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José Santos, Jeroen van der Hooft, Maria Torres Vega, Tim Wauters, Bruno Volckaert and Filip De Turck
Ghent University - imec, IDLab, Department of Information Technology

Technologiepark-Zwijnaarde 126, 9052 Gent, Belgium
Email: josepedro.pereiradossantos@UGent.be

Abstract— Immersive media services, such as Augmented and
Virtual Reality (AR/VR) are getting significant attention in recent
years with the promise of bringing immersive experiences to end
users. However, despite the remarkable advances in the field,
AR/VR applications are mostly local and individual experiences.
The main obstacle between current technology and future remote,
multi-user AR/VR applications is the stringent end-to-end (E2E)
latency requirement, which cannot exceed 20 ms to avoid motion
sickness. Emerging AR/VR services put even more pressure on
current network infrastructures, calling for considerable ad-
vancements toward fully cloud-native architectures. Cloud-based
VR services, where participants can virtually interact across vast
distances, remain a distant dream. Several challenges still arise
concerning the deployment and management of VR services. This
paper presents a Mixed-Integer Linear Programming (MILP)
formulation for the efficient orchestration of VR services in fog-
cloud infrastructures. The model considers Fog Computing (FC),
an extension of cloud computing, and Segment Routing (SR),
which leverages the source routing paradigm. The evaluation of
realistic VR container-based service chains shows that deploying
VR components hosted in a fog-cloud infrastructure can satisfy
the 20 ms latency boundary.

Index Terms—Resource Allocation, Service Function Chaining,
Virtual Reality, Fog Computing, Segment Routing, ILP

I. INTRODUCTION

Recently, a huge interest has grown over the commercializa-
tion of immersive media services, such as Augmented and Vir-
tual Reality (AR/VR) applications [1], Free-Viewpoint Video
(FVV) [2] and 360-degree video services [3]. Vertical markets
such as healthcare and manufacturing are adopting immersive
services to increase efficiency and productivity through virtual
training systems and remote collaboration between workers
[4]. In the consumer domain, immersive entertainment expe-
riences (e.g. gaming, music concerts, sporting events) are also
gaining significant attention.

Despite recent remarkable technological advancements, VR
experiences remain mostly individual and local due to the
expensive hardware (e.g. high-end PC) and stringent network
requirements (e.g. millisecond latency). Cloud-based VR ser-
vices, where users can virtually interact with each other across
long distances, remain a distant dream [1]. The great barrier
standing between current technology and such remote multi-
user immersive applications is the stringent end-to-end (E2E)
latency requirement. VR developers and industries agree that
application round-trip latency needs to remain below 20 ms for
the Motion-To-Photon (MTP) latency to become imperceptible

[5]. High latency leads to poor VR experiences and motion
sickness [6]. Current locally deployed VR systems are fine-
tuned to meet the 20 ms threshold in their Head-Mounted
Displays (HMDs). However, achieving this 20 ms for remote
experiences is quite challenging.

Emerging VR services placed even more pressure on cur-
rent cloud-based infrastructures, calling for solutions with in-
network computation. Applications are then split into mi-
croservices and deployed close as possible to end users since
centralized and monolithic cloud deployments cannot meet
latency requirements. Adopting fog-cloud infrastructures can
overcome the shortcomings of centralized clouds, reducing the
network latency to deliver low latency service delivery in a
continuum of virtual resources [7]. In [8], SRFog has been
presented, an architecture adopting Fog Computing (FC) and
Segment Routing (SR) for VR content delivery. In [9], an IoT
service placement approach for FC environments has been
proposed. This paper builds further on both works by pre-
senting a Mixed-Integer Linear Programming (MILP) model
for VR service orchestration in SRFog. Several additions
have been made to the previous modeling [9] in terms of
microservice replication, latency sources, among others. The
goal is to optimize traffic flow in container-based service
chains since SR provides a high level of flexibility when de-
signing specific chain paths for different User Groups (UGs).
These paths are placed into packet headers as an ordered list
of instructions, simplifying traffic engineering and delivering
lower E2E latency. VR service chains based on live scenarios
have been designed to evaluate the model. Results show that
deploying VR components hosted in a fog-cloud infrastructure,
combined with view prediction services, satisfies the MTP
latency threshold of 20 ms.

