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Abstract—Modern mobile networks are increasingly complex
from a resource management perspective, with diverse combina-
tions of software, infrastructure elements and services that need
to be configured and tuned for correct and efficient operation.
It is well accepted in the communications community that
appropriately dimensioned, efficient and reliable configurations
of systems like 5G or indeed its predecessor 4G is a massive
technical challenge. One promising avenue is the application of
machine learning methods to apply a data-driven and continuous
learning approach to automated system performance tuning. We
demonstrate the effectiveness of policy-gradient reinforcement
learning as a way to learn and apply complex interleaving
patterns of radio resource block usage in 4G and 5G, in order to
automate the reduction of cell edge interference. We show that
our method can increase overall spectral efficiency up to 25%
and increase the overall system energy efficiency up to 50%
in very challenging scenarios by learning how to do more with
less system resources. We also introduce a flexible phased and
continuous learning approach that can be used to train a boot-
strap model in a simulated environment after which the model is
transferred to a live system for continuous contextual learning.

Index Terms—Communication system traffic, Machine learn-
ing, Learning systems, System simulation, Self-organization,
Radio resource scheduling, Inter-cell interference coordination

I. INTRODUCTION

With the evolution of mobile systems such as LTE [1]
and introduction of 5G Radio Access Networks (RAN) [2]
managing and organizing these systems has become a huge
technical and financial challenge. There is thus a need for
more intelligent self-organizing and self-optimizing system
solutions. For LTE, the concept of SON (Self Organizing
Networks) [3] was introduced with the intent to reduce manual
effort and increase network automation. While a step in the
right direction, it has been shown that the current SON
approach is limited and that considerable challenges exist for
SON in 5G using existing approaches [4].

One very promising development strand is data-driven [5]
and machine learning approaches to aid with complex opti-
mization problems [6], [7]. The synthesis of these techniques
with simulation and RAN internal data distribution mecha-
nisms provides the basis for creating a whole new gener-
ation of intelligent algorithms [8]. Reinforcement learning
(RL) [9] has shown huge potential [10] in learning game
control strategies but also in real-world applications such

as antenna tilt optimization [11], routing [12], data-center
energy management [13] and robotic control [14]. In RAN
self-management and control, work is starting to emerge (see
Section II) but is still limited, mostly offline [15], and with
little experimental data available suggesting a need to explore
the potential of RL approaches further (cf. [16]).

In this paper, we apply the concept of continuous RL
to learn effective solutions to the SON problem of Inter-
Cell Interference Coordination (ICIC) [17]. Both LTE and
5G support Orthogonal Frequency Division Multiple Access
(OFDMA) [18] where all cells/sectors/beams can share the
same set of frequency resources to allow higher spectral effi-
ciency, i.e. a frequency reuse of one. This flexibility, however,
leads to interference between allocated radio resources at cell
boundaries, see Figure 1 for an overview. The problem of in-
terfering cells in a RAN system becomes particularly difficult
with the deployment of 5G and increasingly dense small cell
deployments, heterogeneous networks (HetNet) with mixed
high and low power cells, and even ad hoc configurations [19].
With this challenge in mind, detailed manual cell planning
becomes difficult, time consuming and expensive, and the need
for self-organizing approaches ever more important.

In our continuous learning approach, we use a simulation
environment and an RL approach to train an interference
reduction policy. The policy can then be transferred to a
real RAN system where further, sample based, contextual
learning can continue. The simulation environment allows for
more than just local optimization by also considering feedback
effects resulting from the RL agent’s efforts: how the learned
changes propagate through the network.

Key Contributions

• An RL method to derive scheduling and allocation poli-
cies to balance system throughput, energy utilization, and
user fairness.

• Clear and significant gains in terms of measured perfor-
mance and energy savings.

• Extensive empirical measurements demonstrating the
method’s potential in very challenging network scenarios.

• An incremental approach, using scheduling agents pre-
trained in a simulation environment, for later transfer to
live systems and further on-line contextual training.
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Disposition: We first describe the ICIC problem and
its state-of-the-art, before turning to our own model and the
assumptions associated with it in Section III. In Section IV,
we describe and discuss our experiments and empirical results,
before Section V concludes the paper with a discussion on the
applicability of this work and possible future extensions.

