
Energy-aware Coflow Scheduling for Sustainable
Workload Management

Sadiya Ahmad ∗ Flavio Esposito ∗ Estefanı́a Coronado †
∗ Department of Computer Science, Saint Louis University, USA; Email: {first.last}@slu.edu

† I2CAT Foundation, Barcelona, Spain; Email: estefania.coronado@i2cat.net

Abstract—Handling High-Performance Computing (HPC)
workflows often requires the orchestration of a collection of
parallel flows. Traditional techniques to optimize flow-level met-
rics do not perform well in optimizing such collections because
the network is usually agnostic to application requirements.
A Coflow is a recently proposed abstraction that created new
opportunities in network scheduling for datacenter networks.
However, recent work on coflow scheduling has focused on merely
two objectives: decreasing communication time of data-intensive
jobs and guaranteeing predictable communication time. In this
paper, we take a step further and propose some initial results
towards the design of heuristics that optimize also the energy
consumption of a data center that hosts HPC jobs. To this aim, we
built and released an energy-aware coflow scheduling simulator
to the community that helps analyze the tradeoff between energy
efficiency and coflow completion time. We also propose two
scheduling algorithms that consider coflow completion time, CPU
utilization, and energy consumption efficiency. Our initial results
using the simulator clarify how each policy should be tuned to
the application needs and the computational resources available.

I. INTRODUCTION

The deployment of resource-intensive applications leads to
a growing demand for high-performance computing (HPC)
infrastructures, accompanied by increased energy consump-
tion [1]. In response to this problem in communication
and computation, most data centers currently implement the
MapReduce model [2], [3]. MapReduce is a programming
technique that facilitates concurrent processing by splitting
vast volumes of data into several chunks to be processed on
distributed servers. The model involves mainly two ordered
processes: (i) the mappers, which take the input data, split it
and build a scheduling queue list, and (ii) the reducers, which
perform a specific summary operation on the assigned sub-
chunks. Despite the increased performance, the data transfer
between mappers and reducers is still a costly process.

Coflow scheduling builds on the MapReduce model and
considers that applications are composed of a set of flows,
finishing after all of them have been adequately processed.
The precursors of this novel technique defined a coflow
as a networking abstraction to express the communication
requirements of jobs in prevalent data-parallel programming
paradigms [4]. More specifically, a coflow, c, is composed of
a set of individual flows, fi, with a collective goal and whose
characteristics are exploited to optimize completion time. The
architecture of mappers and reducers in coflow scheduling can
be modeled as a switch with m ingress ports and m egress

ports. The completion time of a coflow, c, depends on the flow
with the maximum ending time, max end(fi).

Several authors have aimed to improve coflow scheduling
within the networking and the theory communities [5]. Within
the vast body of literature, Varys [6] and Aalo [7] can be high-
lighted as two of the most significant contributions. Moreover,
in many clusters, the scheduling algorithm of choice remains
the Shortest Job First (SJF) due to its simplicity. However,
most of the works revolve around reducing the average Coflow
Completion Time (CCT). Despite being a crucial metric for
cost and environmental damage minimization, none of these
algorithms consider energy consumption. This energy factor
has been proved to be dependent on network and reducers
utilization [8]. Consequently, the efficient design of scheduling
algorithms is not only able to increase performance but also
to significantly reduce energy consumption.

In this context, this paper proposes some initial results
towards aimed at propelling coflow scheduling algorithm that
are energy-aware, that is, able to assign coflows to an infras-
tructure while considering energy consumption. In particular,
the contribution of our work is three-fold.

• We present some initial design of a modular network
simulator able to handle coflow requests based on various
parameters. Unlike others, such as Mininet and GNS3,
the network model of our simulator is based on high-
performance computational clusters and enables through-
put and energy monitoring. The code is available for the
research community at [9].

• As a proof-of-concerpt, we propose two basic scheduling
algorithms that consider not only CCT minimization and
CPU utilization but also energy consumption efficiency.

• We compare the proposed solutions with a set of coflow
scheduling strategies, showing up how even a simple
approach can save up to 70% energy reduction at the
price of a negligible increase in CPU time.