The remainder of the paper is organized as follows. Related
work is discussed in Section II. Section III presents the MILP
model for VR content delivery. Section IV introduces the
VR service chains. Then, the evaluation setup is described
in Section V, which is followed by the results in Section VI.
Finally, conclusions are presented in Section VII.

II. RELATED WORK

Resource allocation for VR services has recently gained
significant attention in the field of FC. In [10], QoE models
have been proposed for Quality of Service (QoS) assessment
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in FC regarding system and users. The QoE has been formu-
lated as a joint resource allocation problem under different
transmission rates. A dynamic algorithm based on the shortest
path tree has also been presented. Evaluations have shown high
QoE performance but did not consider latency implications.
In [11], a framework for 360-degree video distribution in an
FC environment has been presented. Their approach follows
microservice design patterns across three computing tiers:
cloud, edge, and fog. Results have shown benefits regarding
deployment costs and bandwidth consumption. In [12], a Fog
Radio Access Network (F-RAN) framework for mobile VR
delivery has been proposed. The authors aim to increase
spectral efficiency by maximizing the average tolerable delay
while meeting high transmission rate requirements. Results
have shown that local caching and computing improve the
average delay. In [13], FC has been presented as an immersive
media enabler. The authors propose several service scenarios
and identify key technologies (e.g. F-RAN) for the support of
VR content delivery. Service Function Chaining (SFC) nor SR
have been studied. Recently, in [14], an allocation mechanism
for VR content with QoE support has been presented. The
work focuses on deploying microservices based on transmis-
sion delays, migration time, and resource usage. Results have
demonstrated that reducing the number of stalls, stall duration
and buffering time improves the delivered QoE to end users.
However, the complete E2E path is not addressed.

With the advent of the Internet of Things (IoT), resource
allocation in FC infrastructures has also become an important
research topic. In [15], two placement strategies in FC based
on matching game algorithms have been introduced. The
first strategy considers SFC concepts and the corresponding
ordered sequence of services requested by each application.
The second one overlooks the SFC structure, to lower the
computation complexity without losing performance. Results
have shown the increased performance of the stated methods.
In [16], bayesian learning techniques have been proposed for
resource allocation in FC. The authors focus on the dynamic
scaling of resources according to the current network demand.
Simulations have shown reduced costs and minimum delay
violations. In [17], a resource allocation approach based on
dynamic deadline-based requirements has been presented. It
hierarchically provisions resources by considering dynamic
changes in user requirements and the limited available re-
sources in fog nodes. Simulations have shown improvements
concerning data processing time, allocation costs, and network
delay compared to existing methods.

Most works have not addressed realistic E2E latency de-
mands. Also, only a few studies have analyzed service chain-
ing or container-based applications. Latency-aware approaches
did not cover all latency sources as we consider in our model.
These works focus on reducing the network latency in the SFC.
In contrast, our model considers the complete E2E path: VR
scene latency (content location), network latency, microservice
execution time, and user-perceived latency (user location). To
the best of our knowledge, our work goes beyond the current
literature by considering all these latency sources.

TABLE I: Input variables of the MILP model.

Symbol Description
N The set of nodes on which microservice instances are executed.

A
The set of all VR applications. Each application consists of a
set of different microservices.

S The set of all microservices.
ID The set of SFC Identifiers (IDs).
U The set of User Groups (UGs).
V R The set of VR scenes (i.e. content).
L The set of locations where applications are deployed.

Φu,a
The user assignment matrix. If Φu,a = 1, the UG u accesses
the application a.

ρa The maximum number of UGs for an application.
ρs The maximum number of UGs for a microservice.
κs The computing cost of each microservice s.
λu The UG u association cost for the assigned application.
β The maximum replication factor for each microservice.

υs
The SFC first position indicator. If υs = 1, the microservice s
is the first microservice in the service chain.