II. PROBLEM DESCRIPTION AND RELATED WORK

Figure 1-(a) depicts ICIC: users at cell edges are subjected
to increased interference due to cells’ reuse of radio resources.
Figure 1-(b) shows a radio frame structure valid for both LTE
and 5G1. Each 1 ms time slot is called a subframe and are
separated in the frequency domain into chunks of 180Khz,
and together, are called physical resource blocks (PRBs) (see
Figure 1-(c)), across a total system bandwidth which depends
on specific configuration and radio standard: LTE or 5G. For
ultra-dense and ad hoc small cell configurations, the inter cell
distance decreases and the overlap zones increase, leading to
increased inter-cell interference and more devices falling into
these overlap zones. To deal with these increasingly densified
small cell and HetNet configurations, we need better coop-
erative and self-organizing mechanisms to determine detailed
radio resource allocation strategies and we propose one such
approach in this work.

In 4G and 5G RAN systems, there are currently four main
approaches [17], [21] to solving ICIC: 1) In the frequency
domain by using various static or dynamic frequency separa-
tion strategies; 2) In the time domain by coordinating use of
transmitted radio resource at subframe level; 3) In the power
domain, by adjusting the transmit power or using a range
extension mechanism in one or more interfering base stations;
4) Tight coordinated multi-point (CoMP) transmission within
a cluster of cells. Each of these approaches has been well stud-
ied, with many reports on various algorithms and optimization
techniques, both centralized and distributed [19], [22], [23].

In previous work, we have explored algorithms for cell
range extension (CRE) in HetNet scenarios [24], [25]. This
can be considered a power domain approach as it extends the
range of a low power cell by adding a bias. Approaches 1-3 are
generally considered semi-static SON coordination techniques
where the goal is to provide the radio scheduler at each cell
with information relating to possible interference from neigh-
boring cells. Information exchange occurs across the X2 [1]
interface and the time scale of change is in tens of seconds
or more. The CoMP approach involves a set of interference
minimization strategies, possibly using hybrid combinations of
1-3, across set of geographically separated transmission points
(called beams in this work), coordinated by a central scheduler
at TTI scale (Transmission Time Interval) [18], [26].

Frequency domain approaches to ICIC involve allocating
sub-bands (a collection of one or more PRBs, see Figure 1)
to inner and outer cell boundaries. The key objective is
to apply orthogonal non-overlapping sub-bands at cell and

15G allows alternative subcarrier spacings and numerologies [20] to which
this method also applies.

beam boundaries [27], [28], while applying full frequency
reuse at the cell center. Time-domain approaches involve
one or more cooperating cells (or equivalently radio base
stations) coordinating spectrum within agreed time slots. A
detailed survey of time-domain ICIC techniques can be found
in [19]. One, standardized, approach to time-domain ICIC is
almost blank subframes (ABS). The central idea behind this
approach is to coordinate in time all used resources in the
in the frequency-domain on a subframe (1ms) basis. In this
approach one or more cooperating cells (or equivalently radio
base stations) will cease sending on all frequency resources
associated to a sector or beam for the duration of one or more
subframes, leaving exclusive access to other prioritized cells.
In LTE, it is, in some specific cases, not possible to blank or
silence the subframe completely, due to the need to carry cell
reference signals (CRS) which are needed for channel quality
measurements. In this case the subframe is instead broadcast
at very low power and is almost blank. 5G does not have this
limitation as CRS are not used in the same way and thus 5G
can use completely silent and thus energy efficient subframes.

We have developed a centralized, policy gradient [29] based
deep [30] RL approach to CoMP coordination that can sched-
ule PRBs in both time and frequency-domain. The method can
work on TTI or aggregated TTI level and combines approaches
one and two discussed above. In the frequency-domain, com-
plex reuse patterns can be learned and dynamically applied,
while in the time-domain blanking patterns can be learned.
We apply this method to reduce interference patterns among
PRBs in a cluster of cooperating cells and beams in order
to increase the total cell cluster spectral efficiency2 [31] and
related performance metrics. It is also possible to incorporate
the power dimension into our method to cover all the main
ICIC approaches.

There has been previous work applying RL to the problem
of ICIC. In [32], a cooperative multi-agent approach using tab-
ular Q-learning [9] is applied to learn power reduction strate-
gies on a subset of each cell’s bandwidth. Bernardo et al. [33],
[34] suggest a cooperative multi-agent approach, using policy
gradients, for allocation of sub-bands of frequency to a group
of cells. However, unlike our method this approach does not
include the time-domain aspect and cannot work at CoMP
time scales. Simsek et al. [35] propose a distributed, two
level RL, tabular Q-learning approach to learning individual
CRE within a cluster of base stations, also associating suitable
carrier aggregation [36] frequencies to each device, which is
a different allocation problem than the one we study in this
paper. In [37] a tabular Q-learning RL approach is applied,
in a low dimension action space, to the problem of learning
ABS ratios between licensed LTE/5G and an unlicensed radio
technology like WiFi to reduce interference. In comparison to
all of the above, the method described in the paper applies a
deep RL policy gradient approach which can capture a very
large action space over PRBs available to each user in a cluster
of cells.

