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Abstract—With the continuous development of Information
Technology, modern networks have been widely utilised. Since
the complex network structure causes growing difficulties in
maintenance, log analysis has been widely studied in recent years
for network diagnosis. System log clustering is mainly focused
for root cause analysis. In this paper, a hierarchical tree-based
clustering scheme is proposed that could accurately group system
logs according to both time and network constraints without
any training and parameter settings. Furthermore, it largely
accelerates the matching process by reducing matching times
and significantly boosts the performance of hit rate (100%) and
match efficiency (16%) comparing to other clustering strategies,
which greatly helps with precise network diagnosis.

Index Terms—system log clustering, hierarchical tree-based
clustering, correlation rule matching, network diagnosis

I. INTRODUCTION

With the continuous development of Information Technol-
ogy, modern networks have been widely utilised. As the ap-
plications are supposed to cover larger area, the amount of de-
vices are keeping increasing to form a more complex network
structure which causes growing difficulties in maintenance for
operation staff. A large amount of system logs (syslog) are
produced everyday with different severity levels such as noti-
fication, warning, error, alert etc. Among these syslog, faults
need to be successfully recognised and corresponding root
causes need to be correctly targeted to mitigate the impacts
of recognised faults. However, these maintaining processes
are exceedingly time-consuming and currently require heavy
manual efforts from operation experts. For instance, a single
fault might cause hundreds or thousands of syslog in very short
time which makes real-time maintenance almost impossible
[1], [2]. Consequently, a reliable and stable system that could
efficiently achieve real-time self-diagnosis and mitigate the
incident is in high demand.

The self-diagnose process could be regarded as a sequential
one including symptom extraction and actual diagnostic task
[3]. In symptom extraction part, features are extracted from the
observations. In other words, the system needs to understand
what happened in the networks according to given syslog and
detect faults in time. Then the actual diagnostic task would
localise root causes for the faults by the built diagnose engine
and notify the operation staff to check the corresponding part
such as physical connections or network configurations etc.
Considering this, it is essential to effectively extract symptoms
from syslog to ensure the accuracy in actual diagnostic task.
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In recent years, log analysis has been widely studied to
achieve effectively symptom extraction. Real-time records
from all devices in the networks are saved to the log system,
including their running status, operations, warning messages
etc. Automatic log analysis could explore these raw data by
template extraction [4]-[6], clustering [7]-[9] and anomaly
detection [10], [11]. Given merged clusters from above log
analysis processes, related fault information could be obtained
from a large amount of syslog by correlation rule matching.

Correlation rules are often acquired from classic association
rule mining algorithms [12]-[14]. Mining rules within clusters
could help to merge related syslog together and get the most
informative ones. However, manual verifications for mined
rules are also necessary by checking their correctness and
adding specific satisfying requirements to the rules aiming
to ensure the reliability. Given accurately clustered warning
groups, the rule matching engine could provide precise syslog
correlations which automatically assists fault targeting. In con-
sequence, network diagnosis could be performed with much
less human efforts which significantly accelerates network
diagnosis comparing to manual maintenance by operation
staff.

In this paper, a hierarchical tree-based syslog clustering
scheme is proposed that could accurately group the syslog
according to both time and network constraints. Our approach
successfully achieves better performance for syslog clustering
in practical use with less human efforts and mainly contributes
in two aspects:

1) Better performance without any training and parameter
settings. Considering strict data limitation and com-
plex model training in previous studies, we provide a
training-free and parameter-free clustering scheme that
could be easily adapted to real-world circumstances.
Specific fault targeting. From previous studies, experts
need to diagnose the fault based on given IP address,
summarised sequences or general suggestions. However,
it would still be long time for them to find out the
detailed problem on a specific device and solve it.
Regarding our tree-based method, preserved hierarchical
information could help us to target specific problems on
a device (e.g. slot 1 on device A) which allows experts
to quickly and accurately solve the problem.
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II. RELATED WORK

Template extraction is required to reformat and normalise
the unstructured syslog due to different device types and log
formats. Two basic solutions commonly used are static and
dynamic ones [15]. The static method usually parse the syslog
according to known templates or codes which indicates high
accuracy and speed. However, it requires prior knowledge and
shows weak generalisation capacity on unknown devices and
log formats [10], [16]. While the dynamic method basically
apply unsupervised approaches to automatically learn the
templates by frequent pattern mining [17], [18] or clustering
[4], [19], followed by template matching for given syslog.