ιs
The SFC last position indicator. If ιs = 1, the microservice s
is the last microservice in the service chain.

Ia,s
The Instance matrix. If Ia,s = 1, the microservice s belongs
to application a.

$n The cost (in units) of the node n.
Ωn The total CPU capacity (in cpu) of the node n.
Γn The total memory capacity (in Mi) of the node n.
∆n The bandwidth capacity (in Mbps) of the node n.
ωs The CPU requirement (in cpu) of the microservice s.
γs The memory requirement (in Mi) of the microservice s.
δs The bandwidth requirement (in Mbps) of the microservice s.

Bn1,n2

The bandwidth matrix indicates the available capacity (in
Mbps) between the node n1 and the node n2.

τn1,n2

The node matrix indicates the latency (in ms) between the node
n1 and the node n2.

τl1,l2
The location matrix indicates the latency (in ms) between the
location l1 and the location l2.

τn,l
The node location matrix indicates the latency (in ms) between
the node n and the location l.

τu,l
The user location matrix indicates the latency (in ms) between
the UG u and the location l.

τu,n
The user node matrix indicates the latency (in ms) between the
UG u and the node n.

τvr,n
The scene node matrix indicates the latency (in ms) between
the scene vr and the node n.

Csi,sj
The communication matrix indicates the minimum bandwidth
(in Mbps) required between the microservices si and sj .

En,l If En,l = 1, the node n is at location l.
Eu,l If Eu,l = 1, the UG u is at location l.
Evr,l If Evr,l = 1, the scene vr is at location l.

αsi,sj
The service matrix. If αsi,sj = 1, the flow bandwidth between
the microservices si and sj is guaranteed.

III. TOWARD LATENCY-AWARE SFC ALLOCATION FOR VR
IN FOG-CLOUD INFRASTRUCTURES

A. Model description & Variables

The MILP model significantly extends the authors recent
work [9]. Several additions have been made to the model
regarding service chaining and E2E latency. The most relevant
ones are the following:

• Inclusion of novel decision variables: user chain associ-
ations, execution time of microservices and SFC latency.

• Two different objectives: MIN deployment costs and MIN
E2E latency.

Table I shows input variables, while Table II presents deci-
sion variables. All variables added to previous work have been
underlined: five input variables and eight decision variables.
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TABLE II: Decision variables of the MILP model.

Symbol Description

Ga,id
The acceptance matrix. If Ga,id = 1, the applica-
tion a with the SFC ID id is allocated.

Ga,id,s

The microservice acceptance matrix. If Ga,id,s =
1, the microservice s for the application a with the
SFC ID id is allocated.

Gu,a,id
The user accept. matrix. If Gu,a,id = 1, the UG
u joins application a with SFC ID id.

βa,id,s
The replication factor for the microservice s be-
longing to application a with SFC ID id.

Pa,ids,βi
(n)

The placement matrix. If Pa,ids,βi
(n) = 1, the

replica βi of microservice s is executed on node
n for the application a with SFC ID id.

Un
The node utilization matrix. If Un = 1, at least
one microservice instance is allocated on node n.

Uu,a,ids,βi
(n)

The user association matrix. If Uu,aid,s,βi
(n) = 1,

the UG u associates with the replica βi of mi-
croservice s allocated on node n for the application
a with SFC ID id.

U
u,a,id,si
βi,sj ,βj

(n1, n2)

The SFC matrix. If Uu,a,id,siβi,sj ,βj
(n1, n2) = 1, the

UG u traffic traverses the path from the replica
βi of microservice si allocated on node n1 to the
replica βj of microservice sj allocated on node n2

for the application a with SFC ID id.

F
u,a,id,si
βi,sj ,βj

(n1, n2)

The user flow matrix contains the amount of band-
width (in Mbps) reserved for the UG u for the
communication between the replica βi of microser-
vice si allocated on node n1 and the replica βj of
microservice sj allocated on node n2 to access
application a with SFC ID id.

Ta,ids,βi
(n)

The computing matrix indicates the execution time
(in ms) of the replica βi of microservice s executed
on node n for the application a with SFC ID id.