2The number of bits carried in one second per Hertz of spectrum.
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Fig. 1. Radio Environment Overview: (a) shows shows concept of cells and interfering beams. (b) shows time domain structure where a subframe is 1 ms
in duration. (c) shows frequency domain structure for each time domain subframe. In 4G basic radio resource (PRB) scheduling is at TTI scale (also 1 ms).

III. METHOD

A. System Model

The system model consists of a set of cells C, beams B, and
available physical resource blocks R per beam. Each beam is
associated with exactly one cell, its origin, and we assume
that all PRBs in R are available in every beam. Each beam
also has a configured transmit power W and gain pattern G,
used for fading calculations by a propagation model P (based
on [38], [39], see Table I for details). To this we add a set of
users U to represent service demands. The cells and users are
positioned and beams oriented in a geographical grid of size
z. This constitutes a system configuration

S = {R, C,B,W,G,U , z} (1)

From W , G and z we obtain a nominal received signal
power (RSP) for every user by applying P . We emulate
disabling PRBs individually within the beams by decreasing
the transmit powers by a fixed ratio g according to a PRB
schedule a, and apply a stochastic fast fading emulation D
separately over each element in R, yielding a set of unique
RSP samples per PRB, which we treat as observed RSPs
within emulation episodes. For each PRB, approximate signal-
to-noise-and-interference-ratios (SINR) can then be calculated
by summing over R × B × U and some background noise.
For the purpose of our reinforcement learning framework,
we designate the resulting SINRs the observable states of
the modelled system. Finally, a radio resource management
scheduling [26] algorithm M is applied to allocate the non-
disabled radio resources to users. How this is done for dif-
ferent combinations of performance objectives is detailed in
Section III-E.

This chain of operations, as specified in Equation 2, is ap-
plied for each TTI and results in a realised spectral efficiency

e of shape |R| × |B| × |U| and an updated system state of
which the observable part is s. This output is together with a
chosen PRB schedule a, the input to the RL Framework, as
detailed in Section III-C.

{s, e} tti←− {P,D,S (a) ,M} (2)

B. System Model Parameters and Assumptions

The system model replicates key features of a radio network
over a geographical grid. Users are placed to represent service
demand over which system performance can be measured.
Currently the demand model is the simplest possible, known
as downlink full buffer (FB) or infinite demand. The fading
component D emulates diffraction and Doppler type effects.
Fading state evolves independently per PRB, and is overlaid
per user fading based on distance and angles in S. Several
types of statistical fading models [40], e.g. Raleigh, Ricean and
Weibull are included, but most reported experiments use the
Weibull model which also includes a random location specific
fading severity, and is auto-correlated over time.

The transferred bits are re-scaled to spectral efficiency
and summed over R × B to produce per user statistics,
and averaged over R × B × U to obtain a system spectral
efficiency (SSE) [41] in b/s/Hz. These metrics are mapped to
a reward, as described in Section III-E. In our model, without
loss of generality, we do not assume any advanced antenna
configurations and our maximum SSE (at best SINR) is 4.48
b/s/Hz. The PRB schedule a constitutes an on/off schedule
overR×B which can be calculated per TTI or aggregated over
TTI intervals. Table I gives further details of the submodels
employed. In simulation mode, UEs report on RSP and a
channel quality indication (CQI), which is SINR in our model,
on all available PRBs. Here we assume that this information
is known by the scheduling agent for every beam and PRB.
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TABLE I
KEY SYSTEM MODEL PARAMETERS

Parameter V alue|Range Note Ref.
S System model See equations 1 and 2
P COST 231 Hata Transmitter height: 10m [39]

Freq. = 2140Mhz Receiver height: 1m
G ITU-R M.2135-1 70◦ def. horiz. beam width [38]
W beam power in dBm Values used {30, 42}
g Silent PRB −30 dB
|R| 1 ms x 180KHz System values used {6, 20}
|U| User devices Typical values {9, 10, 50}
D standard deviation ∼ 3 dB
M MT or PF Full Buffer [26]

In system deployment, this data would be approximated by
sampling sub-carrier CQI reports from UEs (see section III-F).

