
Auction-based Federated Learning using
Software-defined Networking for resource efficiency

Eunil Seo
Department of Computing Science

Umeå University
Umeå, Sweden

eunil.seo@cs.umu.se

Dusit Niyato
School of Computer Science and Engineering

Nanyang Technological University
Singapore

dniyato@ntu.edu.sg

Erik Elmroth
Department of Computing Science

Umeå University
Umeå, Sweden

elmroth@cs.umu.se

Abstract—The training of global models using federated learn-
ing (FL) strategies is complicated by variations in local model
quality arising from variation in data distribution across individ-
ual clients. A wide range of training strategies could be created
by varying the size and distribution of the training data and the
number of training iterations to be performed. All these variables
affect both model quality and resource consumption. To facilitate
the selection of good training strategies, we propose an auction-
based FL method that can identify a training strategy that is
optimal in terms of resource management efficiency subject to a
given model quality requirement. An auction method is used to
dynamically select resource-efficient FL clients and local models
to minimize resource usage. This is enabled by using Software-
defined Networking (SDN) to support the dynamic management
of FL clients. We show that resource-optimal FL strategies can be
implemented in the cloud/edge services market; dynamic quality-
based model selection can reduce resource costs by up to 17%
from the FL server’s perspective. Moreover, the client utility
function presented herein helps FL clients adopt practical trading
strategies to cooperate efficiently with FL servers.

Index Terms—Federated learning; cloud computing; software-
defined networking; auction method; quality-based incentive

I. INTRODUCTION

The advent of the age of data has made, Machine Learning,
powerful computing resources, and large amounts of data
available across the world’s various cloud services, enabling
the development of many diverse ML-based applications that
exploit the vast numbers of interconnected cloud/edge data
centers and mobile devices. In globally distributed data and
resource environments, Federated Learning (FL) has emerged
as a way of federating multiple ML models trained and
distributed by many different model providers.

However, FL inevitably faces costs due to its reliance on dis-
tributed local ML models. Additionally, it suffers from model
quality degradation when compared to centralized learning
approaches. The auction-based FL strategy proposed here min-
imizes the use of computing resources by selecting appropriate
data sizes and distributions. An overlay network is constructed
from the chosen FL clients and an FL server; the server
can then train a global model using the dynamic interactions
supported by Software-Defined Networking (SDN).

Auction-based methods can help minimize resource costs
by selecting resource-efficient FL clients from the perspective
of the FL server. Such methods have been used in various

applications including a radio network [1], a wireless FL
service market [2], and a cellular wireless network [3]. The
FL server acts as the auction buyer while the clients function
as sellers. In this work, we extend the auction approach by
introducing a winning score rule for the auctions that enables
the selection of an optimal data size over multiple clients and
a reward decision rule for selecting the highest quality local
models during dynamic auction interactions.

To improve resource management, the FL server uses an
SDN controller to create an overlay network in which the FL
server and clients can perform auction bidding and product
provision. This allows the FL server to adaptively control
the resources to implement applications and services while
satisfying quality requirements.

If the FL server has full knowledge of the quality of the
available models and their training costs, it can select the best
training strategies to minimize resources. To enable this, we
define a two-tier model quality function that evaluates model
quality based on the number of training iterations, data size,
and distribution. With this function and the specified inputs,
the FL server can predict model quality. In general, a greater
number of iterations corresponds to a higher model quality
but also increases the consumption of resources. Thus, the
approach presented in this work allows resource usage to be
minimized while satisfying an arbitrary quality requirement.

In this approach, the FL server uses the FedAvg algo-
rithm [4] to integrate the selected local models. Auction-based
FL allows both the FL server and the FL clients to maximize
their utility. The main contributions of this work are:

• An auction method to reduce resource management in
which a bidding process determines the optimal number
of training iterations, data size, and data distribution.

• A two-tier model quality function that predicts computa-
tion resource use subject to ML model quality criteria and
allows the FL server to minimize computation resource
use.

• Utility metrics and utility functions to maximize the
utility of the FL sever, FL client, and cloud provider.
We also extend federated learning by using SDN and
show that using an overlay network created by an SDN
controller can improve resource management.