Despite the high generalisation capacity for dynamic ap-
proaches, only static parsing will be employed in this paper
since all devices we included are H3C switches with fixed
log templates. Moreover, although dynamic approaches could
automatically obtain the semantic information from syslog,
those information are regarded as independent variables for
further clustering without involving their internal correlations.
Consequently, the dynamic approaches could barely recognise
the hierarchical structure of the network elements without
post-processing under human-defined rules which is the pre-
requisite for network constraints in our tree-based clustering
scheme.

Syslog clustering is conducted aiming to group related
syslog and obtain significant fault information. The syslog
relationships could be represented by textual similarity, topo-
logical/network correlation and time correlation. Clustering al-
gorithms including partition-based K-means [20] and density-
based DBSCAN [21] are commonly used to group syslog
according to desired correlations. Apart from these, [7] pro-
posed Agglomerative Hierarchical Clustering strategy to merge
clusters from single log without prior knowledge for cluster
amount and density estimation.

Textual similarity for syslog could be estimated by ap-
proaches in Natural Language Processing which are simply
based on the log contents excluding device settings or topolog-
ical information [22]. [23] introduced a cell-based clustering
algorithm that calculates Euclidean Distance between extracted
features of syslog (CPU, memory, I/O and network utilisation).
However, since most syslog contain not only those numbers
but also names of network elements and warning messages,
clustering based on Edit Distance [24] and Jaccard Distance
[8] between log sentences are more appropriate to evaluate
textual similarity.

Nevertheless, simple textual similarity could not fully rep-
resent the relationship among logs. Our devices in modern
networks are not isolated and they are related to each other
through physical or logical links which form the whole topo-
logical network. Moreover, syslog are time-sensitive and they
may not be correlated if large time intervals exist in between.
Considering both topological and time constraints, correlations
on these two aspects would probably be more important than
textual similarity.

Regarding topological and time correlation, [2] and [9]

conducted similar methods to cluster syslog based on net-
work and time constraints. [2] divided the whole topological
network by different devices to ensure syslog in one group
are all belonging to the same device or network element.
Moreover, DBSCAN algorithm is applied to further divide the
obtained group according to time density. While [9] defined
three types of topological relationships including syslog from
the same network element or device, syslog in the same
transmission section and syslog located in the same channel.
Time correlation is constraint by pre-defined time window
since syslog are regarded as related ones only when they occur
in a short period of time.

Furthermore, [8] raised a more advanced clustering algo-
rithm to combine all three types of correlations. In their work,
similarity matrix for logs in one minute is created by combin-
ing both textual and topological similarity. Jaccard Distance
is employed to calculate the word differences between logs
ignoring the position information while directed graphs for
both service and server are generated to find paths between
logs to estimate the topological distance. Two similarity values
are merged by a weighted equation to get the final similarity in
the matrix whose weights could be alternatively modified ac-
cording to real circumstance by operation experts. In addition,
DBSCAN algorithm is used to find the density regions and
expand the cluster according to the similarity matrix. Before
the clustering process, density threshold and minimum number
of syslog in a cluster are supposed to be specified.

Although above work could successfully achieve real-time
clustering when dealing with large amount of syslog, it still
cannot guarantee the entire coverage. The clustering methods
have lowest limitation for syslog amount in one cluster which
means if a log or several logs are much less similar than others,
they are very likely to be filtered during the clustering process
as outliers. To address this weakness, our hierarchical tree-
based clustering approach preserves the real-time clustering
performance under network and time correlation constraints
with no limitation for cluster size. In this way, the subsequent
rule engine could perform full correlation matching based on
entire syslog (without missing less-frequent but necessary sys-
log) which ensures the accuracy in further network diagnosis.