Tu,s
The user computing matrix indicates the execution
time (in ms) of microservice s affecting UG u.

Tu
The computing latency matrix indicates the total
execution time (in ms) of all micro-services asso-
ciated with UG u.

ζU

The scene latency matrix indicates the propagation
time (in ms) from the VR scene to reach the first
microservice in the SFC assigned to UG u.

ψu

The user-perceived latency matrix indicates the
transmission time (in ms) of a request from the
UG u to reach the last microservice in the assigned
service chain.

Λu

The SFC latency matrix indicates the transmission
time (in ms) of requests coming from UG u to
traverse the assigned service chain.

εu

The E2E latency matrix indicates the time (in ms)
from a VR scene up to UG u after traversing the
assigned service chain.

The model decomposes an application A in a set of different
microservices S. A specific SFC Identifier (ID) id is associated
with each application A. The maximum number of instances
per service chain for all microservices is given by β. The
replication factor for a microservice s from application a with
the SFC ID id is given by βa,id,s. The MILP model determines
the number of instances for each microservice depending on
the considered objective (e.g. minimizing deployment costs,
reducing E2E latency). Users are aggregated into UGs u ε U
to access a particular application a and the corresponding mi-
croservices. A VR scene vr (i.e. content) is at a given location
l in the network area. The fog-cloud infrastructure is deployed
across all locations L, each corresponding to a particular Point
of Presence (PoP). Each PoP provides computing resources

based on the set of nodes N , enabling the deployment of
microservice instances based on their requirements and subject
to multiple constraints. Each microservice s has a minimum
CPU and memory requirement represented by ωs (in cpu) and
γs (in Mi) respectively. For instance, a CPU requirement equal
to 1.0 cpu (i.e. 1000 millicpu) indicates that each microservice
instance requires at least a core to operate properly. Also,
each microservice s has a minimum bandwidth requirement
represented by δs (in Mbps), while $n corresponds to the
associated node cost (e.g. edge and fog nodes have a lower cost
than cloud nodes). Node costs are based on Amazon EC2 On-
Demand Pricing [18] further detailed in Section V. A binary
placement matrix P represents microservice deployments. If
Pa,ids,βi

(n) = 1, the replica βi of microservice s is allocated
on node n for the application a with SFC ID id. A user
association matrix U represents user chain associations. If
Uu,a,ids,βi

(n) = 1, the UG u is connected to the replica βi of
microservice s provisioned on node n. In addition, the SFC
matrix U represents specific chain paths assigned to a given
UG u. The MILP model determines a specific route for the
traffic of each UG u depending on the deployed microservices
and in the considered objective.

Multiple decision variables related to computing time T
have also been added to the model. T a,ids,βi

(n) indicates the
execution time (in ms) of a particular replica, while Tu,s
indicates the execution time (in ms) of the instance of mi-
croservice s associated with UG u. The execution time of
each microservice instance increases depending on the number
of UGs associated. Further details on how execution time
is affected by the number of user associations are given in
the next section. Also, several decision variables have been
included in the model to formulate the E2E latency expected
by each UG. First, ζU corresponds to the VR scene latency
(content location). Second, Λu relates to the network latency
(SFC) associated with UG u. Third, Tu corresponds to the
microservice execution time associated with UG u, while ψu
relates to the user-perceived latency (user location). Finally, εu
indicates the transmission time (in ms) of the complete E2E
path, from a VR scene up to the UG u after traversing the
assigned service chain. Objectives and constraints are detailed
in the next section, including further explanations on all
latency variables. Constraints from [9] have been considered
in this extended model. To avoid repetition, only constraints
related to novel variables are described.