2021 17th International Conference on Network and Service Management (CNSM)

978-3-903176-36-2 ©2021 IFIP 42

The remainder of this paper is organized as follows. Sec-
tion II presents related work. Section III describes the system
models of the proposed auction-based FL. Section IV intro-
duces the utility functions. Section V presents a performance
evaluation. Finally, conclusions are presented in Section VI.

II. RELATED WORK

Due to the unique features of the local model in FL, previous
studies have focused on two critical data attributes: the data
size and data distribution. According to [5], data size plays
an essential role in improving data quality; in general, more
data means better predictive performance. With regards to
the data distribution, Zhao et al. [6] claim that losses of
accuracy are mainly due to divergence of weights. In this
work, resource use is regarded as a model quality determinant
of equal importance to the data size and distribution. This
motivated the development of a two-tier model quality function
based on these three factors: the data size, data distribution,
and resource usage (i.e., the number of training iterations).

Another important determinant of the feasibility of FL is the
reward method. Several reward methods have been developed:
Niyato et al. [7] introduced the willingness-to-pay (WTP)
approach, Han et al. [8] proposed a fairness-aware reward
scheme, and Kang et al. [9] presented a reward method
based on contract theory and the computational power of the
available clients. In this work, the reward is proportional to the
quality of the data used for model training; in other words, it
depends on model quality and data size.

III. SYSTEM MODEL

This paper proposes a method for optimizing computational
resource usage during federated learning while satisfying an
arbitrarily chosen target accuracy requirement.

A. System model and auction procedure

The proposed federated learning system consists of an FL
server (henceforth, the server), N FL clients (henceforth,
clients) whose cloud/MEC computational resources are used
to train local models, and an SDN controller (henceforth, the
controller), as shown in Fig. 1. We denote the sets of clients
and computation resources by N and U, respectively. The
corresponding numbers of clients and computation resources
are N (indexed by n) and U (indexed by u).

Fig. 1: System model for an auction-based federated learning
system comprising an SDN controller, a server, clients, and

cloud/edge providers.

The controller performs the auction and selects the winning
client using the bidding resource and the claimed price. The
server performs FL model training using the winning clients
and judges the acceptability of local models based on their
accuracy; only acceptable models are included in the global
model and rewarded. The clients participate in the auction
and train the local models if they win the auction; they are
paid if they achieve acceptable accuracy. The auction-based
FL process is divided into three stages, as shown in Fig. 1:

In stage I, the server designs the global model architecture
and determines the data requirements (e.g., data type and
sample size) and the required quality level (e.g., 97%). The
server then requests a controller to conduct an auction using
these requirements.

In stage II, a controller selects the winning clients using
Rwin(·) and creates an overlay network to improve resource
management. We assume that clients are honest, i.e. that they
use their local data and give the controller accurate information
on their data size, computation resources, and claimed reward.
The auction process is divided into the following sub-tasks:

(i) A controller defines and broadcasts the auction winning
rule Rwin(·), the reward decision rule Rrwd(·), and
the FL training requirement to the distributed clients. The
auction winning rule Rwin(·) in (1) is used to decide the
winning clients, the previously reported reward decision
rule Rrwd(·) (7) is used to determine whether payment is
awarded to the local model based on its quality, and the
FL task requirements are used by clients when training
local models.

(ii) A client n submits a bid bn = {ln, en, pn, qn} to
the controller. Here, ln denotes the index of the global
iterations, en = {en1, en2, . . .} denotes the quality vector
for the bidding resources, pn denotes the claimed reward,
and qn denotes the local model quality after the lth

iteration.
(iii) After receiving all bids from the clients, a controller

selects the set W = {w(bn)}bn∈B of all winning clients
using the auction winning rule Rwin(·) and determines
the minimum number Lmin of global iterations needed
to satisfy the quality requirement Qg using previously
reported two-tier model quality functions (20).

(iv) The winner-based overlay network is created as shown in
Fig. 2. Section III-B describes Rwin(·) further.

In stage III, the clients train the local models and evaluate
their accuracy; the server then uses the reward decision rule
Rrwd(·) to determine payment and integrates the accepted
local models. Federated learning thus involves a two-tier
modeling structure consisting of local model training and
model integration.

To determine the reward score Rrwd(·), the server averages
the accuracies of all winning local models and subtracts the
standard deviation according to the reward decision rule (7).
The server uses the resulting reward score as a threshold value
to select the best quality models and choose the accepted
model group, {w1

l+1, w
2
l+1, . . . , w

k
l+1}.