The remainder of this paper is structured as follows. Sec. II
discusses the related work. Sec. III and Sec. IV introduce the
energy-efficient coflow scheduler and the network simulator
introduced in this work, respectively. Finally, Sec. V discusses
the performance evaluation and Sec. VI concludes our paper.

II. RELATED WORK

Coflow scheduling takes inspiration from the classical Net-
work Interface Card (NIC) packet scheduling [10], where traf-
fic shaping can be done with a single queue. In coflow schedul-

2021 17th International Conference on Network and Service Management (CNSM)

978-3-903176-36-2 ©2021 IFIP 269

ing, however, the main objective resides in minimizing a metric
called Coflow Completion Time (CCT), using information
such as the size and length of the coflows. Depending on
whether the coflow provides this information, algorithms are
categorized as information-aware and information-agnostic.

Several algorithms have aimed to optimize different aspects
of coflow scheduling. Two significant examples are Varys
and Aalo. Varys [6] presents an information-aware system
that enables data-intensive frameworks to use coflows while
maintaining high network utilization and guaranteeing starva-
tion freedom to minimize CCT. This algorithm uses an agent
(called master) that coordinates mappers and reducers and
monitors the network usage during scheduling to perform the
reducers’ selection optimally. By contrast, Aalo [7] requires no
prior knowledge of the coflow parameters (i.e., information-
agnostic) and defines priority queues based on the amount
of data already sent by the reducers in such a manner that
it can handle cluster dynamics while minimizing completion
times. Similarly, the authors of [11] propose sample-based
online learning of the coflow size for information-agnostic
scenarios. In the algorithm presented in [12] each coflow is
assigned a predicate and a rank, and schedules at each round
the smallest ranked eligible element. Priority scheduling is
also studied in [13], which assumes that each mapper is a
host that divides its processing time into epochs. Then, in
each epoch, a subset of unfinished coflows are selected and
ordered using a simple greedy algorithm differently at each
host. Due to the performance offered by its simplicity, SJF is
still widely used in data centers. It schedules the pilot flows
of each coflow and uses their measured size to estimate the
size of the coflow. Though scheduling pilot flows of a newly
arriving coflow consumes port bandwidth, which can delay
other coflows with already estimated sizes, it remains less so
when compared to the multi-queue-based approaches.

In contrast to all these sound solutions, we take an
energy-aware approach, noting that with the increasing de-
mands of machine learning jobs, the energy consumption
cannot be ignored.

III. ENERGY-AWARE COFLOW SCHEDULER

A. Network Model

The data-centered network model adopted in this work is a
bipartite graph with mappers at the origin of the data flows and
reducers at the destination. The graph comprises M mappers
and R reducers. The only constraint on this graph is that
the reducers should outnumber the mappers. The structure of
the network model is depicted in Fig. 1, where we can see
a one-to-many relationship from mappers to reducers. This
relationship defines how the jobs from a mapper can be sent
over to any number of reducers. We define a job as a sequence
of coflows to be scheduled in the same batch (see Figure 2).

Given a set of mappers M = (M1,M2,M3, . . . ,Mn) and
a set of reducers R = (R1, R2, R3, . . . Rn) with coflows
C1, C2, . . . , Cn, a coflow mapping can be defined as the
mapping of M onto the set of R, such that each node is

Fig. 1. Mapper-reduced bipartite graph of the adopted network model. Each
mapper and reducer have a queue.

Fig. 2. Job - Coflow structure adopted in the simulator. We define a job as
a collection of coflows to be scheduled.

mapped onto all nodes of R. Formally, the mapping is a
function f : M → |R|M .

B. Scheduler Design

The proposed scheduler is based on the MapReduce model;
we assume the need to handle n user-defined jobs, following
the structure presented in Figure 2. In particular, each mapper
consists of three priority queues whose length can be modified.
When a coflow arrives, it is assigned to a mapper in a
round-robin fashion. Upon receiving all the coflows, each
one is assigned to a reducer. The reducer keeps track of
the coflows it receives. Each reducer has its own capacity,
which is calculated at the beginning of each simulation and
is predefined by the CPU it uses. Similarly, each CPU is
characterized by offering a particular capacity (expressed in
GigaFlops) and certain efficiency (expressed in GigaFlops/W).

