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Abstract—Edge Computing (EC) provides delay protection
for some delay-sensitive network services by deploying cloud
infrastructure with limited resources at the edge of the network.
In addition, Network Function Virtualization (NFV) implements
network functions by replacing traditional dedicated hardware
devices with Virtual Network Function (VNF) that can run on
general servers. In NFV environment, Service Function Chaining
(SFC) is regarded as a promising way to reduce the cost of
configuring network services. NFV therefore allows to deploy
network functions in a more flexible and cost-efficient manner,
and schedule network resources according to the dynamical
variation of network traffic in EC. For service providers, seeking
an optimal SFC embedding scheme can improve service perfor-
mance and reduce embedding cost. In this paper, we study the
problem of how to dynamically embed SFC in geo-distributed
edge clouds network to serve user requests with different delay
requirements, and formulate this problem as a Mixed Integer
Linear Programming (MILP) which aims to minimize the total
embedding cost. Furthermore, a novel SFC Cost-Efficient em-
Bedding (SFC-CEB) algorithm has been proposed to efficiently
embed required SFC and optimize the embedding cost. Based on
the results of trace-driven simulations, the proposed algorithm
can reduce SFC embedding cost by up to 37% compared with
state-of-the-art schemes (e.g., RDIP).

Index Terms—Network Function Virtualization, Edge Comput-
ing, Service Function Chaining, traffic routing

I. INTRODUCTION

Benefiting from the development of mobile communica-
tion (e.g., 5G) and Internet of Things (IoT), the variety of
mobile network services is growing rapidly, e.g., augmented
reality, driving assistant service, personal health assistant. Such
services are usually computing intensive and have different
delay sensitivity. For some delay-sensitive services, if they
are deployed on public cloud for processing, the propagation
delay on backbone network can hardly satisfy their delay
requirement. Edge computing (EC) has been proposed to han-
dle the imperative requirements of vast computing resources
and low delay at network edge [1], [2]. As a supplement of
cloud computing, EC can reduce end-to-end delay effectively
by providing resource-limited cloud infrastructures at network
edges.

Similar to general datacenters, efficient cost management
is also necessary for EC to save operational expenses while
serving user requests [3]. Network Function Virtualization
(NFV) [4] is proposed to satisfy this requirement. In NFV,
network functions are realized in software instances running
on general servers, which are called Virtual Network Function
(VNF). Compared with dedicated devices, VNFs are easier to

manage since the NFV allows to schedule network resources
owned by VNF in an elastic and scalable way. Moreover,
Service Function Chain (SFC) proposes a flexible and cost-
efficient manner for provisioning services [5]. SFC allows
a chain-ordered VNFs to perform a network service. For
further saving operational expense, several SFCs can share
the instances of the common VNFs [6].

Existing efforts for SFC deployment optimization usually
jointly optimize VNF operation cost and traffic routing cost.
However, these efforts which simply minimize the end-to-end
delay for each request without considering the delay sensitivity
of the request may cause Unreasonable Resource Preemption
(URP) problem. In practice, there are both delay-sensitive
services (tolerate hundreds of milliseconds delay, e.g., Internet
of Vehicles applications) and delay-tolerant services (tolerate
maximum delay from minutes to hours, e.g., personal health
analytics applications) [7]. The URP problem is: when the
volume of requests exceeds the capacity of the edge clouds,
if the VNFs required by delay-tolerant services exhaust the
resources of edge clouds with lower transmission delay, other
delay-sensitive services have to be deployed on the edge
clouds with higher transmission delay or even remote public
cloud. This can result in a significant performance decrease for
delay-sensitive services. Hence, a crucial problem is raised:
How to embed SFC with minimal cost, and avoid the quality
of delay-sensitive services declining due to the URP problem.

Solving the above problem is challenging. First, it requires
making cost-efficient SFC embedding decisions efficiently in
an online manner. Second, the offline optimization problem
has proved to be NP-hard. To address these challenges, we first
introduce Service Level Agreement (SLA) violation cost to
replace end-to-end delay. In this way, even if the delay-tolerant
services are deployed to the edge clouds or public cloud
with higher transmission delay, there is no significant cost
burden. And delay-sensitive services still need to be deployed
on the edge clouds with lower transmission delays to ensure
lower SLA violation cost. This helps to allocate resources in
a more reasonable way based on the delay requirements of
requests. Then we formulate the cost minimization for SFC
embedding in geo-distributed cloud network as Mixed Integer
Linear Programming (MILP).

Considering the complexity of solving this MILP problem,
we propose a novel SFC Cost-Efficient emBedding (SFC-
CEB) algorithm to achieve efficient SFC embedding in online
status. This algorithm transforms the process of finding the
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SFC embedding scheme into the shortest path search in topol-
ogy. By constructing the multi-layer graph based on required
SFC and use VNF operation cost, bandwidth cost and SLA
violation cost as the weight of path, SFC-CEB can leverage
modified shortest path algorithm to find the SFC embedding
scheme with minimal cost. The main contributions of this
paper are summarized as follows:
• We find that existing works which only focus on end-to-

end delay in joint cost optimization may incur more SLA
violation cost due to inappropriate resource allocation
(since they ignore the delay sensitivity of requests).
Hence, we propose to replace end-to-end delay with SLA
violation cost and optimize it along with VNF operation
cost and bandwidth cost.