2021 17th International Conference on Network and Service Management (CNSM)

43

This process in its entirety (i.e., going from stage I to stage
III) constitutes one global iteration. The server iterates the
global modeling process Lmin (indexed by l) times, where
the value of Lmin is obtained using the two-tier model quality
function (20). The notation used in the following discussion
is explained in Table I.

TABLE I: Notation.

Symbol Definition
N, N, n set of clients, number of clients, and client index
U, U, u set, number, and index of computation resources
Ql global model quality function, l is the global iteration index
Qg target global model quality requested by a server
Qm local model quality function, m is the local iteration index
wl a deep network at the lth global iteration
wl,m a deep network at the mth local & lth global iteration
L, l the global iteration number and the global iteration index
M,m num. of local iteration for a given task, local iteration index
Rwin(·) an auction winning rule
Rrwd(·) a reward decision rule

b a bid consisting of l, e, claimed price p, model quality q
e a vector of the bidding resources: data, computation, etc.

B,W,A sets of Bids, Winning clients, Acceptable clients
D, D total dataset and dataset size of an FL server

Dn, Dn local dataset and data size of a client n

B. Auction winning score rule and overlay network creation

The auction winning score rule Rwin(e, p) is a function of
the bidding resources vector e = e1, . . . , ei (e.g., data, CPU,
etc.) and the claimed price p of the provisioning model per
global iteration. As in previous work [10], the scoring function
can be expressed as a quasi-linear function with coefficients
(α1, . . . , αi), where i is the index of the different quality
vectors. The winning scoring rule rwin(·) is used to compute
the winning score as follows:

Rwin(en1, . . . , eni, pn) = rwin(en1, . . . , eni)− pn,
= α1en1 + . . .+ αieni − pn, (1)

where n denotes the index of a client.
We present an example of an auction decision involving

four clients N = {A,B,C,D}, as shown in Fig. 2, and two
resource types: the data size and frequency. The data size is
assumed to vary in the range [10, 100] while the frequency is
the optimal frequency f∗ as in (16), and is provided by the
cloud provider.

The public winning scoring function is defined as R(e, p) =
α1e1+α2e2−p, where α1 and α2 are coefficients for the data
size and the amount of computational resources. The weights
assigned to the coefficients are 0.7 for α1 and 0.3 for α2.

In the initial stage of the global training, the four clients
submit bids bn = (l, e1, e2, p, q): bA = (0, 13, 40, 21, ·),
bB = (0, 17, 30, 20, ·), bC = (0, 14, 30, 21, ·), and bD =
(0, 15, 30, 19, ·). After collecting them, the controller com-
putes the following scores for each client: Rwin(bA) = 21.1,
Rwin(bB) = 20.9, Rwin(bC) = 21.9, and Rwin(bD) = 19.5.

The controller notices that all of the claimed prices satisfy
the winning score requirement and therefore sorts the four
clients in descending order by mapping the winning scores

and data sizes (e.g., A : {Rwin(bA) = 21.1, DA = 13},
B : {20.9, 17}, D : {19.5, 14}, C : {18.8, 14}. Finally, the
winning clients are selected based on the data size require-
ment. For instance, if the controller requires a data size of at
least 40, A : 13, B : 17, and D : 15 are the winners, giving a
total data size of 45, as shown in Fig. 2.

Fig. 2: The controller selects the winning clients using
Rwin(e, p) and creates an overlay network.

C. Two-tier model quality function

A local iteration begins when the winning clients receive
the initial model wl,m. Client n trains the initial model wl,m
on its local dataset Dn. After training, it returns the updated
local model to the server. Previous studies [11] defined data
utility functions in terms of the data size Dn as follows:

Q = θ(Dn; q = [α1, α2]) = 1− α1

1 + α2 ·Dn
, (2)

where α1 and α2 are curve fitting parameters.
Since this work focuses on optimizing computational re-

source use subject to a quality requirement, we extend these
earlier model quality functions by introducing three variables:
the maximum achievable accuracy (which depends on the data
size), the training iteration, and the data distribution.

The maximum achievable accuracy is denoted by δm in (3)
for the local model quality and δl in (4) for the global
model quality. As the data size increases, the model accuracy
improves; however, the model cannot achieve 100% accuracy
even with unlimited data.