C. Reinforcement Learning Framework

The key parts of a reinforcement learning (RL) framework
are an agent, following a policy π, which interacts with an
environment through an action a upon which the environment
will update its internal state and produce a reward r and a new
(observable) state s. The policy π(a|s), applied to a state s,
is the probability of choosing the action a in state s and the
objective of an RL agent is to learn the best a in a given state
s for a specific optimization objective. Algorithm 1 outlines
the various steps used to integrate this RL approach with our
system model. For a short but compact overview of basic RL
theory we suggest reviewing this tutorial [42].

1 Initialize:
2 Weights of parameterized policy network θ
3 Learning rate α; Initial state s0; Trajectory: τ ; b← 1
4 foreach episode: e in E do
5 s← s0
6 foreach TTI: t ∈ T do
7 Sample a← πθ(s)
8 Apply system model {s, e} ← {P,D,S (a) ,M}
9 Derive reward r ← Targ(e)

10 Record trajectory: τe,t ← {s, a, r}
11 end
12 . Update policy every B episodes
13 if b mod B = 0 then
14 ∇θJ (πθ)← 0
15 foreach step i in τ do
16 ∆θi = -∇θ log πθ(ai|si)Aπθ (si, ai)
17 ∇θJ (πθ)← ∇θJ (πθ) + ∆θi
18 end
19 ∇θJ (πθ)← mean(∇θJ (πθ))
20 . Update policy parameters through

back-propagation and reset τ
21 θ ← θ + α∇θJ (πθ)
22 Reset τ
23 end
24 b← b+ 1;
25 end

Algorithm 1: RL Framework

We use a policy π parameterized by θ, which is imple-
mented (see III-D) as a neural network [43]. The algorithm
is run for E episodes, and each episode, a fixed number of
time-steps (TTIs), during which actions a are sampled from
the current policy π(a | s; θ). Each sampled action a is used

as input to the system model after which the remaining stages
of equation 2 are applied (Line 8).

Each system model iteration produce an updated (observ-
able) state s and a (realised) system efficiency e, both of shape
|R|×|B|×|U|. From e we derive the SSE and per user statistics
needed to calculate the reward r. The state s consist of per user
SINR or CQI (channel quality indicator) values generated by
the system model as a response to the agent’s previous action.
The derivation of r from e is detailed in Section III-E. We
use batching to improve generalization across a number of
episodes. A batch is created every B episodes, and the policy
is updated using complete TTI trajectories τ . Updates takes
place using a policy gradient approach (Lines 15 to 21).

The objective function J (πθ) = Eτ∼πθ [r(τ)] of an RL
framework maximizes the expected reward r, and the policy
gradient theorem [44] ensures that the gradient of J (πθ) can
be can be incrementally calculated across the trajectory τ as
done in Lines 16-193. By maximizing the objective over τ in a
batch of B episodes and updating the neural network weights θ
according to the observed gradients through back-propagation
with a suitable learning rate α, the policies πθ gradually
becomes better at selecting actions that maximize reward. The
advantage function Aπθ (s, a) encodes the estimation of target
reward derived in Line 9, and we can employ several variants
as described in Section III-E.

D. Policy Network Architecture

We represent the policy π of Section III-C as a function
from state s to the joint probability P (a | s) of choosing
action a in s. Depending on the distribution we assume for
P and how we chose to represent a, the structure of neural
networks used to represent π can take a few different forms.
The simplest one uses a sigmoid [43] head over the resources
in R × B and the output is interpreted as the probabilities
of turning on or off individual PRBs within each beam. A
network of this type is illustrated in Figure 2. The actions
for this case are sampled as Bernoulli (0/1) outcomes, giving
2|R|×|B| possible actions, which can be input directly into the
system model to compute the state update, and the per TTI
spectral efficiency.

Fig. 2. Simulator states, actions and policy network shapes for sigmoid output,
where |R|, |B| and |U| are the number of PRBs, beams and users respectively.