Although a set of queues is modeled at the mappers, note
that no scheduling decision is made at the reducers. Because
of this, the number of coflows arriving at the reducers is often
greater than the number of reducers |M | > |R|. Therefore,

2021 17th International Conference on Network and Service Management (CNSM)

270

some coflows may remain in the mapper waiting for other
coflows to finish and free up the reducers. This cycle continues
until all the coflows in the mappers are assigned to the
reducers. Due to resource limitations, not all produced coflows
are assigned to the mappers, and the remaining coflows are
reported as incomplete.

C. Proposed Energy Consumption Efficient (ECE) Methods

Taking as a reference the network model introduced in
this section, we have proposed two scheduling algorithms
aiming at improving the energy consumption during the coflow
scheduling phase.

• Energy Consumption Efficient (ECE). In this algo-
rithm, the coflow with the greatest size, sc, among all the
mappers is assigned to the most efficient reducer, using
the argmax function. The most efficient reducer is the
one whose CPU has the highest ratio GigaFlops/Watts,
expressed as Er. This enables an energy-efficient pro-
cessing of the greatest coflow. ECE allows predicting the
impact of its decision on the energy consumed by the
CPUs of the reducers.

• Energy Consumption Efficient-2. This algorithm selects
the coflow with the greatest size, sc among all the
mappers and assigns it to the reducer with the highest
computational power. In other words, the method assigns
the reducer whose CPU is characterized by the highest
number of GigaFlops, Pr. This implementation intends
to reduce computational time while saving energy during
the map-reduce jobs. The increased performance of this
variation of ECE highly depends on whether an efficient
processor also consumes less energy.

Note that both algorithms differ in the objective sought on
the reducer, r, selection (i.e., highest efficiency vs. highest
computational power). Mainly differentiated by this objective,
the pseudocode of the proposed ECE and ECE2 methods is
presented in Algorithm 1.

Algorithm 1 Energy Consumption Efficient Algorithm
Require: Mappers have queues and queues have coflows

for mapper m in M do
Pick coflow cm from the queue of m
Calculate scm , and flow sizes of the coflow, sfc,m
lists

add←− sfc,m
end for
nextc = argmax(lists)
if objective == highest efficiency then
argmax(Er)

add←− argmax(nextc)
else if objective == highest power then
argmax(Pr)

add←− argmax(nextc)
end if

IV. ENERGY-AWARE COFLOW SIMULATOR DESIGN

This section discuses the architecture of the simulator in-
troduced in this paper, which allows the testing and validation
of several coflow scheduling algorithms.

A. Data Flow Description

The simulator architecture is detailed in Figure 3. In
particular, our design considers the capabilities of mappers,
i.e., connection map and mapper queues, and reducers, e.g.,
free memory, CPU capability, etc. We implemented a set of
scheduling algorithms at the reducer. In addition to the two
ECE algorithms presented in the previous subsection, the sim-
ulator includes other basic scheduling policies, e.g., (i) First-
Input-First-Output (FIFO), which assigns to the reducer the
coflow that entered first in the mapper’s queue; and (ii) Short
Job First (SJF), which takes first the shortest job that is
composed of coflows. The engine and the graph are generated
based on the configuration of the algorithm executed.

The simulation is initialized through a framework that calls
upon other software elements. More specifically, the simulator
takes the input from the user regarding the particular schedul-
ing algorithms and their configuration. This user-defined data
is stored in a Config.prop file. From such configuration,
the simulator includes a server and client application to capture
the properties of each reducer, creating the bipartite network
graph of mappers and reducers and the list of jobs and coflows.
Finally, it runs the mapper and reducer scheduling algorithms
based on the specific scheduler configured policies. The data
flow of the simulator is depicted in Figure 4.

Our programming environment also provides a set of met-
rics to evaluate the performance of the algorithms. Such
metrics include job completion time records, average waiting
time, average completion time, and number of incomplete jobs.

The software was designed to allow ease of use and has been
implemented in Java. We use the Factory pattern as a design
principle with different approaches. Our implementation uses
the data to object (dto) and design by contract (dbc) paradigms.