• We formulate cross geo-distributed clouds SFC embed-
ding problem as a MILP model. In order to solve the
problem efficiently, we propose a novel SFC-CEB algo-
rithm which applies the modified shortest path algorithm
in multi-layer graph. The algorithm will use related cost
as path weight and find the minimal cost embedding
scheme for requests based on path searching. We also
analyze the complexity of SFC-CEB, which is about
O(N2logN).

• We conduct extensive experiments with real-trace driven
simulations and compare SFC-CEB with state-of-the-art
works (e.g., RDIP [6]). The evaluation results demon-
strate that SFC-CEB can achieve lower total embedding
cost (the cost can be reduced by up to 37%). We further
analyze the performance of SFC-CEB in other aspects.

II. RELATED WORK

For most of the existing studies which aim to solve the SFC
embedding problem in geo-distributed cloud network, cost
optimization and load balancing are the primary objectives.
For cost optimization, some existing works only consider
optimizing VNF operation cost. Yang et al. [8] proposed a
heuristic algorithm to allocate resources incrementally and
a set cover partition approximation algorithm to reoptimize
global resource allocation periodically. There are also some
studies that only optimize traffic routing costs. Gouareb et al.
[9] developed a heuristic algorithm to minimize the queuing
delay within edge clouds and network links. Chemodanov
et al. [10] proposed a metapath-based composite variable
approach to satisfy the QoS needs of latency-sensitive SFCs.
However, optimizing VNF operation cost or traffic routing cost
independently cannot guarantee global cost-efficient, which
means the above schemes cannot realize better optimization
effect than joint optimization schemes.

For joint optimization schemes, parts of works proposed
heuristic algorithms to solve the problem. Bari et al. [11]
proposed dynamic programming-based algorithm to find near-
optimal SFC placement scheme, and Jin et al. [12] proposed
two-phase algorithm to obtain pre-routing paths first and then
select the path with minimal cost as deployment scheme for
each request. Another part of works also tried to offer reliable
performance bound. Jia et al. [13] and Zhou et al. [6] both

proposed an online algorithm based on regularization approach
and rounding scheme to derive feasible solutions with prov-
able performance guarantee. In addition to these algorithms
designed based on linear programming models, some studies
[14], [15] also use deep learning or reinforcement learning
technology to embed SFC. One advantage of this kind of
solution is model-free, it can find the proper SFC embedding
schemes without establishing a complex mathematical model,
but the reliability of the result cannot be guaranteed. How-
ever, all these works ignore the delay sensitivity of different
requests. This may cause more SLA violation penalty due to
the URP problem. In contrast, our algorithm can achieve better
optimization effect by adopting the SLA violation penalty in
optimization objective. It can avoid requests for delay-tolerant
services to preempt limited edge cloud resources and leave
these resources for delay-sensitive services, and the network
performance can be further improved.

And in the studies of load balancing, they mainly focus
on balancing the traffic load on cloud nodes and links. For
example, Pei et al. [16] proposed a heuristic approach based
on multi-layer graph and traditional shortest path algorithm,
then convert resource utilization to path weights for realizing
minimizing resource load. Although we both use multi-layer
graph to find paths as embedding schemes, our algorithm
modified the traditional shortest path algorithm to realize the
cost-efficient scheme for SFC requests. And Yang et al [17]
proposed an approximation algorithm based on a randomized
rounding scheme to achieve minimizing link load. Although
the schemes which focus on load balancing can avoid the URP
problem to some extent, its optimization effect is stochastic
because it also does not optimize for the delay sensitivity
of requests. This means that it cannot achieve the same
optimization effect as our algorithm.

III. MOTIVATION

We construct a toy testbed which includes three directly
connected servers to simulate the edge cloud network and
evaluate the impact of different schemes on the total embed-
ding cost. The topology includes Edge Cloud 1 (EC1), Edge
Cloud 2 (EC2) and one Public Cloud. The maximum number
of VNF instances that EC1 and EC2 can hold are 1 and 4.
Supposing the deployment cost is 3 if the cloud does not
hold the required VNF image before, and 2 if the cloud holds
1. The running cost is 1 on both edge and public clouds 2.
Two requests require SFC1 serving (req1 arrives before req2).
Their source and destination are EC1 and EC2 respectively.
The VNFs are some dockers running on the devices to process
requests. Each request can be handled by one instance of
VNF1 and VNF2. The traffic rate and expected completion
time of requests are also shown in Fig. 1. We limit the port
forwarding rate of servers to simulate different transmission
delay on links. According to our test, the average delay on the
two paths between EC1 and EC2 are 0.16 ms (link 1 - link 2)

1It requires time to download the VNF image from the remote server.
2The running cost is mainly determined by the resource cost of cloud

location. We regard the resource cost of all clouds as the same.
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Fig. 1. Different Deployment and Routing Scheme Example

and 0.04 ms (link 3). The following schemes are considered:
a) Joint: optimize VNF operation cost and traffic routing cost
(VNF Cost + Total E2E Delay + Bandwidth Cost); b) Joint
SLA: optimize VNF operation cost and traffic routing cost
with SLA violation penalty (VNF Cost + Bandwidth Cost +
SLA Violation Cost). The results are shown in Table I, we
normalized the cost in different dimensions for comparison.