III. METHODOLOGY

The workflow of our entire intelligent alarming system is
described in Fig. 1 in order to target root causes for specific
faults based on syslog. In this paper, we mainly focus on
clustering module aiming to provide precise clustering results
for correlation rule matching. Details of our hierarchical tree-
based clustering scheme will be described in this section
including pre-processing and clustering as two main steps.

A. Syslog pre-processing

In the pre-processing part, syslog will be collected from
Kafka and parsed by static template matching. Then the parsed
structured logs will be filtered at the beginning according
to their severity level and occurrence frequency to eliminate
unnecessary ones, such as debugging information.
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Fig. 1. Workflow of our entire intelligent alarming system.

'timestamp': '2020-06-16T22:19:44+08:00',

'message": '<4>Jun 16 22:19:44 2020 SXXXXE
%%10IFNET/S/LINK_UPDOWN: Line protocol state on the
interface Tunnel4 changed to up.',

'host:  “2.2.2.2',

'pri': 4,

'logTime': 1592317184.0,

'loghostname': 'SXXXXE',

'module': 'IFNET',

'severity': 5,

'logTypeDesc': 'LINK_UPDOWN',

'desc': 'Line protocol state on the interface Tunnel4 changed to up.!,

'|dp_uuid": '3252ca47-d94a-4d1a-b594-24f31ca82323',

'NE": ('device=2.2.2.2', 'interface=Tunnel4'),

'parameters': {'status': 'up'}

Fig. 2. Syslog parsed by Logstash.

1) syslog parsing: Aiming to make full use of syslog,
semantic information need to be extracted from raw logs
according to the static templates (H3C switch). As the example
shown in Fig. 2, the obtained raw syslog (in the red box) is
parsed to a dictionary-format data structure with general in-
formation (e.g. module, severity, log type), Network Elements
(NE) representing its hierarchical structure within a device and
parameters representing its detailed information (e.g. status,
neighbouring address, session name).

Regarding different types of syslog, their parameters might
be different. For instance, some syslog from ports have their
current status but do not contain OSPF IDs that are usually
included in some protocol syslog. Considering this, different
syslog templates are statically formatted by Logstash [25] and
template matching is operated according to different syslog
types. In this way, detailed variables in specific positions could
be matched with the templates and extracted to form the final
parsed structures.

2) syslog filtering: Raw syslog from the collector are not
always valid ones due to their incompleteness. When there
are some errors on the slot, the syslog collected might have
’NULL’ as its module name which is not valid for further clus-
tering. Therefore incomplete syslog are filtered after checking
the "NULL’ values in parsed logs.

Moreover, noise, such as logs with low severities and logs
flapping in short time, will be removed as unnecessary syslog.
For instance, DEBUG or INFO syslog from H3C switches
have low severity level. Those syslog represent normal op-
erating logs instead of warnings which are not useful in
later network diagnosis. In addition, duplicated logs might

continuously occur and represent exactly the same information
which could be merged to a single log.

After above filtering, we could ensure the validity, correct-
ness and effectiveness of the parsed logs. Then the operation
staff could focus more on de-noised syslog which improves
the efficiency of network diagnosis.

B. Syslog clustering

In this part, we proposed a hierarchical tree-based syslog
clustering scheme which could involve both topological and
time constraints to assist further correlation rule matching and
network diagnosis. The clustering process could be divided
into two parts: building a warning forest and merging time-
correlated groups.

In warning forest building process, parsed syslog are ini-
tially sliced to sub-sequences by a I-minute time window.
Syslog within the same time window and from the same
device will form a warning tree. Several trees could build the
warning forest of this time window. Consequently, warnings
with correlated occurrence time and topology are primarily
gathered together.