We define the local model quality function Qm, which
depends on the local iteration number m and a maximum
achievable accuracy-related coefficient δm that in turn depends
on the data size:

Qm = θ(m; p = [δm, α1, α2]) = δm ·
(

1− α1

1 + α2 ·m

)
, (3)

where θ is a non-decreasing function with decreasing marginal
accuracy.

A global iteration begins when the FL server receives all
local models from the participating clients and integrates the
gradients of the local models. Training of the global model
continues until the FL server satisfies the quality requirement
L = {1, . . . , l} times.

2021 17th International Conference on Network and Service Management (CNSM)

44

In keeping with Definition 4 of Oh et al. [12], we define the
global model accuracy using the global iteration instead of the
data size. As l increases (i.e., as the amount of computational
resources grows), the global model accuracy Ql improves
within the limit of the maximum achievable accuracy δl:

Ql = ψ(l; q = [δl, β1, β2]) = δl ·
(

1− β1e−β2·l
)
. (4)

Unlike δm, δl is affected by both the data size D and the data
distribution γd. The wider the distribution of the local models
(i.e., the lower the γ), the lower the global model accuracy Q
due to its distributed nature (See Fig. 3). We define δl as:

δl = ∆(D, γ), (5)

where ∆ is a coefficient that depends on the total data size D
(e.g., [0, 100]) and the data distribution γ (e.g., [0.01, 1]).

Table II shows global model quality using different total
data sizes, {10, . . . , 100} with identical data distributions (γ =
0.1, meaning that each client has 10% of the total data). The
greater the data size, the higher the global model accuracy.

TABLE II: Model quality using different data sizes.

D. Quality-based rewarding and the reward decision rule

We propose a quality-based reward method using the model
quality function. A higher local model accuracy may warrant
a greater reward due to higher consumption of local resources.
In accordance with Definition 5 of Oh et al. [12], we define the
quality-based reward function by mapping the model accuracy
to the local model payment:

p(bln,m) =

{
ςe−(1−Qm(m)) if a(bln) = 1

0 otherwise,
(6)

Here, a(bln) = {1, 0} is a binary variable indicating whether
the model is acceptable or not, ς is a coefficient proportional
to the contributed data size, m is the local iteration number,
and Qm is a local model quality function (3).

The server uses the local model accuracy to determine the
payment for the local model: if the provided model quality
exceeds the reward decision score Rrwd(·), a payment is made.
We define the reward decision score as the average accuracy
of the gathered local models minus the standard deviation:

Rrwd(q1, . . . , qn, βs, σs) =
1

n

n∑
i=1

qi − βs · σs. (7)

Here, qn is the accuracy of the local model provided by a client
n, βs is a coefficient to adjust the local model unacceptability
scale, and σs is the standard deviation. The indicator variable
a(bln) is determined as follows:

a(bln) =

{
1 if qln ≥ Rlrwd(·)
0 if qln < Rlrwd(·),

(8)

where qln denotes the accuracy of the local model provided by
client n and Rlrwd(·) denotes the reward decision score.

E. Computation resource cost model

A client n receives support from a cloud provider in the
form of a CPU set (which could, for example, be a set of
frequencies

{
f1, . . . , fu

}
). The client asks the cloud provider

to train a local model by sending its local dataset Dn and
Spending Sn. The cloud provider then allocates computation
resources (the amount of which is determined by the value of
Sn) to update the model wl,m.

The cloud provider trains the local dataset Dn with a com-
pletion deadline τn. The task of the cloud provider is described
using a commonly-used three-field task form (Dn, τn, X). The
fields are the input-data size of the task Dn (in bits), the
completion deadline τn (in seconds), and the computation
workload/intensity X (in CPU cycles per bit).

To provide flexibility to accommodate diverse applications,
we designed a computation cost model that estimates costs
from an MEC server’s perspective. For a client n, fn,Um

=∑U
u=1 fn,u,m denotes the total frequency of the allocated CPU

units {1, . . . , u} at the mth local iteration. We can thus obtain
the total allocated frequency fn over the full set of local
iterations M by summing fU :

fn =

M∑
m=1

U∑
u=1

fn,u,m =

M∑
m=1

fn,Um = M · fn,U , (9)

where 0 < fn,U < fn and M denotes the total number of the
local iterations. For simplicity, we assume all local iterations
have the same total frequency, i.e. that fn,U1

= . . . = fn,Um
.