B. Objectives & Constraints

1) Minimization of the E2E Latency (MIN E2E): This
objective relates to the E2E latency reduction of each UG.
Multiple constraints have been added to reflect the exten-
sions regarding service chain path selection and microservice
execution time. The MILP model decides on which nodes
microservices instances should be allocated but also on the
number of instances required to minimize E2E latency for all
UGs. It could be more beneficial to allocate extra microservice
instances to reduce the E2E latency expected by each UG than
merely just associating several UGs to the same instance.
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Firstly, the constraint shown in (1) states that all deployed
microservice instances require at least one UG associated.
Secondly, specific chain paths are determined for each UG
depending on the deployed microservice instances and the
proper chain operation, expressed by the Flow Factor Υsi, sj
as shown in (2). Constraint (3) guarantees that all paths
are calculated based on user associations and constraint (4)
ensures all required paths are associated with each UG.

∀a ε A, id ε ID, s ε S, βi ε β, n ε N :∑
u ε U

Uu,a,ids,βi
(n) ≥ 1.0 if P a,ids,βi

(n) = 1 (1)

Υsi, sj = Ia,si × Ia,sj × αsi,sj (2)

∀u ε U, ∀a ε A, id ε ID, si ε S, βi ε β, sj ε S, βj ε β,
∀n1 ε N,∀n2 ε N :

Uu,a,id,siβi,sj ,βj
(n1, n2) = 0 if Uu,a,idsi,βi

(n1) = 0 ∨ Uu,a,idsj ,βj
(n2) = 0

(3)

∀u ε U :
∑
a ε A

∑
id ε ID

∑
si ε S

∑
βi ε β

∑
sj ε S

∑
βj ε β

∑
n1 ε N

∑
n2 ε N

Uu,a,id,siβi,sj ,βj
(n1, n2)×Υsi, sj =

∑
si ε S

∑
sj ε S

αsi,sj
(4)

Thirdly, the flow matrix F has been subjected to various
constraints to accurately represent network flows: bandwidth
capacity limitations (5) and flow conservation (6).

∀n1 ε N,∀n2 ε N :
∑
u ε U

∑
a ε A

∑
id ε ID

∑
si ε S

∑
βi ε β

∑
sj ε S

∑
βj ε β

Fu,a,id,si,βi

sj ,βj
(n1, n2) ≤ Bn1,n2

(5)

∀u ε U, ∀a ε A, id ε ID, si ε S, βi ε β, sj ε S, βj ε β,
∀n1 ε N,∀n2 ε N :

Fu,a,id,si,βi

sj ,βj
(n1, n2) =

{
Csi,sj if Uu,a,id,si,βi

sj ,βj
(n1, n2) = 1

0 if Uu,a,id,si,βi

sj ,βj
(n1, n2) = 0

(6)

Fourthly, constraints regarding computing matrices T have
also been included. Constraint (7) represents the execution
time of each microservice instance affected by the total
number of user associations based on its computing cost κs.
Constraint (8) formulates the execution time of each instance,
while constraint (9) determines the computing latency.

∀a ε A, id ε ID, s ε S, βi ε β, n ε N :

T a,ids,βi
(n) =

∑
u ε U

Uu,a,ids,βi
(n)× κs (in ms) (7)

∀u ε U, ∀a ε A, id ε ID, s ε S, βi ε β, n ε N :

Tu,s = T a,ids,βi
(n) (in ms) if Uu,a,ids,βi

(n) = 1
(8)

∀u ε U : Tu =
∑
s ε S

Tu,s (in ms) (9)

Then, several constraints address the novel latency variables.
Constraint (10) represents the user-perceived latency. If the
instance is deployed on a node far from the UG, the latency
is thus higher. Constraint (11) expresses the scene latency and
constraint (12) determines the SFC latency. Finally, constraint
(13) combines all latency variables, formulating the E2E
latency εu. The E2E latency minimization is then expressed
as shown in (14).