TABLE I
SIMULATION RESULT OF DIFFERENT SCHEMES

Scheme VNF Total E2E BW SLA TotalViolation
Type Cost 1 Delay (ms) Cost 2 Cost 3 Cost 4

Joint 0.35 0.2 0.34 0.08 0.77
Joint SLA 0.35 0.2 0.32 0.01 0.68
1 VNF Cost = (Deployment Cost + RunningCost) / Ω,Ω = 20
2 BW Cost = (Traffic Rate / Θ × Link Number,Θ = 1000
3 SLA Violation Cost = α + β × max(0,Actual E2E Delay −

Expected Delay),we set α = 0, β = 1 here [18]
4 Total Cost = VNF Cost + BW Cost + SLA Violation Cost

Before req1 and req2 arrive at the network, some clouds
already have deployed VNF instances (e.g., one instance of
VNF1 is deployed on EC1 as shown in Fig. 1). However,
these deployed instances are not enough to handle the two
requests, and new instances need to be deployed. In the Joint
scheme, the objective is minimizing the VNF operation cost
and traffic routing cost (bandwidth cost + E2E delay) for each
arriving request. Since req1 arrives before req2, in order to
save VNF deployment cost, req1 will use the existing VNF1
instance on EC1. On the other hand, req1 will select link
3 as the routing path for saving traffic routing cost. This
requires to deploy a new VNF2 instance on EC2, and the
routing cost savings are greater than the VNF deployment
cost (compared with the scheme which selects link 1 - link
2 as the routing path and uses deployed VNF2 instance in
public cloud). As for req2, due to existing VNF1 instance on
EC1 has been occupied by req1 and the maximum number
of VNF instances of EC1 can hold is 1, the minimal total
cost embedding scheme is using existing VNF1 and VNF2
instance in public cloud and selecting link 1 - link 2 as the
routing path. This results in high end-to-end delay for req2,
which has lower delay tolerance than req1. By contrast, end-
to-end delay is replaced with SLA violation cost in Joint
SLA scheme. When serving req1, the Joint SLA scheme
will use the existing VNF1 and VNF2 instances in public
cloud and select link 1 - link 2 as routing path, which is the
embedding scheme with minimal total cost (VNF operation

cost + bandwidth cost + SLA violation cost). And for req2, it
can use the embedding scheme which req1 uses in the Joint
scheme. As a result, req2 no longer has a high SLA cost.
This example indicates that combining SLA violation penalty
in optimization objective is helpful for avoiding URP problem
in edge clouds. Furthermore, minimizing SLA violation costs
is more practical than simply minimizing end-to-end delays,
since the latter may degrade the service quality of delay-
sensitive services due to the URP problem under the premise
of uncertain request arrival order.

IV. SYSTEM MODEL

In this section, we mainly describe the mathematic model
of the SFC embedding cost minimization problem, and prove
it to be NP-hard. The basic system model is shown in section
IV-A, the definition of the cost to be optimized is shown in
section IV-B, and the specific description of the optimization
problem is shown in section IV-C.

A. The Edge Cloud System Model

The edge cloud system can be denoted by an undirected
graph G = (N,L). It includes F types of VNFs and works
within a large time period T to handle user requests. The node
set N = E∪C contains a set of edge cloud nodes E and a re-
mote public cloud node C which can deploy virtual machines
(VMs) to run VNFs. These VMs are called VNF instances
(VNFIs). The processing capacity ϕf of each instance of VNF
f represents the maximum flow rate that VNFI can process
in each time slot, it depends on the resources capacities of
VMs, including CPU, memory and so on. We assume that if
the flow rate does not exceed the VNF processing capacity,
the processing delay of VNF f is a mean expected value pf .
We also use π(n) to denote the capacity (the max number of
VNFIs can be hold) of edge cloud, while the public cloud has
no capacity limitation. And the set L represents the links to
connect the nodes in N . Each link l has its own forwarding
capacity b(l) and forwarding delay κ(l). We denote the paths
set between any two nodes n and n′ by Pn,n′ . And we also
introduce H l,p

n,n′ to represent whether link l belongs to a path
p ∈ Pn,n′ . The delay of p is denoted by θp, which is the sum
of the κ(l) of l belongs to p.

The request k arriving at time t also has following prop-
erties: (I) the source and destination nodes sk and dk; (II)
required SFC Jk, which contains an order sequence of VNFs
from set [F ] 3. We use a binary indicator hf,f

′

k to denote
whether VNF f to f ′ exists a hop in the SFC. (if f → f ′ is a
hop of Jk, hf,f

′

k = 1). (III) flow rate Rk(t), it may alter when
passing through specific VNF (e.g., Firewall, IDS, tunneling).
we use λfk to denote the change ratio of flow rate of request k
on VNF f . Meanwhile, we use Rf

k(t) = Rk(t)
∏

f ′∈Jk
λfk (f ′

is the VNF before f ) to denote the flow rate arriving at instance
of VNF f of request k at time t; and (IV) expected completion
time Mk(t). And we assume that any single request cannot be
split on multiple paths for forwarding.