A cloud provider performs model training using compu-
tation resources fn,U during each local iteration. We can
thus define the computation resource cost based on energy
consumption as follows:

Cn,U = µ · En,U , (10)

where µ is a predefined weight parameter for energy consump-
tion and En,U is the energy consumption for the local model.

In accordance with Equation 4 of Mao et al. [13], the energy
consumption can be obtained from hardware data (e.g., the
CPU frequency fn,U) and the data size as follows:

En,U = k ·Dn ·X · f2n,U , (11)

where k is a constant related to the hardware architecture.
An FL client n calculates the computation cost associated

with a given number of local iterations M as follows:

Cn =
M∑
m=1

Cn,U = M · µ · k ·Dn ·X · f2n,U , (12)

which allows us to define the total computation cost of M
local iterations for an FL client n.

2021 17th International Conference on Network and Service Management (CNSM)

45

IV. NON-COOPERATIVE COMPETITION AND UTILITY
OPTIMIZATION

We formulate a non-cooperative competition game between
a client and a cloud provider in which both stakeholders
perform their roles while seeking to maximize their utility.
Furthermore, we propose utility functions to maximize the
profitability of the client and server.

A. The computation resource utility

During a given global iteration l, a client n plans a given
amount of Spending Sn =

∑M
m=1 Sn,Um

to purchase com-
putation resources from a cloud provider. The cloud provider
computes its spending during each local iteration m as:

Sn,Um =
fn,Um∑M
m=1 fn,Um

· Sn. (13)

Here, fn,Um
denotes the allocated CPU frequency during a

local iteration m,
∑M
m=1 fn,Um

denotes the sum of all CPU
frequencies during a global iteration l, and Sn denotes the
spending of client n during a global iteration.

We can define the computation resource utility using
the relationship between the revenue (i.e., Sn,Um) and the
computation resource cost (i.e., fn,Um

):

Uu(fn,Um
, γm) = Sn,Um

− γm · fn,Um
. (14)

In keeping with a previously proposed approach [14], if
all CPUs participate in each local iteration, each CPU u is
allocated and used (i.e., fu > 0,∀u). We impose the conditions
that U > 1, M > 1,

∑U
j 6=u γj > (U − 2)γu, where U denotes

the number of participating CPU units and all γu are assumed
to be equal. We can then define the optimal CPU frequency
for each local iteration:

f∗u =
Sn(U − 1)(

∑U
i=1 γi − (U − 1)γi)

(
∑U
i=1 γi)

2
,∀u. (15)

Finally, we can sum the CPU frequencies used by the
cloud provider during a single local iteration and simplify the
expression to obtain:

f∗U =
U∑
i=1

f∗i =
Sn(U − 1)∑U

i=1 γi
. (16)

B. The FL client utility

Each client aims to maximize its own utility and will not
join the federated learning system if the reward is insufficient
compared to the costs of data and computation resources.
This work focuses on optimizing computation resource usage;
therefore, the client utility is defined as the reward price
minus data and spending costs:

Un(bln) =

{
p(bln)− CDn − Sn if a bid bln wins
0 otherwise,

(17)

where p(bln) denotes a reward with a bid (i.e., bln) in (6), CDn

denotes a local data cost, and Sn denotes the total spending on
computation resources in (12) during the lth global iteration.

Un = a(bln) · ςe−(1−Qm(m)) − γnDn −MµkDnXf
∗2
U ,

(18)
where γn is the data generation coefficient, M is the number
of local iterations, and f∗U is the optimal frequency in a given
local iteration from the cloud provider’s perspective.

C. The FL server utility
We define the server utility as the model quality minus the

total rewards granted to the winning clients:

Us = Ql −
∑
bln∈A

p(bln),

= δl ·
(

1− β1e−β2·l
)
−
∑
bln∈A

a(bln) · ςe−(1−Qm(m)),

(19)

where Ql represents the global model quality defined in (4),
p(bln) denotes the reward price for a bid bln as defined in (6),
and A =

∑L
i=1Ai is the set of acceptable clients.

Once the target accuracy Qg is known, computation re-
source usage can be minimized by selecting the minimum
number of global iterations. For instance, if the target accuracy
is Qg = 95%, the server trains the global model for 61
iterations only (See D = 30 and γ = 0.1 in Fig. 3).