3The mean on Line 19 is calculated per batch, as per Section III-E.
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A conceptually more sophisticated model exploits the struc-
ture of the dependencies between the individual probabilities
produced by π. We can explicitly represent any combination
of on/off decisions as a separate outcome, and interpret the
network head as a single categorical variable using a Softmax
[43] operation on the network head. The size of the network
output layer grows very quickly O(2n) with n binary out-
comes, which limits the scalability of this model. To reduce the
impact of this, we exploit the fact that the PRBs are, by design,
largely independent within the beams. Under this assumption,
we design the network to operate on the input state of the
beams and users of a single PRB. If the episodes contain more
than one PRB, we slice the system state and network head so
that PRBs become additional batch samples. This reduces the
number of outcomes we need to consider radically, so that
it is e.g. entirely realistic to train networks for 6-9 3-sector
cells with an arbitrary number of PRBs. Figure 3 illustrates an
instance of such a model. Since the same type of slicing may
be applied to the sigmoid model, the Softmax model remains
more demanding on system resources, however. Section IV-1,
explores differences between these models further.

Fig. 3. Sliced policy network shapes with softmax head, where |R|, |B| and
|U| as in Figure 2. Separate PRBs within the episodes are sliced as additional
batch samples. Note exponential size of output layer.

E. Reward Targets and Advantage functions

Several reward functions (Algorithm 1, line 9) can be
derived from the spectral efficiency e produced by the system
model. The simplest is to average e over |R| × |B| × |U| to
produce a single per TTI SSE as reward. This corresponds to
a maximum throughput (MT) objective.

To take fairness over users into account, we maintain per
user throughput running averages Tu . The statistics for these
are obtained from e by summing over |R| × |B|. From Tu
we obtain a proportional fair (PF) reward r by averaging
over e/Twu where w is a weight assigned to the fairness.
Setting w = 0 recovers the MT objective, but larger w
increases the importance of the fairness in the resulting reward,
rapidly approaching a BET (blind equal throughput) [26]
objective. Apart from its use in the RL-framework, the reward
is also used by the allocation policy M of the system model.
Currently, M allocates the resource to the user giving the
highest reward, but other policies are possible.

Several advantage functions Aπθ (s, a) can be applied in our
RL framework. For most of our experiments, we have used

REINFORCE [9] with baseline for which Aπθ = (τr − r̄),
where τr, in vector representation, is rewards per TTI for one
batch and r̄ is a running average reward over a number of
batches. The alternative form (ri−r̄) can be used to align with
the representation in algorithm 1. From the target, we derive
the policy gradient per TTI used by the RL framework as in
algorithm 1 line 16. Alternate target functions are possible,
and we also tried an actor-critic advantage, where a separate
value function is trained to predict the reward for a given
system state and replaces the baseline in the target return. In
our experiments we did not see any obvious advantage of this
method.

F. Policy Transfer and Continuous Learning

The RL paradigm facilitates learning optimization policies
through reinforced data observations. A policy can be used in,
or in place of, an algorithm to achieve some overall system
goal. An agent is the general term used to represent a software
entity responsible for the policy training process as described
in section III-C. One crucial aspect is how a trained policy
can be used in an operational system. In our method we
propose an initial, agent based, training phase in an offline
simulation environment after which the policy is transferred to
a RAN system agent framework (see figure 4). We represent
the policy as a neural network (see section III-D), implemented
as a structured set of weights, which is very portable between
simulation and operational system. Using an offline training

Offline Simulation environment

RL Framework

Policy : π
Train

State Reward

Action

System Model 

Observable
State

Observable 
Reward Action

Policy : π
Train

State Reward

Action

Agent

Policy : π
Continous 

Train

State Reward

Action

Policy : π
Continous 

Train

State Reward

Action

Agent

RL Framework

Transfer policy : π 

Resource Schedules

Coordinated Radio Resource
Management

Sampled
State

Sampled 
Reward Action

RAN System

Fig. 4. Policy Transfer.

environment enables access to rich state data without system
implementation or resource constraints. Model assumptions
made during offline training will, however, change over time
and thus we see the need to do continuous, sample based
training of policies in an operating RAN context. Access
to state data is, in general, limited and resource constrained
in a running systems. The RL framework and associated
agents will need to collect and aggregate sparse samples
from underlying management and observability channels to
feed a continuous training process. From a RAN distribution
perspective, each RL Framework instance works with a cluster
of cells through CoMP coordination mechanisms. We foresee
the need for agent coordination strategies between clusters but
leave this as future work.
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(a) minimal interference (b) intermediate interference (c) maximum interference

Fig. 5. Three one beam sites. Beam angles for three interference scenarios.

IV. EMPIRICAL RESULTS

To evaluate our RL method we implemented a highly effi-
cient system model simulation using vectorized Python numpy
[45] data structures. The RL framework and related neural
network structures, including back-propagation mechanisms,
were implemented with PyTorch [46]. The training episodes
were run on a Linux infrastructure using powerful GPUs to
speed up the process. We performed three different experiment
types, detailed in the following sections.

