed line denotes a data flow)

the responsibility of the application. Our work differs from
them that we look at a high-level of resources. For example,
works in [7], [8], [9] focus mostly on VMs and containers.
Such efforts produce information models that can be part of
ASREs and thus can be leveraged for abstracting capabilities
of IoT services and network services. However, they do not
address the modeling of ASREs in our view. Many industrial
specifications allow us to define resource structures. Similarly,
centered around TOSCA [10], various papers and projects have
developed tools for specifying cloud resource topologies for
automated deployment. These works are related to resource
slices and management in ASREs. However, ASREs are not
about resource topologies for deployment but include certain
types of information about resources and their properties. An
ASRE instance is an abstract entity virtualizing cross-layered
cross-system resources for the application.

Recently, there has been work discussing about the in-
telligent distribution between the edge and the cloud [11].
However, they do not introduce concepts to manage and
programming resources for specific IoT services across the
edge and the cloud. In cloud and edge computing, many
papers have presented various resource scheduling, elasticity
and optimization solutions. ASRE will need to address similar
solutions in key designs for ASRE. Recently, Baresi et. al
presented a mode for managing continuum applications which
are deployed in continuum edge and cloud [12]. They focus on
the applications, which are executed in edge-cloud platforms,
assuming that the platforms will provide resources for the
applications. Our work focuses on continuum resources, which
can be used for application-specific contexts.

VII. CONCLUSIONS AND FUTURE WORK

ASRE is a high-level concept with the aim to simplify how

the developer manages the application-specific resources in
edge-cloud environments, which are not just infrastructural
containers or VMs. We have explained how ASRE deals with
many technical and integration details due to the diversity
of edge and cloud resources. We currently elaborate ASRE
models, especially, security models and elasticity models to
enable elastic edge-cloud mesh of resources. Another aspect
is to provide the model of ASRE-as-a-service, which enhances
the proposed ASRE Management Service with zero trust
designs.
Acknowledgments: We thank Lingfan Gao for implementing
preliminary work on resource slices used as the basis for
ASRE. We are grateful to the Karajan consortium in giving
comments about the concepts of ASRE. A longer version of
this paper is available at https://bit.ly/3eRuSyW.

REFERENCES

[11 W. Yu, E Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A
survey on the edge computing for the internet of things,” IEEE Access,
vol. 6, pp. 6900-6919, 2018.

[2] Seldon. Last access: April 4, 2020.
/Iwww.seldon.io

[3] S. A. Noghabi, J. Kolb, P. Bodik, and E. Cuervo, “Steel: Simplified de-
velopment and deployment of edge-cloud applications,” in /0th USENIX
Workshop on Hot Topics in Cloud Computing, HotCloud 2018, Boston,
MA, USA, July 9, 2018., 2018.

[4] H. Truong, L. Gao, and M. Hammerer, “Service architectures and
dynamic solutions for interoperability of iot, network functions and
cloud resources,” in Proceedings of the 12th European Conference on
Software Architecture: Companion Proceedings, ECSA 2018, Madrid,
Spain, September 24-28, 2018, 2018, pp. 2:1-2:4.

[5] O. Sheikh, S. Dikaleh, D. Mistry, D. Pape, and C. Felix, “Modernize
digital applications with microservices management using the istio ser-
vice mesh,” in Proceedings of the 28th Annual International Conference
on Computer Science and Software Engineering, ser. CASCON ’18.
Riverton, NJ, USA: IBM Corp., 2018, pp. 359-360.

[6] D. G. Choudhury and T. Perrett, “Designing cluster schedulers for
internet-scale services,” Queue, vol. 16, no. 1, pp. 30:98-30:119, Feb.
2018.

[71 V. Medel, O. Rana, J. . Baares, and U. Arronategui, “Modelling perfor-
mance amp; resource management in kubernetes,” in 2016 IEEE/ACM
9th International Conference on Utility and Cloud Computing (UCC),
Dec 2016, pp. 257-262.

[8] R.-A. Cherrueau, A. Lebre, D. Pertin, F. Wuhib, and J. M. Soares, “Edge
computing resource management system: a critical building block!
initiating the debate via openstack,” in USENIX Workshop on Hot Topics
in Edge Computing (HotEdge 18). Boston, MA: USENIX Association,
2018.

[9]1 X. Masip-Bruin, E. Marin-Tordera, A. Juan-Ferrer, A. Queralt, A. Jukan,

J. Garcia, D. Lezzi, J. Jensen, C. Cordeiro, A. Leckey, A. Salis, D. Guil-

hot, and M. Cankar, “mf2c: Towards a coordinated management of the

iot-fog-cloud continuum,” in Proceedings of the 4th ACM MobiHoc

Workshop on Experiences with the Design and Implementation of Smart

Objects, ser. SMARTOBJECTS ’18. New York, NY, USA: ACM, 2018,

pp. 8:1-8:8.

T. Binz, G. Breiter, F. Leyman, and T. Spatzier, “Portable cloud services

using tosca,” IEEE Internet Computing, vol. 16, no. 3, pp. 80-85, May

2012.

F. Jalali, O. J. Smith, T. Lynar, and F. Suits, “Cognitive iot gateways:

Automatic task sharing and switching between cloud and edge/fog

computing,” in Proceedings of the SIGCOMM Posters and Demos, ser.

SIGCOMM Posters and Demos *17. New York, NY, USA: ACM, 2017,

pp- 121-123.

L. Baresi, D. F. Mendonga, M. Garriga, S. Guinea, and G. Quattrocchi,

“A unified model for the mobile-edge-cloud continuum,” ACM Trans.

Internet Technol., vol. 19, no. 2, pp. 29:1-29:21, Apr. 2019.

[Online]. Available: https:

[10]

(11]

[12]

243