3We only consider total-ordered linear SFC in this paper, non-linear SFC
can be partitioned into several linear SFCs as description in [17].
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We introduce two variables to determine the VFNs deploy-
ment in clouds and flow routing on physical links at each time
slot t ∈ [T ]: (I) qfn(t) represents the number of instances of
VNF f to deploy in cloud node n; (II) Xk,f,f ′

p,n,n′(t) represents
whether request k goes from instances of VNF f in node n
to VNF f ′ in node n′ through path p.

B. Cost Structure

(1) VNF Operation Cost: The operation cost of VNF
mainly refers to: a) time cost incurred by deploying VNFIs for
booting VM image to edge or public clouds, and completing
the state migration for stateful VNF. This process usually takes
a number of seconds or minutes. Let ηfn denote the cost for
deploying the instance of VNF f in node n. And we use
ρfn(t) = max

{
0, qfn(t)− qfn(t− 1)

}
to denote the number

of new instances of VNF f deployed in node n at time t. b)
economic cost incurred by running VNFIs, which includes bill
for power consumption, cloud container lease and so on. Let
µf
n denote the cost for running an instance of VNF f in node
n. The total VNF operation cost at time t can be calculated
by:

CO(t) =
∑

n∈[N ]

∑
f∈[F ]

(ηfnρ
f
n(t) + µf

nq
f
n(t)) (1)

(2) Link Bandwidth Cost: Transferring requests between
distributed clouds will incur bandwidth cost of links. Let δl
denote the cost of forwarding a unit of a flow through link
l. We use If,f

′

k,l =
∑

n,n′∈[N ]

∑
p∈[Pn,n′ ]X

k,f,f ′

p,n,n′(t)H
l,p
n,n′ to

present whether link l is used for request k between VNF f
and f ′. The overall bandwidth cost at time t is:

CB(t) =
∑

k∈[K]

∑
f,f ′∈[F ]

∑
l∈[L]

δlI
f,f ′

k,l h
f,f ′

k λfkR
f
k(t) (2)

(3) SLA Violation Cost: If request cannot complete the
required service before its expected completion time, it will in-
cur additional time penalty. The service completion time of re-
quests is denoted by Dk(t), which includes traffic routing time
and VNF processing time (Dk(t) =

∑
f,f ′∈[Jk] θpX

k,f,f ′

p,n,n′(t)+∑
f∈[Jk] pf ). Then we can calculate the timeout value Vk(t)

of flow k by Vk(t) = max {0, Dk(t)−Mk(t)}. We also
introduce τk to denote the timeout penalty of request k. The
total SLA violation at time t can be calculated by:

CT (t) =
∑

k∈[K]

τkVk(t) (3)

C. The Offline Cost Minimization Problem

Suppose we can obtain full knowledge of the system in [T ],
the offline SFC embedding problem can be formulated as a
multi-objective optimization problem shown in Eq. (4). Since
the problem has multiple objectives, the common method
to treat this kind of optimization problem is: weight each
objective of original problem, sum them up and form a new
single objective optimization problem [19].

minimize
∑
t∈[T ]

CO(t) + CB(t) + CT (t) (4)

subject to:∑
k∈[K]

∑
f ′∈[F ]

∑
n′∈[N ]

∑
p∈[Pn,n′ ]

Xk,f,f ′

p,n,n′(t)R
f
k(t) ≤ ϕfq

f
n(t),

∀t ∈ [T ], f ∈ [F ], n ∈ [N ]

(5a)

∑
f∈[F ]

qfn(t) ≤ π(n),∀t ∈ [T ], n ∈ [N ]\C (5b)

∑
k∈[K]

∑
f,f ′∈[F ]

∑
n,n′∈[N ]

∑
p∈[Pn,n′ ]

Xk,f,f ′

p,n,n′(t)H
n,n′

l,p λk,fR
f
k(t)

≤ b(l),∀t ∈ [T ], l ∈ [L]
(5c)∑

n,n′∈[N ]

∑
p∈[Pn,n′ ]

Xk,f,f ′

p,n,n′(t) = 1, ∀t ∈ [T ], k ∈ [K],

f, f ′ ∈ [F ]

(5d)

∑
f ′∈[F ]

∑
n′∈[N ]

∑
p∈[Pn′,n]

Xk,f ′,f
p,n′,n(t) =

∑
f ′∈[F ]

∑
n′∈[N ]

∑
p∈[Pn,n′ ]

Xk,f,f ′

p,n,n′(t),∀t ∈ [T ], k ∈ [K], f ∈ [F ], n ∈ [N ]

(5e)

qfn(t) ∈ {0, 1, 2, ...} ,∀t ∈ [T ], f ∈ [F ], n ∈ [N ] (5f)

Xk,f,f ′

p,n,n′(t) ∈ {0, 1} ,∀t ∈ [T ], k ∈ [K], p ∈ [Pn,n′ ],

f, f ′ ∈ [F ], n, n′ ∈ [N ]
(5g)

Constraint (5a) guarantees that the total incoming flow
rate to instances of VNF f in node n does not exceed the
processing capacity of the deployed instances. Constraint (5b)
guarantees that the total deployed VNF instances in edge
cloud does not exceed the capacity limitation. Constraint (5c)
guarantees that the total flow rate through link l does not
exceed the link capacity. Constraints (5d) and (5e) guarantee
that for each request k which requires VNF f, f ′ (deployed in
node n and n′ respectively) in the SFC, only one path between
node n and n′ can be selected.