1) Experiment A - Engineered Cell Configurations: To
examine the ability of the proposed method to produce sched-
ules under severe interference, we designed scenarios where
all users have fixed positions in the central region between
three equidistant single beam cells. The angles of the beams
are shifted between minimal and maximum interference, as
illustrated in Figure 5. We compare the results of training
scheduling agents using Softmax (Smx) and Sigmoid (Sig)
network architectures (see Section III-D) against two binomial
policies. Table II, compares system spectral efficiency (SSE),
fairness (Fair.) and proportion of resources scheduled (Ruse)
for two objectives, maximum throughput (MT) and propor-
tional fair PF with a weight of 0.2, and using a batch size
of B = 10, T = 100 TTIs per episode, and a total no. of
episodes 9000.

Binomial policies take no account of correlating individual
on/off variables, only turn them on with a probability accord-
ing to the distribution parameter p. The measured reuse of a
binomial policy will always converge to p. E.g. for binomial
p = 1, all resources will be active while p = 0.5 implies a
uniformly random policy. For these experiment, two binomial
probabilities are chosen for each comparison: One where all
resources are constantly on (1), and another one (Bin) with
p chosen as the resource reuse of the RL trained schedulers.
In this way we can see if the trained scheduler just mimics
the corresponding binomial policy, or actually improves on it,
which is crucial in high interference scenarios.

Inspecting Table II, for the minimal interference case
(Fig 5a), all the schedulers show identical results. The
binomial-1 scheduler is optimal for this case, since interfer-
ence is insignificant, and it is encouraging that both trained
schedulers produce equivalent results.

For the more severely interfered scenarios (Figures 5b and
5c), both trained schedulers significantly outperform binomial
policies in terms of SSE and when compared to binomial
for p = 1, this holds true at a significantly lower effective
reuse, and hence energy expenditure. This implies that the
employed interleaving patterns efficiently exploit the variations
in SINR to choose the best resources to turn on and off in
each individual state. The SSE value 1.56 for the maximum
interference case is very close to one third of the theoretical
maximum (4.48) under our propagation model, which is the
best we could expect in this case.

For the PF case, we see that the SSE goes down as the
fairness is improved for all cases, but more so for the binomial
policies than the trained ones. For the maximum interference
case, the gain from using the trained schedulers is especially
significant. The binomial policies, while producing very high
fairness, do so at a significantly higher cost in terms of SSE.
The trained schedulers apparently avoid producing interference
even when supplying less well placed users, a result we
consider very significant. Finally we observe that, at least
for these comparatively simple examples the Sigmoid appears
to reproduce the the results of the Softmax scheduler almost
perfectly. If this holds up for more complex scenarios, it is
good news, since (a similarly sliced) Sigmoid architecture
would be less demanding on memory and compute resources
for training.

Figure 6 show convergence plots for key metrics during
training of the Softmax scheduler for the maximum inter-
ference case. Observe that the reuse initially rises as this
improves the SE for well placed users. It also reduces it for
the badly placed ones, but this is not immediately captured
by the learning policy. Eventually the algorithm learns how to
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TABLE II
EXPERIMENT A - ENGINEERED CELL CONFIGURATIONS RESULTS

M Metric minimal interference intermediate interference maximum interference
Smx Sig 1 Bin Smx Sig 1 Bin Smx Sig 1 Bin

MT
SSE 4.48 4.48 4.48 4.48 3.04 2.99 2.43 2.18 1.56 1.56 1.07 1.04
Fair. 0.43 0.43 0.43 0.43 0.42 0.39 0.42 0.52 0.19 0.20 0.90 0.37
Ruse 1 1 1 1 2/3 2/3 1 2/3 1/3 1/3 1 1/3

PF
SSE 2.89 2.89 2.89 2.89 2.07 2.07 1.76 1.68 1.35 1.35 0.93 0.93
Fair. 0.61 0.61 0.61 0.61 0.62 0.61 0.59 0.80 0.97 0.97 0.96 0.98
Ruse 1 1 1 1 2/3 2/3 1 2/3 2/3 2/3 1 2/3

System Config. |C| = 1, |B| = 3, |R| = 6, |U| = 9, z = 1km2, W = 30dBm, G = 70◦

Fig. 6. Engineered configurations: SSE, fairness, reuse factor and entropy
training convergence for the Softmax MT scheduler. Config. as in Table II.

disable and interleave PRB usage in order to reduce overall
interference and increase SSE. Note also that the policy en-
tropy decrease is not exactly smooth and there is some action
space exploration going on between the 2000:th and 4000:th
iteration. The Sigmoid scheduler behaves very similarly.