Then, further clustering is performed based on above
groups. Each warning will be iterated and inserted to the
corresponding tree node (described in Algo. 1). The value of
NE in each warning (see Fig. 2 for details) is actually an
ordinal sequence representing the hierarchical structure of its
network element. Therefore, by iterating items in NE, we could
construct a forest for all warnings in the same time window.

Algorithm 1 Insert to Forest

: Input: Warning to be inserted: warn;
Tree-based warning forest: forest;

1
2
3:
4: obtain NE of the warning: NE = warn.NE

5: initialise the curNode: curNode = forest.root

6: for item in NE do

7 refresh time range of curNode according to warn
8 if item is a one of the son nodes of curNode then
9 curNode = son node of curNode

10: else

11: create a new son node of curNode: newNode
12: curNode = newNode

13: end if

14: end for

15: mark as an entity: curNode.isEntity = True
16: add the warning: addWarnList(curNode, warn)

The obtained warning forest is presented in Fig. 3 where
the blue circles represent entities and white circles represent
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dummy nodes. The warnings related to tree nodes are also
displayed with the corresponding time range of each node.
Then a bottom-up hierarchical clustering process (described
in Algo. 2) is operated where warnings in each leaf of the
forest form an individual warning group initially. Furthermore,
the warning groups will absorb the warnings of their parent
nodes if those are also entities (Fig. 4). Finally, after grouping
warnings according to topological constraints, time correla-
tion will be estimate by calculating time gap between two
different groups. If their gaps are shorter than 10 seconds
(log occurrence time difference between the last warning in
one group and the first one in the other group), two groups
will be merged as one for each independent warning tree
(Fig. 5). Consequently, we could get syslog clusters under both
topological and time constraints.

Algorithm 2 Bottom-up Hierarchical Clustering

1: Input: Tree-based warning forest: forest;
Output: Merged groups: m_groups;

get individual groups from each node: groups
sort groups by its first log occurrence time in each item
initialise merged group list :
m_groups = [groups[0]]

initialise current index: idx = 0
pop the first item from groups, only iterate the others
for group in groups do

if overlap between group and m_groups[idx] <10 then

idx =idx + 1

end if

add warnings in group to m_groups[idx]
: end for
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Fig. 3. Obtaining warning forest.
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Fig. 4. Grouping tree nodes according to topology.
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IV. EXPERIMENTS

In this section, details for experiments will be displayed
including datasets, evaluation methods and corresponding ex-
periment results.

A. Data

Here we employed clustering methods on two datasets in-
cluding a smaller one collected from our local testing networks
and a larger one collected from real-world scenarios.

The one from our local testing networks consists of around
400 valid syslog and covers all the correlation rules in the rule
engine. Apart from these, around 330,000 real-world syslog
from H3C switches were also collected over 15 days where
137,118 valid syslog form our real-world in-house dataset to
evaluate our method and make comparison with two previous
studies [2], [9]. Sample syslog fragment is displayed in Fig. 6.

In addition, correlation rules were mined by FP-Growth
algorithm [26] with minimum support 0.2 and confidence level
0.8. After verified by experts, 60 in-house correlation rules are
obtained for further evaluation.
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Fig. 5. Merging groups according to time overlap.

B. Evaluation

Evaluation is performed on our hierarchical tree-based clus-
tering method and two previous studies [2], [8] (see details in
Table I). The grouped syslog by three approaches are fed into
the same rule engine to ensure a more precise comparison.

TABLE I
COMPARISON FOR THREE METHODS.
method | textual similarity topological similarity time correlation
2] N/A device IP only DBSCAN
[8] Jaccard Distance device topological distance fixed time window
Ours N/A hierarchical structure fixed time window
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Jun 16 22:17:14 |P_Address Jun 16 22:17:14 2020 Hostname %%10SHELL/6/SHELL_CMD: -Line=vty0-IPAddr=IP_Address-User=**; Command is shutdown.
Jun 16 22:17:45 |P_Address Jun 16 22:17:45 2020 Hostname %%10DEV/3/FAN_ABSENT: -Slot=1; Fan 1 is absent.