The optimization problem is NP-hard since it can be reduced
from minimum knapsack problem (MKP) [20]. Due to space
limitation, the detailed proof process is included in our online
technical document [21]. Considering that directly solving the
MILP problem with the existing solving tools (e.g., Gurobi
[22]) will consume too much time, we propose a novel algo-
rithm which can make SFC embedding decisions efficiently
and minimize the cost defined in Eq. (4).

V. ALGORITHM DESIGN

Since the objective of the optimization problem (4) is
minimizing the total SFC embedding cost for all requests in
a time period T , we are greedy to minimize the embedding
cost for each arrival request in an online manner. In order
to realize this objective, we need to determine the number
of VNFIs deployed in cloud nodes and the traffic forwarding
paths. Considering the above requirement, we propose to use
the shortest path algorithm to find a minimal embedding cost
scheme for requests. First, it needs to construct a multi-
layered graph, the path weights in the graph are determined
by the related operation and routing cost. Then it executes the
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Layer 0

Layer 1

Layer 2

Fig. 2. Constructing multi-layer graph for an SFC request

modified shortest path algorithm to obtain a “path” for the SFC
requests. According to the characteristics of the shortest path
algorithm and the setting of path weights, the “path” found will
be a feasible SFC embedding scheme with minimal embedding
cost. The framework of SFC-CEB is shown in Algorithm 1.

A. Multi-Layer Graph Construction

The layered network graph contains h+1 (h = length(Jk))
layers, and each layer is a copy of the original network graph.
vi is introduced to denote the corresponding node of vertex v
in the original graph in the ith layer. Any two adjacent layers
can only be connected by vertical link between nodes vi−1 and
vi, where v ∈ N . The weights of these vertical links are related
with three kinds of costs: (I) VNF deployment cost ηf,n, (II)
VNF running cost µf,n and (III) VNF processing delay pf . As
for the weights of horizontal links in each layer, bandwidth
cost δl and forwarding delay κ(l) are considered. The specific
weight settings are shown in the following subsection.

In the multi-layer graph, the ingress node of any request k
is set in the 1st layer. And k needs to pass through all h layers
to get the services defined in Jk. When k reaches the egress
node set in the (h+ 1)th layer, the total embedding cost can
be calculated. Fig. 2 illustrates the construction of a multi-
layer graph. The SFC contains two VNF: V NF1 and V NF2.
Consequently, a three layer graph is constructed. Layer 0 is
the original network topology. In the topology, node C, H ,
J are edge clouds, node E is public cloud and other nodes
are switch nodes. The adjacent layers are connected to each
other only through node Ci, Hi, Ji, Ei (since only these nodes
can deploy VNFIs). The SFC request starts from the node A
and ends at the node I . Supposing that the optimal embedding
solution selects node E and H to deploy VNF instances, and
the routing path in multi-layer graph is the red line shown in
Fig. 2. Therefore, the final deployment and routing scheme in
the original network topology is: A → B → E(V NF1) →
G→ H(V NF2)→ I .

B. Modified Shortest Path Algorithm

The shortest path algorithm can be applied to find an SFC
embedding scheme with minimal cost in the multi-layer graph.
VNF operation cost and bandwidth cost can be used directly

Algorithm 1: SFC-CEB Algorithm

Input : G = (V,L), N , K, T , ηfn, µf
n, π(n)

Input : Jk, αn, αl, Φ, Jk, Rk(t), Mk(t), srck, dstk
Output: Embedding Scheme: shk

1 for each t ∈ T , and each k ∈ K arriving at t do
2 G′ ← LayeredGraph(G, Jk, ηfn, µf

n)
3 for each v ∈ N, l ∈ L do
4 αn, αl ← CalWeight(v, l)
5 end
6 Initialize three lists path, dis and vis
7 Initialize a heap pq = ∅ and push srck into pq
8 while pq 6= ∅ do
9 v ← pq.pop()

10 if vis[v] then continue;
11 vis[v]← True
12 for u ∈ G′(v) do
13 if CheckPath(path[v]) then
14 DFSNode(u, path, G′, π(n), Φ)
15 d← CalDis(v, u, αn, αl, Mk(t))
16 if d < dis[u] then
17 Update(u, dis[u], path[u], d)
18 Push the node u into heap pq
19 end
20 end
21 end
22 end
23 shk ← path[dstk]
24 end

as path weights. However, SLA violation cost is a piecewise
function. It needs to obtain its actual end-to-end delay based
on the forwarding path, and then calculate the final cost based
on Eq. (3). This makes it hard to use SLA violation cost as
weight directly in traditional shortest path algorithms.