B. Coflow parameters

In this simulator, a coflow is modeled as an object with
several attributes. Our model enables an easy evaluation of
the various attributes that affect the scheduling performance.
Such attributes are defined as follows:

• Length. The size gives it in bytes of the largest flow in
the coflow.

• Width. It is defined by the number of parallel flows in
the coflow.

• Size. It is calculated as the sum expressed in bytes of all
the flows in the coflow.

• Skew. It refers to the coefficient of variation of the flows
in the coflow in terms of their size.

We characterize the size of flows from sample data. Before
delving into the size of the flows, we can quickly determine
the width of a coflow, which is only possible if there is no
time-lapse between the assignment of two flows.

V. EVALUATION AND ANALYSIS

In this section, we evaluate the energy-efficient algorithms
and compare their performance to the FIFO and SJF algo-
rithms in terms of CPU time and energy consumption.

2021 17th International Conference on Network and Service Management (CNSM)

271

Jobs

Coflows

Reducers

Mappers

Config.prop
Function call

FIFO
SJF
ECE

ECE-2

Scheduling
algorithms
database

- Connection map
- Mapper queues

- Total memory
- CPU power
- # cores
- Free memory

- Incomplete jobs
- Job run time
- Algorithm run time

Simulation
execution

Simulation
output

Reducers
features

Mappers
features

Fig. 3. High-level architecture of the programming framework.

Create coflow from
input file

No

Yes
Available
reducers?

Start processing at
the reducer

Simulation start
Simulation

props

Select next coflow
from mappers

Wait until any
process finishes

Log data

Simulation
time over?

Yes

No

Fig. 4. Flow chart of the energy-aware coflow scheduling simulator.

A. Evaluation Scenario

We take as a reference the computational power and energy
consumption data from common real-world server-level pro-
cessors (see Table I). We choose processors with very different
performance metrics to investigate the impact of scheduling
algorithms on evaluation criteria. Note that the CPU configura-
tions vary widely between various clusters, and that the results
of a scheduling algorithm may therefore differ if different
server infrastructures were chosen, given its dependency on
both the cluster configuration and the data to be processed.

The reference scenario studied comprises 25 coflows and
730 flows. The user-defined properties have been set to 25
coflows, two mappers and three reducers. Moreover, the map-

TABLE I
CPU SPECIFICATIONS.

CPU # Cores Clock
(GHz)

Power
(W) GFLOPS Efficiency

(GFLOPS/W)
Ampere

Altra
80 3.30 715.87 2112 2.95

Intel
8280 SP

28 2.70 118.13 604.80 5.12

Intel Xeon
SP 8276

28 2.20 47.83 492.80 10.30

pers have been configured with three queues with a length of 5.
Three reducers are randomly chosen in the experiments, but
the same reducers are used for every algorithm to avoid the
discrepancy in results. CPU calculations are made beforehand,
and all tasks are provided with enough CPU capacity. It is also
assumed that there is no idle time on any reducer between task
processing. Simulation results are shown with 95% confidence
intervals considering 15 runs for each algorithm.

B. Evaluation Results

Taking as a reference the scenario described before, Fig. 5
depicts the energy consumed by each algorithm (i.e., ECE,
ECE2, FIFO and SJF). As we can see, FIFO and SJF are not
energy-aware policies and therefore consume more energy in
their scheduling tasks. FIFO is by far the worst energy man-
agement algorithm, almost tripling the energy consumption
with respect to the other scheduling algorithms. The results
arise from the fact that the waiting time for FIFO is greater
than the one of SJF, which makes FIFO the least attractive
option for coflow scheduling in data centers. However, SJF
performs worse than the ECE algorithms. This is because SJF
takes the smallest job under consideration instead of just the
smallest coflow. By contrast, the ECE and ECE2 algorithms,

2021 17th International Conference on Network and Service Management (CNSM)

272

Fig. 5. Energy consumption evaluation and variation.

Fig. 6. Algorithm processing time comparison.

introduced to reduce the energy consumed, can improve by a
factor of 50% and 70% with respect to SJF and FIFO.