Jun 16 22:19:34 |P_Address Jun 16 22:19:34 2020 Hostname %%10IFNET/3/PHY_UPDOWN: Physical state on the interface Tunnel4 changed to up.

Jun 16 22:19:34 IP_Address Jun 16 22:19:34 2020 Hostname %%10IFNET/5/LINK_UPDOWN: Line protocol state on the interface Tunnel4 changed to up.
Jun 16 22:19:41 IP_Address Jun 16 22:19:41 2020 Hostname %%10IFNET/3/PHY_UPDOWN: Physical state on the interface Tunnel4 changed to down.

Jun 16 22:19:41 |P_Address Jun 16 22:19:41 2020 Hostname %%10IFNET/5/LINK_UPDOWN: Line protocol state on the interface Tunnel4 changed to down.
Jun 16 22:19:41 |P_Address Jun 16 22:19:41 2020 Hostname %%10IFNET/3/PHY_UPDOWN: Physical state on the interface Tunnel4 changed to up.

Jun 16 22:19:41 IP_Address Jun 16 22:19:41 2020 Hostname %%10IFNET/5/LINK_UPDOWN: Line protocol state on the interface Tunnel4 changed to up.
Jun 16 22:19:44 |P_Address Jun 16 22:19:44 2020 Hostname %%10IFNET/3/PHY_UPDOWN: Physical state on the interface Tunneld changed to down.

Jun 16 22:19:44 |P_Address Jun 16 22:19:44 2020 Hostname %%10IFNET/3/PHY_UPDOWN: Physical state on the interface Tunnel4 changed to up.

Jun 17 10:42:48 |P_Address Jun 17 10:42:48 2020 Hostname %%10DEV/5/BOARD_REBOOT: Board is rebooting on slot 3.

Jun 17 10:42:48 |P_Address Jun 17 10:42:48 2020 Hostname %%10HA/5/HA_STANDBY_TO_MASTER: Standby board in slot 4 changed to master.

Jun 17 10:43:18 IP_Address Jun 17 10:43:18 2020 Hostname %%10DEV/2/BOARD_STATE_FAULT: Board state changed to Fault on slot 3, type is LSCM1MPUSXXXX.

Fig. 6. Sample syslog from H3C switches.

As mentioned in Section II, [2] clustered the syslog by
device IPs and used DBSCAN for time constraints while
[9] clustered the syslog by device IPs, transmission sections
and channels apart from DBSCAN used for time constraints.
Considering that our syslog are all from the same transmission
section and channel, constraints in [2] and [9] are almost the
same which is unnecessary to evaluate on both of them. As
for DBSCAN algorithm in [2], we set minPts equals to 2 and
€ equals to 30 according to elbow method [21] which allow
the approach to cluster syslog with time gap smaller than 30
seconds.

Moreover, to adapt [8] to our work, textual similarity
by Jaccard Distance and server(namely device for our data)
topological similarity are employed while service topological
distance estimation is eliminated since no software services
on the server side are involved in our project. In this way, the
total similarity between each pair of syslog is:
[bow(s1) Nbow(sz2)|
[bow(s1) Ubow(sz)|
Topo(s1, s2) = pathserver(s1,s2)

Similarity(sy, s2) = a X Text(s1,s2) + (1 — a) X Topo(s1, s2)

Text(s1,s2) =1—
()]

where bow(s1) represents the bag of words of warning s; and
pathserver(s1, s2) represents the shortest path length between
two devices on topological graph. The weighted value « for
similarity calculation is set to be 0.6 according to [8]. In
addition, parameters of DBSCAN for similarity clustering are
set to be minPts=2 and €=0.8 according to elbow method [21].
Hit rate, match efficiency and real-time capability in correla-
tion rule matching are the three main criteria for both accuracy
and efficiency evaluation on all three clustering approaches:

hit amount

Hit rate = x 100%

desired hit amount
hit amount

)

Match efficiency = x 100%

total match amount
where the hit amount represents the amount of successful
matchings (all requirements satisfied for a rule), desired hit
amount represents the amount of total correct matchings and
total match amount represents the amount of the performed
matching times for each algorithm during the correlation rule
matching process.