∀u ε U, a ε A, id ε ID, s ε S, βi ε β, n ε N :

ψu = τu,n (in ms) if ιs × Uu,a,ids,βi
(n) = 1

(10)

∀vr ε V R,∀u ε U, a ε A, id ε ID, s ε S, βi ε β, n ε N :

ζU = τvr,n (in ms) if υs × Uu,a,ids,βi
(n) = 1

(11)

∀u ε U : Λu =
∑
a ε A

∑
id ε ID

∑
si ε S

∑
βi ε β

∑
sj ε S

∑
βj ε β

∑
n1 ε N

∑
n2 ε N

τn1,n2 × U
u,a,id,si
βi,sj ,βj

(n1, n2)

(12)

∀u ε U : εu︸︷︷︸
E2E latency

= ζU︸︷︷︸
Scene

+ Tu︸︷︷︸
Computing

+ Λu︸︷︷︸
SFC

+ ψu︸︷︷︸
User

(13)

min
∑
u ε U

εu (14)

2) Minimization of the Deployment cost (MIN Cost): The
deployment cost estimation has been reformulated in this ex-
tended version of the MILP model. This objective relates to the
number of active nodes used in the service allocation, resulting
in hardware costs and energy consumption. Constraint (15)
reflects the relation between the placement matrix P and the
node utilization matrix Un. A node is active only if any
microservice instance is deployed on that node. The goal is to
reduce deployment costs by selecting nodes with lower cost
achieving greener deployment schemes. The minimization of
the deployment cost is expressed as shown in (16) by using
the node utilization matrix Un and the node cost $n.

∀n ε N :

Un =


1.0 if

∑
a ε A

∑
id ε ID

∑
s ε S

∑
βi ε β

P a,ids,βi
(n) ≥ 1

0.0 if
∑
a ε A

∑
id ε ID

∑
s ε S

∑
βi ε β

P a,ids,βi
(n) = 0

(15)
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min
∑
n ε N

$n × Un (16)

IV. VIRTUAL REALITY (VR) USE CASES

Fig. 1 illustrates the container-based VR use cases, while
Table III shows the correspondent deployment requirements.
First, a live scenario has been assessed, in which all services
represent a different network function required to capture the
VR content. Second, a view prediction service is added to
the service chain. The purpose of deploying view prediction
services is that only a limited part of the video (i.e. the
viewport) is watched by the user. Recently, adaptive tile-
based video streaming techniques [19] have been proposed
to cut the video into temporal segments and spatial tiles
instead of sending the whole content directly to the user
aiming to save bandwidth by predicting the user field of view
(FoV). Each tile (i.e. video portion) can be requested at a
different quality level, prioritizing content within the viewport.
Effectively predicting the future user FoV (a few seconds
ahead) helps save bandwidth while minimizing video freezing
under bandwidth variations [19]. View prediction allows for
prefetching ahead of time, so the content is not served from
the central server anymore, but from the cluster node where
the view prediction service is deployed. The E2E latency
formulation has been adapted for this scenario since the user-
perceived latency starts in the view prediction service. The
model has been adapted as follows:

• User computing Tu,s (17).
• SFC latency Λu (18).
• E2E Latency εu (19).
The input variable µs indicates which microservices are

considered when a view prediction service is deployed. The
aim is to quantify the differences regarding service placement
when view prediction is added to the chain by evaluating both
live scenarios. Regarding the deployment properties, UGs are
associated with microservice instances based on service slots
ρs and user costs λu. For instance, for the Capturing (s1)
service with ten slots, since each UG has a unit cost (i.e.
1), each instance can host up to ten UGs. In addition, the
computing cost of each microservice (κs) affects the total
processing time as previously described.

∀u ε U, ∀a ε A, id ε ID, s ε S, βi ε β, n ε N :

Tu,s = T a,ids,βi
(n)× µs (in ms) if Uu,a,ids,βi

(n) = 1
(17)

∀u ε U : Λu =
∑
a ε A

∑
id ε ID

∑
si ε S

∑
βi ε β

∑
sj ε S

∑
βj ε β

∑
n1 ε N

∑
n2 ε N

τn1,n2
× Uu,a,id,siβi,sj ,βj

(n1, n2)× µs1 × µs2
(18)

∀u ε U : εu︸︷︷︸
E2E latency

= Tu︸︷︷︸
Computing

+ Λu︸︷︷︸
SFC

+ ψu︸︷︷︸
User

(19)

(a) Live scenario.

(b) Live scenario with view prediction.

Fig. 1: Illustration of the evaluated VR service chains.

Fig. 2: High-level view of the fog-cloud infrastructure.