The energy consumption of the ECE algorithms is lowered
at the price of a negligible increase in CPU time. We show
this result in Figure 6 (processing time at the reducer). As
we can see, the CPU time of ECE, ECE2, and FIFO present
minimal differences, while SJF provides a significantly shorter
CPU time. These results are further studied by the cumulative
distribution function of the CPU time in Fig. 7. In particular,
it reveals that the most drastic consumption change occurs for
SJF while ECE, ECE2, and FIFO show a gradual increase
over time. This is because SJF sends all the coflows on the
lower size spectrum to any reducer without considering their
efficiency or energy consumption. Observing this change is
useful when data centers use a combination of scheduling
algorithms, e.g., the process could start with the SJF policy
and over time be transferred to any ECE version as the benefits
of using SJF get reduced.

VI. CONCLUSION

Power saving in data centers have been proved beneficial
from the economic and the environmental standpoints. Al-
though coflow scheduling marked a turning point for increased
performance, energy-aware scheduling is still a pending aspect
to be analyzed in the literature. In this paper, we have
presented an initial version of a network simulator enabling
performance and energy assessment of coflow scheduling
algorithms. Moreover, we have proposed two energy efficient
algorithms aiming to reduce the energy consumed based on

Fig. 7. Cumulative distribution function for CPU time.

efficiency and power of the CPUs involved. Finally, we have
used the simulator introduced to compare our algorithms with
state-of-the-art policies, showing in the initial results that with
a slightly higher CPU time the algorithms are able to reduce
the energy consumed by an average of 50%.

ACKNOWLEDGEMENT

This work has been partially supported by NSF Awards
CNS-1836906 and CNS-1908574.

REFERENCES

[1] A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin, J. K. Steyer,
E. Masanet, N. Horner, I. Azevedo, and W. Lintner, “United States
Data Center Energy Usage Report,” 2016, acessed on 02.06.2021.
[Online]. Available: https://www.osti.gov/servlets/purl/1372902/

[2] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 107–113, Jan. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1327452.1327492

[3] Apache Software Foundation, “Hadoop,” accessed on: 2021-06-06.
[Online]. Available: https://hadoop.apache.org

[4] M. Chowdhury and I. Stoica, “Coflow: A Networking Abstraction for
Cluster Applications,” in Proc. of ACM HotNets, Redmond, WA, USA,
2012.

[5] S. Wang, J. Zhang, T. Huang, J. Liu, T. Pan, and Y. Liu, “A Survey of
Coflow Scheduling Schemes for Data Center Networks,” IEEE Commun.
Mag, vol. 56, no. 6, pp. 179–185, 2018.

[6] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient Coflow Scheduling
with Varys,” in Proc. of ACM SIGCOMM, Chicago, IL, USA, 2014.

[7] M. Chowdhury and I. Stoica, “Efficient Coflow Scheduling Without
Prior Knowledge,” SIGCOMM Comput. Commun. Rev., vol. 45, no. 4,
p. 393–406, 2015.

[8] G. Wen, J. Hong, C. Xu, P. Balaji, S. Feng, and P. Jiang, “Energy-aware
hierarchical scheduling of applications in large scale data centers,” in
Proc. of IEEE CSC, Hong Kong, China, 2011.

[9] Sadiya Ahmad, “Energy-aware coflow scheduling sim-
ulator,” accessed on: 2021-06-06. [Online]. Available:
https://github.com/sadiya0312/NWSim/.

[10] B. Stephens, A. Akella, and M. Swift, “Loom: Flexible and Efficient
NIC Packet Scheduling,” in Proc. of USENIX NSDI, Boston, MA, 2019.

[11] A. Jajoo, Y. C. Hu, and X. Lin, “Your Coflow has Many Flows: Sampling
them for Fun and Speed,” in Proc. of USENIX ATC, Renton, WA, USA,
2019.

[12] V. Shrivastav, “Fast, scalable, and programmable packet scheduler in
hardware,” in Proc. of ACM SIGCOMM, Beijing, China, 2019.

[13] S. Agarwal, S. Rajakrishnan, A.Narayan, R. Agarwal, D.Shmoys, and
A.Vahdat, “Sincronia: Near-Optimal Network Design for Coflows,” in
Proc. of ACM SIGCOMM, Budapest, Hungary, 2018.

2021 17th International Conference on Network and Service Management (CNSM)

273