Moreover, the desired hit amount is 204 and 73,237 for
the datasets in local testing networks and real-world scenarios
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respectively. The desired hit amounts obtained by exhaustive
search are regarded as truth for our evaluation process. We
did rule matching between each pair of syslog with each rule
and calculate the total matched amount for two datasets. It
is a time-consuming but accurate process that requires no
human effort for validation and could ensure 100% coverage
of correct matchings. Based on the truth, we could perform
convincing comparison for the three approaches.

C. Results

The evaluation results for above three approaches on two
prepared datasets are displayed in Fig. 7. It is clear that
for both datasets, our hierarchical clustering method and [2]
could achieved 100% hit rate in correlation rule matching
which guarantee the precision in further network diagnosis.
Moreover, our method achieved the highest match efficiency
which could effectively limit the resource usage to ensure the
system efficiency.

Regarding the low hit rate in [8], a cropped
syslog fragment is used to make the comparison. For
instance, syslog in Fig 8 represent one fault with
the following correlation order: BOARD_REBOOT’
—  ’BOARD_STATE_FAULT” — ’PHY_UPDOWN’
—’LINK_UPDOWN’—’OSPF_NBR_CHG’.  The  fault
contains status syslog from specific board, port and protocol.

Grouped results are displayed in Fig 8 in which syslog in the
same block represent the same cluster. It is obviously that our
clustering method grouped all 5 records into the same group
due to the time and topological constraints which could be
used for network diagnosis afterwards. However, these syslog
are separated into three different clusters according to [8] since
textual dissimilarity breaks the inner-correlation.

However, in most scenarios, correlated syslog do not share
similar textual structure which might be a defect for involving
this constraint. Considering this, we tested for different ¢
values for DBSCAN in [8] from 0.8 to 0.5 and the results
showed that lower e could fairly increase the hit rate but the
match efficiency significantly dropped. This whole clustering
process changed gradually towards exhaustive search in one-
minute time window. Namely, [8] with lower e value (lower
similarity threshold) becomes the real-time work of [2].
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Fig. 7. Correlation rule matching results for three methods.

From the presented results in Fig. 7, different performance
occur on two datasets which are reasonable. Firstly, The
time-dense syslog in local testing networks could avoid more
exhaustive search than time-sparse ones in real-world circum-
stances when DBSCAN is applied on time [2], which causes
a significant drop in match efficiency in our second dataset.
Moreover, the testing network aims to cover all correlations
in the rule engine which involves many correlated syslog
with low textual similarities. While in real scenarios, some
interfaces might have correlated syslog from thousands of
sub-interfaces with very similar textual structure which could
significantly increase the hit rate in [8].

From the real-world observations, syslog in some periods of
time show no successful matching for correlation rules since
they are all isolated from each other. We extracted 2000 syslog
(around 30-minute) from those and recorded the matching
times for all three methods. 132,534, 132,534 and 3,408,046
times of rule matching were performed by our approach, [8]
and [2] respectively. The results further tell that both ours and
[8] showed good match efficiency while [2] acted more similar
to exhaustive search.

Considering above unpredictable real-world circumstances
and the high computational cost in finding proper parameter
settings in DBSCAN algorithm in both two previous studies
[2], [8], our method could still achieve acceptable match
efficiency and high accuracy that guarantees our stable perfor-
mance in practical usage under different real-world application
scenarios without being influenced by parameter settings.

Furthermore, real-time capabilities were also evaluated
where ours and [8] shared similar running time (around 3
seconds on average) for each 1-minute time window with
almost stationary memory usage to ensure the stability of long-
term operation. However, performing clustering by DBSCAN
algorithm in [2] indicates its large time delay. It would be very
hard to use DBSCAN to cluster syslog according to occurrence
time when it is in a real-time scenario. Considering this, [2] is
more suitable in mining correlation relationships with offline
collected data instead of real-time network diagnosis.
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Clustered by our method

Clustered by [8]

Jun 16 22:21:43 IP_Address Jun 16 22:21:43 2020 Hostname
%5 10DEV/2/BOARD_STATE_FAULT: -MDC=1; Board state
changed to Fault on slot 2, type is LSXM1CGQ36TDL.