In order to solve this issue, we construct a quintuple
weight: [dr c, sla c, bw c, res w, remn t]. In the quintuple,
(I) dr c is the sum of VNF operation cost, if a vertical edge
between layers is traversed (e.g. E0 → E1), this value will
be accumulated based on the operation cost of the deployed
VNFIs; (II) sla c is SLA violation cost, it can be updated
according to remn t, if remn t is negative then sla c equals
0, otherwise sla c can be calculated by Eq. (3); (III) bw c is
bandwidth cost, if a horizontal edge in any layer is traversed
(e.g., A0 → B0), this value will be accumulated based on Eq.
(2). (IV) res w is the sum of resource (node or link) weight.
The weight is the reciprocal of the resource’s remaining
capacity multiplied by a constant factor. res w is introduced
to prevent low-cost resources from being preempted by first
arrival requests, and it can be accumulated when resources are
occupied. (V) remn t is the remaining expected completion
time, it starts with a negative value (minus expected com-
pletion time of SFC request). When a horizontal or vertical
edge is traversed, this value will be accumulated based on
the forwarding delay of links or processing delay of VNF
instances (e.g., suppose a request whose expected completion
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time is 500 ms arrives A0, the remn t is started with -500,
when the request passes through the link A0 → B0 and the
forwarding delay of this link is 80 ms, then remn t is updated
to -420). By using this quintuple weight, we can calculate and
compare the length of path in modified shortest path algorithm
(the length of path is the sum of dr c, sla c, bw c, res w).

Algorithm 2: DFSNode

1 for u′ ∈ G′(u) do
2 curDepth← curDepth+ 1 ;
3 if vis[u′] then continue;
4 if curDepth ≥ Φ then return;
5 if CheckPath(path[u]) then
6 DFSNode(u′, path, G′, π(n), Φ) ;
7 d← CalDis(G′, u, u′, αn, αl, Mk(t)) ;
8 if d < dis[u′] then
9 Update(u′, dis[u′], path[u′], d) ;

10 Push the node u′ into heap pq ;
11 end
12 end
13 end

Before applying the modified shortest path algorithm, the
current weight for each node in N and each link in L is
calculated based on Eq. (6) (shown in Algorithm 1 line 3-
5). ε is a constant factor and remn(n) and remn(l) are
the remaining capacity of nodes and links. Then it needs to
initialize three array variables: path, dis and vis. path records
the shortest path from source node to each node in layered
graph, dis stores the length of path from variable path, and
vis records whether node in layered graph is visited (avoid
nodes being traversed repeatedly). We also maintain a heap pq
to speed up traversing the nodes. The source node of request
is pushed first in pq. Then we traverse the nodes in multi-
layer graph to find the shortest paths to the destination node of
request. Similar to the traditional shortest path algorithm (e.g.,
Dijkstra algorithm), we pop the node v from pq, and further
traverse its neighbor nodes u ∈ G′(v) to update the dis and
path during the traversal (line 8-22). The differences between
our modified shortest path algorithm and Dijkstra algorithm
are: we should check whether the current path is feasible
(whether the node and link capacity limit is exceeded) in line
13. If the path is feasible, we will continue to traverse the
neighbor nodes of u in DFSNode. This process is recursive
(shown in Algorithm 2), it repeats to traverse the neighbor
nodes (u′) of current node (u) and updates the dis and path
according to the calculation results. The number of recursions
is limited by Φ (Max DFS depth) and the curDepth is set
to 0 before executing DFSNode. After DFSNode, we will
calculate the new length of path from u to n based on the
quintuple weight in line 15. If the new length is smaller, dis
and path will be updated, and node u is pushed in pq in
line 16-19. When all nodes in multi-layer graph are traversed,
we can obtain a feasible path with optimal (or near-optimal)
embedding cost for each request k in line 23.

αn =
ε

remn(n)
, αl =

ε

remn(l)
,∀n, l ∈ N,L (6)

In practice, in order to apply Algorithm 1 to produce a
real embedding scheme, we can implement it as a module
in the network control plane, and combine some existing
network measurement method (e.g., NetFlow [25]) to obtain
the traffic information of requests, then use cloud container
orchestration platform (e.g., Kubernetes [26]) or network func-
tion deployment framework (e.g., OpenNetVM [27]) to embed
required SFCs. For example, we need to capture the data of
traffic rate, topology information, resource usage, etc, and use
them as input to the SFC-CEB algorithm. After determining
the deployment nodes of required VNFs and forwarding path
between nodes according to the “path” found by SFC-CEB,
we can use the YAML format to declare the VNFIs that
are required to be created, and Kubernetes will automatically
deploy them to the node we specify. We also need to design
the routing table on the nodes which the forwarding path
passes through to ensure that the traffic can be forwarded as
our definition. After completing the VNFIs deployment and
setting routing rules on data plane, the traffic can be served
by required SFC with minimal embedding cost. Specifically,
considering that the deployment process of new VNF instances
often takes tens of seconds or even several minutes, but SFC
requests require to get service before their lifetime is over.
Therefore, SFC-CEB will only find SFC embedding scheme
for long-lived requests (whose lifetimes are longer than the
VNFIs deployment time). Requests with shorter lifetime can
be handled by setting default processing, such as directly using
a preset embedding scheme. We also analyze the reasons that
cause SFC-CEB to find a near-optimal embedding scheme,
and the competitive ratio of total embedding cost between
SFC-CEB and offline optimal solution in our online technical
document [21].