V. EVALUATION SETUP

A. The fog-cloud infrastructure & Input Variables

Fig. 2 illustrates the evaluated infrastructure deployed on
twelve locations L (12 PoPs). Table IV shows the hardware
configurations of each node. The bandwidth matrix Bn1,n2

is based on the available bandwidth capacity. The maximum
replication factor β for each microservice has been set to 4.
The VR content has been considered close to the cloud (i.e.
location 4), while UGs have been randomly placed on edge
locations (i.e. 1, 5, 7, 8, 11). Latency on the access links has
been assumed as 1 ms with a connection of 1 Gbps. All latency
matrices τ are calculated based on the shown latency values.

B. Optimization Policies

The described MILP formulation has been implemented
in Python using the IBM ILOG CPLEX ILP solver [20].
Opposing strategies considering the objectives previously pre-
sented have been evaluated: policy A calculates the MIN E2E
objective while policy B relates to the MIN Cost strategy.
The model has been executed on the imec Virtual Wall
infrastructure [21] at IDLab, Belgium. Cluster nodes have been
requested to run the experiments (2 x 8-core Intel Xeon E5-
2650v2 @ 2.6 GHz processor with 48 GB of memory). The
policies have been executed 30 times and confidence intervals
of 95% have been considered.
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TABLE III: Deployment properties of the VR use cases.

Application Service Name Chain
Position

Computing
cost (in ms)

CPU
(cpu)

RAM
(Mi)

Min. Band.
(Mbps)

Service
Slots

User
Cost

Live (a1)

Capturing (s1) 1 1.0 (κs1 ) 1.0 (ωs1 ) 1.0 (γs1 ) 1000.0 (δs1 ) 10 (ρs1 )

1.0 (λu)

Encoding (s2) 2 2.0 (κs2 ) 2.0 (ωs2 ) 2.0 (γs2 ) 1000.0 (δs2 ) 5 (ρs2 )
Merging (s3) 3 1.0 (κs3 ) 1.0 (ωs3 ) 1.0 (γs3 ) 100.0 (δs3 ) 5 (ρs3 )
Transport (s4) 4 1.0 (κs4 ) 1.0 (ωs4 ) 1.0 (γs4 ) 100.0 (δs4 ) 10 (ρs4 )
Rendering (s6) 5 1.0 (κs6 ) 1.0 (ωs6 ) 1.0 (γs6 ) 100.0 (δs6 ) 10 (ρs6 )

Live with View
Prediction (a2)

Capturing (s1) 1 1.0 (κs1 ) 1.0 (ωs1 ) 1.0 (γs1 ) 1000.0 (δs1 ) 10 (ρs1 )

1.0 (λu)

Encoding (s2) 2 2.0 (κs2 ) 2.0 (ωs2 ) 2.0 (γs2 ) 1000.0 (δs2 ) 5 (ρs2 )
Merging (s3) 3 1.0 (κs3 ) 1.0 (ωs3 ) 1.0 (γs3 ) 100.0 (δs3 ) 5 (ρs3 )
Transport (s4) 4 1.0 (κs4 ) 1.0 (ωs4 ) 1.0 (γs4 ) 100.0 (δs4 ) 10 (ρs4 )

View prediction (s5) 5 2.0 (κs5 ) 2.0 (ωs5 ) 2.0 (γs5 ) 100.0 (δs5 ) 5 (ρs5 )
Rendering (s6) 6 1.0 (κs6 ) 1.0 (ωs6 ) 1.0 (γs6 ) 20.0 (δs6 ) 10 (ρs6 )

TABLE IV: The hardware configuration of each node based
on Amazon EC2 On-Demand Pricing [18].