2) Experiment B: In this group of experiments, locations of
a specified number of cells and users are randomly generated,
then fixed for the duration of training, according to a given
seed to allow reproducibility. This gives a random inter-
cell distance with unplanned, but uniformly distributed, beam
direction, and random user placement. The ad hoc and possibly
temporary nature of the configuration makes standard cell
planning very difficult. For the purpose of testing our method
we generate 100 (randomly selected) of these ad hoc network
scenarios and apply different system configurations specified
as sets 1-3 in Table III. Set-1 uses 3 cells, 3 beams with 6
PRB each, and 10 users in a 1 km2 grid. For all experiments
in B and C, the RL framework uses a batch size B = 2
and T = 250 time-steps (TTI) per episode, a learning rate
α = 5 × 10−5 and the softmax architectural variant (Smx).
The RL algorithm trains for 2000−8000 total no. of episodes
and the measure of entropy (see Figure 6 for an example
entropy curve) can be used for early stopping. Using set-
1 configuration, when generating locations as described, we

create scenarios with a high probability of users ending up in
high interference zones. As for experiment A, we compare the
SSE as produced by our RL method (SSE - Smx in Table III)
with two binomial policies: 1) Ruse 1 - use all PRB resources;
2) Ruse Bin - match RL algorithm PRB reuse factor. Figure
7-(a) shows the spread of SSE for each of the 100 randomly
generated scenarios and shows a visual comparison of our RL
method against the SSE produced by the binomial policies.
In all almost all cases (except scenario 62 where reuse 1 is
marginally better at 0.5%) our method shows significant gains,
on average 33% compared against reuse 1 and 48% compared
against reuse Bin. Figure 7-(b) shows the % SSE improvement,
as a stacked bar chart, across all scenarios for RL, compared
against both binomial policies. Possibly even more interesting
are the potential energy gains. In this case, we define energy
improvement as a term relating number of PRBs not used in
those cases where our RL method improves upon reuse 1.
For example, when our RL scheduler beats reuse 1 with a
reuse factor of 0.7, we define that saving term as (1−0.7). In
these cases, our RL method can beat reuse 1 in terms of SSE
while using significantly fewer PRBs and thus energy in terms
of silent PRB, on average 46%, and in one case up to 73%.
Figure 7-(c) shows the spread of energy saving across all 100
random network scenarios. As expected, since we use the MT
reward objective, fairness suffers. However, as demonstrated in
experiment A, it is possible to use the PF objective to balance
SSE against fairness.

Set-2 uses the same system parameters as set-1, with one
exception; the number of users is increased to 50. There is
a higher probability that users fall into cell centers and thus
lower probability of MT allocation resources to users in high
interference zones. In this case we see lower but still useful
SSE gains, on average 5% for reuse 1 and 18% for Bin, across
all scenarios. The potential energy gain is still significant for
this set, on average 23%, and up to 56%.

Set-3 models a wide area with high power cells by increas-
ing the grid size to 10km2, number of cells to 5, PRB to 20
per beam, and the beam output power to 42dBm. Moreover,
in this case the RL method beats both binomial policies by a
significant margin giving SSE gains of on average 33% and
average energy gains of 49%.

3) Experiment C: In this experiment set (table III set-
4), 100 random network scenarios are again generated. The
locations of a specified number of cells are randomly gen-
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a) b) c)

Fig. 7. Experiment B: Set-1 with 3 Cells, 3 Beams, 6 PRBs, 1km, Power = 30dBm. Sub-figure b) is a stacked bar chart.