The FL server can determine the minimum number of
iterations as the global model quality minus the required
accuracy Qg:

arg min
l

δl ·
(
1− β1e−β2·l

)
−Qg ≥ 0, δl ≥ Qg,

s.t. l ≥
log δl·β1

δl−Qg

β2
, (20)

where δl = ∆(D, γ) is the maximum achievable accuracy of
the global model for the given D and γ according to (5).

When training the global model, the server makes a set of
choices C = {c1, . . . , ck}, where c1 = {l1,m1} is a pair of
global and local iteration numbers. The server maximizes its
utility by minimizing the cost of obtaining the target model
quality Qg:

UQg
s = min

L∑
l=1

min
∑
bln∈Al

a(bln) · ςe−(1−Qm(m))

 , (21)

where Qm(m) denotes the local model accuracy achieved after
m local iterations. By comparing the costs of several choices,
H, the server can maximize its profitability.

V. PERFORMANCE EVALUATION

We verify the model quality function described above and
demonstrate that our proposed federated learning strategy en-
ables optimal resource management by performing simulations
with the classical MNIST dataset, which contains 50,000
training samples and 10,000 testing samples representing
handwritten digits from 0 to 9.

2021 17th International Conference on Network and Service Management (CNSM)

46

A. Verification for the model quality function

In this work, the data size, data distribution, and number
of training iterations determine the global model quality and
serve as the inputs for the global model quality function
defined in (4). To verify the model quality function, we
train multiple global models with the following simulation
parameters: the learning rate µ is set to 0.01, the number of
global epochs is l = {1, . . . , 400}, and the number of local
epochs is m = {1, 2, 5, 10}.

To evaluate how the data size affects model accuracy, we
use the FedAvg algorithm; Table III shows the maximum
achievable accuracy for data sizes between 10 and 100. It
is clear that the greater the data size, the higher the model
accuracy. However, the improvement in accuracy may become
saturated once the data size exceeds a certain threshold.

TABLE III: The maximum achievable accuracy.

The maximum achievable accuracy δl = ∆(D, γ) and the values of the
curve-fitting parameters β1 and β2 for global models with 10 different data
sizes.

A wide data distribution means that the total data set
consists of a large number of relatively small split data sets.
For instance, if γ = 0.1 then each client uses only 10% of the
total data size. Lower values of γ corresponding to wider data
distributions are associated with lower accuracy, as shown in
Fig. 3. For example, in the case of a model with a data size
of D = 20, the maximum achieved accuracy is 95.39% when
γ = 0.5 but 94% when γ = 0.025.

Fig. 3: Model accuracy for a data size of D = {10, 20, 30}
with different data distributions, γ = {0.5, 0.1, 0.05, 0.025}.

B. Server utility maximization

The server’s utility is improved by reducing computation
resource usage. This requires determination of the minimum
number of global training iterations because each iteration
increases resource usage. The server can use the global model
quality function Ql in (4) to determine the required data size
and the minimum number of global training iterations needed
to satisfy the quality requirement Qg , as shown in Fig. 3.

For instance, if a quality requirement of 95% is specified,
a model with the distribution ∆(30, 0.1) can achieve it after
61 iterations (i.e., Lmin = 61), whereas an alternative model
with ∆(20, 0.1) has an Lmin of 245 for the same quality
requirement.

The server computes the total reward price using Lmin
as defined in (20) and U

Qg
s as defined in (21). Table IV

shows the total reward price and the corresponding Lmin
values for global models trained using ten different data sizes
{10, . . . , 100} with a data distribution parameter of γ = 0.1.
This shows that the greater the data size, the higher the model
accuracy and the more quickly the accuracy increases.

TABLE IV: Total reward price and Lmin of global models.

Fig. 4 shows the reward prices for different model quality
requirements. Using the equations presented above, the server
can estimate the reward price for a given quality requirement
and then determine the utility maximizing optimal data size,
data distribution, and number of global iterations.

Fig. 4: Reward price as a function of model accuracy.

Fig. 5 shows the server utility, which is defined as the
achieved quality requirement minus the total reward price. The
greater the data size, the better the server utility. It is worth
noting however that above a certain threshold, increasing
the data size reduces the server’s utility because increasing
model accuracy also increases the quantity of computational
resources needed for model training.

Fig. 5: The server utility based on all participating clients.