Node Type Amazon Image /
Cost ($/h)

Cost ($n
in units)

CPU
(cpu)

RAM
(Mi)

Band.
(Gbps)

Cloud a1.4xlarge (0.408) 8.0 16.0 32.0 40.0
Fog Tier 2 a1.2xlarge (0.204) 4.0 8.0 16.0 10.0
Fog Tier 1 a1.xlarge (0.102) 2.0 4.0 8.0 5.0

Edge a1.large (0.051) 1.0 2.0 4.0 1.0

VI. RESULTS

The MILP model shows that optimizing service placement
for E2E latency reduction is complex, needing significant
execution time (Fig. 3a). A 12-hour limitation has been
introduced in the model for all scenarios. Fig. 3b shows the
optimality gap retrieved from CPLEX for the live scenario.
The optimality gap measures the difference between the best
lower and upper bounds. By increasing the number of UGs, the
execution time of all objectives increases due to the increased
allocation complexity. The MILP model already reaches the
12-hour limitation for two UGs for the MIN E2E objective
while requiring on average 7.7 minutes for the (MIN Cost
strategy. A trade-off between latency and deployment costs
has been obtained (Fig. 3c and Fig. 3d). The experiments show
that the MIN E2E objective can still reduce the latency despite
not reaching 0% optimality gap and the lack of progress in
the best integer solution [22]. The depth-first search algorithm
from CPLEX, where each decision variable is a branch in a
search tree, retrieves solutions with the best overall values for
all scenarios in 12 hours. The application of discount factors
in the MIN E2E objective could still reduce its execution time
but is out of the scope of this work. The MIN E2E objective
provides on average 19 ms latency to its users while the MIN
Cost objective achieves on average latency between 40 and 80
ms throughout the experiment. The live scenario is challenging
to implement since a large service chain (i.e. 5 services) needs
to be deployed to capture the VR content (s1, s2, s3) and then
transport the video feeds to each UG (s4, s6). Even the MIN
E2E objective cannot meet the 20 ms MTP threshold for a
high number of UGs (i.e. more than 6). In contrast, Fig. 4
shows that adding view prediction services to the service chain
significantly reduces the perceived latency since the user FoV

is predicted and the content is effectively served from the edge
or fog node instantiating s5. The MIN E2E objective obtains
latency between 6 and 12 ms while the MIN Cost strategy
achieves on average latency between 18 and 40 ms throughout
the experiment (Fig. 4a). As expected, lower latency translates
into higher deployment costs (Fig. 4b). The MIN E2E objective
already obtains total deployment costs between 25 and 30
units for only four UGs while the MIN Cost strategy achieves
allocation schemes with total costs of 4 units.

In summary, several factors affect the latency expected by
end users in the E2E path. Our model shows that service
placement plays a key role, but also service replication and
user path calculations. Adding multiple users to the same
microservice instance has a direct impact on the perceived
latency since services may take longer to respond. Two op-
posing strategies have been evaluated for distinct use cases. It
is difficult to meet the requirements for live scenarios but the
addition of microservices in the chain such as view prediction
and prefetching further helps to reduce the expected latency
and to reach the 20 ms MTP threshold.

VII. CONCLUSIONS

Next-generation VR systems deployed through container-
based service chains on fog-cloud infrastructures can meet
the maximum 20 ms E2E MTP threshold. Higher latency
would lead to poor VR experiences and a lack of adoption for
cloud-based VR services. This paper has presented a MILP
formulation for the efficient orchestration of VR services
leveraging FC and SR. The model optimizes service chain
allocations based on E2E latency reduction and applies SR for
traffic steering in service chains based on user associations.
Opposing strategies have been evaluated for VR use cases
showing significant differences. Live scenarios are difficult to
implement under limited resources. However, the addition of
view prediction services reduces the user-perceived latency.
The model shows the benefits of FC and SR concerning E2E
latency and provides a reference benchmark for research cover-
ing VR service allocation. Results demonstrate that deploying
VR components hosted in a fog-cloud infrastructure, combined
with view prediction services can support 20 ms latency. As
future work, the study of reinforcement learning for resource
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Fig. 3: The evaluation shows that the live scenario is difficult under limited resources. Users experience an average latency of
19 ms even when optimizing E2E latency.
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Fig. 4: The addition of view prediction to the live scenario
helps to reduce the user-perceived latency.

allocation and auto-scaling is already planned to evaluate the
performance of these methods at reduced execution times.
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