C. Complexity Analysis

In SFC-CEB, the complexity of initializing weight of nodes
and links does not exceed O([N ] + [L]). The construction of
multi-layer graph requires to copy original network topology
and connect adjacent layers with vertical links, which causes
at most O(h([L] + [N ])) computations. In the multi-layer
graph, there will be no more than (h + 1)[N ] nodes and
(h + 1)[L] + h[N ] links. For given a network topology
G = (N,L), the complexity of the shortest path algo-
rithm (e.g., Dijkstra algorithm based on heap optimization)
is O([L]log[N ]). Considering we introduce additional path
feasibility checking (complexity: O(h[N ])) and DFS (com-
plexity: O((h[L])Φ)) process, the total complexity of SFC-
CEB is O(((h[L])Φ+1 + h2[L][N ])log(h[N ])).

VI. PERFORMANCE EVALUATION

A. Simulation Setup

We realize our SFC-CEB algorithm in Python code, and
simulate the network scenario with NetworkX [24]. Some
details of network parameters are shown as follows:
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(b) Random Generation Trace

Fig. 3. Two Type SFC Requests Trace

(1) Topology Dataset: We use the network topology Abi-
lene (11 nodes, 14 links) and Uunet (49 nodes, 84 links)
from TopologyZoo [23]. In each topology, we randomly select
several nodes as edge clouds and one node as public cloud.
The capacities of edge clouds are set randomly between
[20, 40] units (one unit refers to holding one VNFI), and the
capacity of public cloud is infinite. The forwarding delays of
links are generated randomly between [3, 70] ms and the link
bandwidth capacities are set randomly between [10, 20] Gb/s.

(2) Traffic Dataset: We use both real and randomly gen-
erated SFC request traces shown in Fig. 3: (a) Real Campus
network traffic (we treat traffic with same source-destination
IP as a single SFC request, and count the number of requests
arriving in each time unit) and (b) Random generation. The
ingress/egress nodes and required VNFs of requests are set
randomly. The flow rates and expected completion times of
requests are randomly picked in [1, 10] Mb/s and [50, 800] ms
respectively. And the flow size change ratio λfk is picked in
[0.8, 1.2]. Each request also has its own lifetime which is
randomly generated. It requires to provide enough resources
for serving SFC requests during the lifetime, and release the
resources occupied by expired requests.

(3) VNF and Cost Data: There are 10 different types
of VNF, whose processing capacity ϕf ranges from 5 to 10
units (one unit can process 10 Mb traffic per second). Each
SFC contains 2 to 5 VNFs. In practice, the operation cost
of VNFs can be inferred from local energy price of clouds,
the bandwidth cost is determined by communication service
providers, and the SLA violation cost can be priced by network
service providers themselves. For simplifying comparison but
without loss of generality, we randomly generate the VNF
operation cost parameters (ηfn ∈ [1, 6] and µf

n ∈ [1, 3]),
bandwidth cost of link (δl ∈ [0.1, 0.8]) and timeout penalty
factor (τk ∈ [0.002, 0.01]) for different requests to simulate
the real situation. We adjust cost parameters with different
magnitudes in a similar scale to let them be accumulated
directly for calculating the total embedding cost.

B. Compared Algorithm

(1) RDIP: RDIP [6] is a state-of-art algorithm for jointly
optimizing VNF operation cost, end-to-end delay and band-
width cost in edge cloud network. It solves the relaxed linear
programming problem, and applies the randomized dependent
rounding algorithm to obtain the integer results for VNFIs
provisioning. Finally, it modifies the traffic routing decision
and yields a feasible solution. RDIP is used to explain the

drawback of minimizing the total embedding cost without
considering the delay sensitivity of requests.

(2) SFC-MAP: SFC-MAP [16] constructs a multi-layer
graph for required SFC, and assigns weight factors (which
depends on residual capacity of resources) to nodes and links.
Then it runs the shortest path algorithm to find the forwarding
path with minimal sum of weights. If the path does not satisfy
the delay requirement or resource capacity limitation, the
above process will be repeated, while links or nodes which
do not meet the requirements will be imposed with a large
penalty factor. We set the maximum number of repetitions of
this procedure to 50. SFC-MAP is also a state-of-art algorithm
which aims to realize load balancing. It is used to evaluate the
effect of load balancing on embedding cost optimization.

(3) Offline Solving MILP: We use the MILP solver Gurobi
to solve the offline optimization problem defined in Eq. (4) and
obtain the offline optimal solution. It is used to evaluate the
gap between SFC-CEB and the theoretical optimal solution

C. Simulation Results

(1) Evaluation of Different Type Cost: We compare the
algorithms in Uunet topology. The cost types used to evaluate
algorithm performance include: VNF operation cost, SLA
violation cost, bandwidth cost and total SFC embedding cost
defined in Eq. (4). According to the request arrival rate shown
in Fig. 3, we record the cost consumed to serve requests at
each time unit. As shown in Fig. 4 a) and c), SFC-CEB can
realize the lowest total embedding cost. Over the entire time
period of trace, SFC-CEB can reduce the total embedding
cost by up to 37% and 33% (19% and 21% on average)
compared with RDIP. And compared with SFC-MAP, SFC-
CEB can reduce the total embedding cost by up to 46% and
35% (28% and 21% on average). Especially, when the request
volume is heavy (e.g., in campus network trace 60-80 and
120-135 time units), SFC-CEB optimizes the embedding cost
more effectively. Meanwhile, according to the distribution of
total cost shown in Fig. 4 b) and d), SFC-CEB can always
realize lower total embedding cost with higher probability.