TABLE III
SUMMARY OF METRICS FOR EXPERIMENTS B AND C USING SOFTMAX ARCHITECTURE

Experiment B / Set-1 / Fig. 7 Experiment B / Set-2 Experiment B / Set-3 Experiment C / Set-4
Metric ave max min ave max min ave max min ave max min
SSE - Smx 1.70 2.51 0.82 2.70 3.54 1.59 1.07 1.75 0.60 1.08 1.14 1.02
SSE - Ruse 1 1.32 2.33 0.46 2.60 3.70 1.18 0.83 1.54 0.36 0.87 0.88 0.86
SSE - Ruse Bin 1.17 2.07 0.45 2.32 3.51 1.16 0.69 1.23 0.32 0.79 0.83 0.75
SSE % Gain / Ruse 1 33.41 100.00 -0.51 5.00 34.75 -5.69 32.53 97.22 9.52 24.75 31.40 18.39
SSE % Gain / Ruse Bin 48.48 82.22 13.46 17.77 51.75 0.85 58.78 102.86 33.33 37.25 50.00 25.30
% PRB Energy 45.93 73.33 21.67 23.16 55.50 3.50 48.80 69.00 35.50 51.66 60.00 40.00
Jain Fairness - Smx 0.50 0.69 0.21 0.22 0.30 0.12 0.53 0.74 0.28 0.58 0.64 0.53
Jain Fairness - Ruse 1 0.69 0.89 0.48 0.28 0.45 0.15 0.63 0.86 0.33 0.79 0.82 0.76
Jain Fairness - Ruse Bin 0.57 0.86 0.35 0.24 0.37 0.13 0.61 0.82 0.35 0.68 0.69 0.68
Ruse : Smx 0.54 0.78 0.27 0.77 0.97 0.44 0.51 0.64 0.31 0.48 0.60 0.40

|C|=3,|B|=9,M=MT |C|=3,|B|=9, M=MT |C|=5, |B|=15,M=MT |C|=5,|B|=15,M=MT
System Configuration |R|=6,|U|=10 |R|=20,|U|=50 |R|=20, |U|=10 |R|=20,|U|=10

z=1km2,W=30 dBm z=1km2,W=30 dBm z=10km2,W=42 dBm z=1km2,W=30 dbm

erated, then fixed for the duration of training, according to
a specified seed to allow reproducibility. New user locations
are, however, randomly generated for each new episode E.
This models a set of ad hoc and densely placed cells with
extreme mobility among the users. Our RL method again
significantly beats both binomial policies with on average 25%
SSE improvement over reuse 1, 37% improvement over reuse
Bin and 52% energy improvement according to our definition.
We consider this result to be especially significant given that
random placement/mobility of users each new episode creates
a challenging set of scenarios for our RL algorithm.

V. CONCLUSION AND OUTLOOK

Radio spectrum is an incredibly valuable resource and often
represents a large monetary investment for cellular operators.
Even small fractional improvements in total SSE represent a
significant increase in overall system performance. We show
that our RL method can autonomously learn sophisticated
scheduling patterns and improve SSE by up to 25% in
challenging network scenarios. We also show that this SSE
improvement can be achieved at significant energy improve-
ment through silencing interfering radio resources. For 5G in
particular, lean and energy efficiency radio carriers constitute
an important requirement and we see our method being
highly applicable, especially in dense ad hoc configurations
where manual planning is difficult to impossible. We also

demonstrate that by selecting an appropriate reward objective,
throughput (MT) or fairness (PF), we can elegantly and easily
balance SSE with user fairness. This flexible approach can
almost certainly be extended to include other objectives like
non full buffer traffic, latency awareness or service priority,
though we leave these extensions as future work.

One of the truly powerful characteristics of models and
policies trained through data, using techniques like RL, is their
portability potential. We have proposed a flexible approach
where a policy, represented as a neural network, can easily be
transferred to a live system for continued contextual training.
We see this stepped approach as critical in highly dynamic
systems where live contextual patterns can divert significantly
from initial assumptions. This is a topic we intend to explore
further through multi-agent coordination between clusters of
cells.

ACKNOWLEDGEMENTS

We gratefully acknowledge the help from many colleagues
at Ericsson for their valuable comments. Kreuger is funded
by Ericsson. Corcoran and Boman are partially funded by
the WASP (Wallenberg Autonomous Systems and Software
Program) research program. Boman also acknowledges the
Swedish Foundation for Strategic Research project Time-
Critical Clouds.

2021 17th International Conference on Network and Service Management (CNSM)

223



REFERENCES

[1] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA) and
Evolved Universal Terrestrial Radio Access Network (EUTRAN); Over-
all description; Stage 2,” ETSI, Tech. Rep. ETSI TS 36.300 V12.5.0,
Apr. 2015.

[2] ——, “3rd Generation Partnership Project; Technical Specification
Group Radio Access Network; NR; NR and NG-RAN Overall De-
scription; Stage 2 (Release 15),” 3GPPP, Tech. Rep. 3GPP TS 36.212
V15.1.0, 2018.
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