2021 17th International Conference on Network and Service Management (CNSM)

47

Fig. 6 compares the accuracy of a model trained with the
full-size dataset to that achieved after using the reward score
function defined in (7) to remove unacceptable models (e.g.,
lower quality) in order to minimize reward prices. Lower
values of the local model unacceptability parameter βs result
in higher rejection rates and thus greater cost savings.

Fig. 6: Accuracy using the original dataset and after applying
the reward score function.

The results obtained show that the server can reduce reward
prices by up to 17% while maintaining model accuracy; the
root mean square error (RMSE) obtained after applying the
reward score function is 0.007, as shown in Table V.

TABLE V: RMSE and R-squared values.

C. Client utility maximization

A client maximizes its utility Un by maximizing its reward
while minimizing its data and computation resource costs
according to (18). Fig. 7 shows the client utility, which is
the reward minus the data and computation resource cost.
The global model accuracy indicates that client utility is
maximized when a client performs only two training iterations
with its local dataset. While ten local iterations give the highest
accuracy, it also incurs a greater computation resource cost,
leading to an overall reduction in client utility.

Fig. 7: Client utility after 1, 2, 5, and 10 local iterations.

Table VI shows the utility of each client when performing
two local iterations. The rewards of each client differ because
the local models vary in quality despite having identical data

and computation resource costs. Each client can plan its model
training based on computation resource costs.

TABLE VI: Utility of ten clients after two local iterations.

VI. CONCLUSION

We have extended federated learning by combining the
auction method and SDN management to create a practical
trading strategy for an FL server and clients in the cloud/edge
service market. This work demonstrates that the FL server
maximizes its utility by minimizing the number of global
training iterations and minimizing computation costs by com-
puting a reward decision score. The client maximizes its
utility by performing an optimal number of training iterations
determined by comparing the reward to its resource cost.
We will extend this work by using the proposed overlay
network to achieve reliable and scalable resource-efficient
Service Function Chaining (SFC).

ACKNOWLEDGMENT

This work was partly supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation.

REFERENCES

[1] X. Gao, P. Wang, D. Niyato, and et al, “Auction-based time schedul-
ing for backscatter-aided rf-powered cognitive radio networks,” IEEE
Transactions on Wireless Communications, vol. 18, no. 3, 2019.

[2] Y. Jiao, P. Wang, D. Niyato, B. Lin, and D. I. Kim, “Toward an
automated auction framework for wireless federated learning services
market,” 2020.

[3] T. H. T. Le, N. H. Tran, and et al, “Auction based incentive design for
efficient federated learning in cellular wireless networks,” in 2020 IEEE
Wireless Communications and Networking Conference, 2020.

[4] H. B. McMahan, E. Moore, D. Ramage, and et al., “Communication-
efficient learning of deep networks from decentralized data,” 2017.

[5] P. Domingos, “A few useful things to know about machine learning,” p.
78–87, oct 2012.

[6] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” 2018.

[7] D. Niyato, M. A. Alsheikh, P. Wang, and et al., “Market model and
optimal pricing scheme of big data and internet of things (iot),” 2016.

[8] H. Yu, Z. Liu, Y. Liu, T. Chen, M. Cong, X. Weng, D. Niyato, and
Q. Yang, “A sustainable incentive scheme for federated learning,” IEEE
Intelligent Systems, vol. 35, no. 4, pp. 58–69, 2020.

[9] J. Kang, Z. Xiong, D. Niyato, H. Yu, Y.-C. Liang, and D. I. Kim,
“Incentive design for efficient federated learning in mobile networks:
A contract theory approach,” 2019.

[10] R. Zeng, S. Zhang, J. Wang, and X. Chu, “Fmore: An incentive scheme
of multi-dimensional auction for federated learning in mec,” 2020.

[11] W. E. Armstrong, “The determinateness of the utility function,” pp. 453–
467, 1939.

[12] H. Oh, S. Park, G. M. Lee, J. K. Choi, and S. Noh, “Competitive data
trading model with privacy valuation for multiple stakeholders in iot
data markets,” IEEE Internet of Things Journal, vol. 7, no. 4, 2020.

[13] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[14] B. Jang, S. Park, and et al., “Three hierarchical levels of big-data market
model over multiple data sources for internet of things,” 2018.

2021 17th International Conference on Network and Service Management (CNSM)

48