Jun 16 22:21:52 IP_Address Jun 16 22:21:52 2020 Hostname
%5 10DEV/S/BOARD_REBOOT: -MDC=1; Board is rebooting on
slot 2.

Jun 16 22:21:43 IP_Address Jun 16 22:21:43 2020 Hostname
%% 10IFNET/5/LINK_UPDOWN: -MDC=1; Line protocol state on
the interface Vlan-interface4094 changed to down.

Jun 16 22:21:43 IP_Address Jun 16 22:21:43 2020 Hostname
%%10IFNET/3/PHY_UPDOWN: -MDC=1; Physical state on the
interface Vlan-interface4094 changed to down.

Jun 16 22:21:43 IP_Address Jun 16 22:21:43 2020 Hostname
\9%\%100SPF/5/0SPF_NBR_CHG: -MDC=1; OSPF 1 Neighbor
IP_Address(Vlan-interface4094) changed from FULL to DOWN.

Jun 16 22:21:43 IP_Address Jun 16 22:21:43 2020 Hostname
%% 10DEV/2/BOARD_STATE_FAULT: -MDC=1; Board state
changed to Fault on slot 2, type is LSXM1CGQ36TDL.

Jun 16 22:21:52 IP_Address Jun 16 22:21:52 2020 Hostname
%% 10DEV/5/BOARD_REBOOT: -MDC=1; Board is rebooting on
slot 2.

Jun 16 22:21:43 IP_Address Jun 16 22:21:43 2020 Hostname
%%10IFNET/5/LINK_UPDOWN: -MDC=1; Line protocol state on
the interface Vlan-interface4094 changed to down.

Jun 16 22:21:43 IP_Address Jun 16 22:21:43 2020 Hostname
%%10IFNET/3/PHY_UPDOWN: -MDC=1; Physical state on the
interface Vlan-interface4094 changed to down.

Jun 16 22:21:43 IP_Address Jun 16 22:21:43 2020 Hostname
\9%\%100SPF/5/0SPF_NBR_CHG: -MDC=1; OSPF 1 Neighbor
IP_Address(Vlan-interface4094) changed from FULL to DOWN.

Fig. 8. Clustered syslog for a specific fragment using our method and [8].

V. CONCLUSION

In this paper, we proposed a training-free and parameter-free
hierarchical tree-based syslog clustering method that could
accurately cluster syslog according to both time and net-
work constraints. The whole clustering process is completely
automatic which largely reduce human efforts and increase
the operation efficiency and could be applied to both offline
and real-time scenarios. With the pre-processing, invalid and
unnecessary syslog are initially filtered while only important
ones are preserved for further clustering. The hierarchical
method performs bottom-up clustering from leaves in the
tree structure and merge time-correlated groups which could
achieve high accuracy and efficiency.

To make the performance of our method more convincing,
evaluations were conducted to assess the accuracy and effi-
ciency aiming to make comparisons with other previous syslog
clustering approaches. According to above results, our method
showed outstanding performance in both hit rate (100%) and
match efficiency (16%) in both local testing networks and
real-world scenarios. In this way, our method could guaran-
tee the precise grouping for further network diagnosis with
enough known information. Moreover, our training-free and
parameter-free method could provide real-time clustering and
specific fault targeting by preserving hierarchical information
which enables much more efficient network diagnosis.

However, our paper is currently limited to static parsing of
syslog which requires regular update if the templates change.
Considering this, dynamic parsing methods and incremental
template learning would be employed to adapt our approach
to more real-world scenarios.

Although above limitation is still being optimised, this
scheme has already been applied in the Seer Analyzer product
of H3C Company which is used for intelligent syslog man-
agement in root cause analysis and has achieved excellent
performance.
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