Next, we evaluate the the optimization effect of these algo-
rithms on some specific costs. The first one is VNF operation
cost. As shown in Fig. 5, the RDIP algorithm can achieve
better optimization effect when the request volume is heavy.
The reason is that SFC-CEB and SFC-MAP will not allow the
low-cost resources being exhausted (they reverse some low-
cost resources to serve subsequent requests), this may lead
higher VNF operation cost in sometime. However, RDIP does
not consider this situation, it always tries to minimize the VNF
operation cost, end-to-end delay and bandwidth cost jointly.
Hence, in some case, RDIP can achieve lower VNF operation
cost compared with SFC-CEB and SFC-MAP.

According to the results shown in Fig. 6 and Fig. 7, SFC-
CEB can achieve the best optimization effect for SLA violation
cost and bandwidth cost. Although RDIP also tries to optimize
end-to-end delay and bandwidth cost, the result is not well.
The reason is that RDIP allocates resources with low routing
costs to any incoming requests. When the resources with lower
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Fig. 4. The Comparison of Total Embedding Cost and the Corresponding CDF
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Fig. 5. The Comparison of VNF Operation Cost
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(b) SLA Violation Cost for Random Generation Trace

Fig. 6. The Comparison of SLA Violation Cost

routing cost are exhausted by previously arrived requests,
and subsequent requests can only be allocated to resources
with higher routing costs. This may incurs a large amount of
SLA violation cost. However, SFC-CEB allocates resources
according to the request’s tolerance for delay. It can maintain
relatively low routing costs even when the number of requests
is large. SFC-MAP can achieve better results than RDIP,
since it also save some resources with lower routing cost due
to the objective of load balancing. However, it is still less
effective than SFC-CEB in routing cost optimization, because
it does not allocate resources appropriately based on the delay
sensitivity of the requests. In terms of the above results, SFC-
CEB can make a trade-off between VNF operation cost and
traffic routing cost, and then achieves the optimal total cost.
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Fig. 7. The Comparison of Bandwidth Cost
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Fig. 8. The Comparison between SFC-CEB and Offline Optimal Solution

(2) Cost Gap Compared with Optimal Solution: Solving
MILP problem defined in Eq. (4) will incur huge time over-
head when the topology size and number of requests is large.
In order to shorten the computation time of solving MILP
in Gurobi, we replace Uunet topology with Abilene topology.
Meanwhile, we also randomly generate several sets [K] which
includes 50, 100, 500, 800, 1000 SFC requests to replace the
previous two sets of request traces. These sets of requests
will be offered together to Gurobi for offline calculation, and
they will be offered in sequence to the SFC-CEB algorithm
to simulate the online status. The simulation result is shown
in Fig. 8. The total embedding cost achieved by SFC-CEB is
more than 7.3% ∼ 8.8% of the optimal solution on average.

(3) Relationship between Accuracy and Running Time:
SFC-CEB algorithm includes a DFS procedure, and the depth
of DFS will affect the algorithm accuracy and running time.
We use Abilene topology and run SFC-CEB 500 times to count
the percentage that fails to find the optimal solution (compared
with offline optimal solution) at each different DFS depth. As
shown in Fig. 9 (a), although the percentage of failures to find
the optimal solution becomes 0 when depth is 6, the running
time also increases to about 8 seconds. In general, when the
DFS depth equals 1 or 2, the percentage of failures to find the
optimal solution has already been tolerable, and the running
time is about 30 to 80 ms, which is much less than the request
lifetime or launching time of VNF instances.

(4) Impact of Weight Factor on Optimization Effect:
αn and αl are introduced to avoid low-cost resources being
exhausted, and save them to serve future coming requests.
The optimization effect of SFC-CEB can be affected by the
setting of resource weight. We randomly generate several sets
[K] which includes 10, 50, 100, 500, 1000 SFC requests, and
execute SFC-CEB with different constant factor ε (pick in
[0, 10, 100, 500, 1000]) 500 times for each given request
set. We evaluate the percentage of the number of times that
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Fig. 9. The Impact of Different DFS Depth and Resource Weight Factor

these algorithms realize the minimum total embedding cost. As
shown in Fig. 9 (b), if the algorithm has a high value of ε (i.e.
1000), the probability of finding the lowest cost embedding
scheme decreases when the number of requests increases.
Because excessive weight results in reserving more resources
for future requests, current requests cannot utilize low-cost
resources and cause a high total embedding cost. ε = 0 means
that the algorithm will not reverse resources, it may cause the
low-cost resources are occupied by first coming requests, and
incur higher total embedding cost for future requests. Hence,
it is better to set relatively low constant factor ε (e.g., 100) for
resources when the network load is heavy.

VII. CONCLUSION

In this paper, we formulate the SFC embedding problem
in geo-distributed edge cloud network, which minimizes the
total SFC embedding cost. Combining with SLA violation cost
in optimization problem can effectively avoid inappropriate
resource competition on the edge cloud. In a way, this can
help to reduce the cost of service degradation and improve
overall network performance. We also presented an online
SFC requests embedding algorithm called SFC-CEB, which
can efficiently find an approximate optimal embedding scheme
for each SFC request. The simulation results reveal that
our algorithm outperforms other algorithms in terms of total
embedding cost. In our future work, we plan to implement
our algorithm in real-world testbed and further improve the
execution efficiency of our algorithm.
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