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Abstract—Kubernetes (K8s) is promising software for appli-
cation systems since it makes application systems more flexible
and robust by auto-scaling, which automatically scales up the
application system resources when the application system is
overloaded, and self-healing, which automatically recovers the
application system from a failure. However, auto-scaling and self-
healing make system operators’ tasks complex. First, there is a
delay, which is the time difference between executing auto-scaling
or self-healing and recovering degraded application performance
metrics such as response time. Second, the delay depends on types
of abnormalities (i.e., overloads and failures). Moreover, the auto-
scaling and self-healing cannot always recover the abnormality.
Therefore, system operators need to understand the degree of
abnormality (i.e., how much the application performance is
degraded and how long the delay is). Although many anomaly
detection methods have been developed, they have not considered
auto-scaling or self-healing when the abnormality occurs. In this
paper, we analyze the performance of anomaly detection methods
with auto-scaling and self-healing in K8s by implementing
anomaly detection methods, and deploying a web application
system on K8s. Specifically, first, we verified that there is a delay
that depends on types of abnormality by injecting anomalies into
the web application system. Then, we evaluated the anomaly
detection accuracy of each method by using the data collected
from the web application. Finally, a clustering approach is used
for anomaly scores, which are the outputs of these methods, to
investigate whether anomaly detection methods can provide the
degree of abnormality. The evaluations show that our analysis
provides useful information for operators to manage the K8s with
auto-scaling and self-healing.

Index Terms—Kubernetes, Auto-scale, Self-healing, Anomaly
detection

I. INTRODUCTION

Kubernetes (K8s) [1] have been widely used for deploying
application systems such as in Box [2], Spotify [3] and
Booking.com [4]. K8s is container managing software, which
mainly consists of nodes and pods, where a pod is the smallest
unit in K8s, in which multiple containers are deployed, and
nodes contain multiple pods. An application system is de-
ployed by combining multiple containers with K8s and system
operators monitor the metrics of the host servers, nodes, pods,
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and containers of K8s using anomaly detection methods so
that system operators can detect an abnormal status of the
application system.

K8s supports two functions, auto-scaling and self-healing,
which make application systems more resilient against abnor-
mal statuses. Auto-scaling automatically generates new pods
to scale out computation resources when an application system
overloaded, while self-healing regenerates new pods when
pods or containers have failed in order to ensure that an
application system continuously maintain normal status.

However, the auto-scaling and self-healing make system
operators’ task complex. First, there is a delay, which is the
time difference between executing auto-scaling or self-healing
and recovering degraded application performance metrics such
as response time. Second, the delay depends on types of
abnormalities (i.e., overloads and failures). Third, these func-
tions may or may not recover an application system from an
abnormal status. For instance, if the number of requests is
temporally high, auto-scaling will recover the abnormal status
once after pods are generated, initialized, and configured.
However, if the number of requests to the application system
is more than the number of requests that can be handled by a
scaled out application system due to the system resource limi-
tation, or the cause of the abnormal status is another part such
as in a network between pods in K8s, auto-scaling will not
recover the abnormal status [5]. Thus, system operations also
need to monitor the application system metrics to see whether
the degradation of application system will be recovered or
not. Moreover, as a result, the application system will go
down during execution of auto-scaling and investigation of the
anomaly cause. Since the application system going down will
lead users to stop using it, the downtime should be minimized.
Therefore, system operators need to understand the degree
of abnormality (i.e., how much the application performance
is degraded, how long the delay is, and whether the auto-
scaling or self-healing execution will recover performance
degradation).

Anomaly detection methods are the key to providing in-
formation regarding abnormalities. Many anomaly detection
methods have been developed for application systems with
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cloud computing platforms such as K8s or OpenStack [6] to
detect abnormalities in application systems when an overload
or failure occurs. However, these methods have not considered
auto-scaling or self-healing when an abnormality occurs. Thus,
it is not clear whether anomaly detection methods can detect
abnormalities and the degree of abnormality under auto-
scaling and self-healing.

In this paper, we analyze the performance of anomaly
detection methods with auto-scaling and self-healing in K8s by
implementing machine learning-based and deep learning-based
anomaly detection methods and deploying a web application
system on K8s. More specifically, first, we verified that there
is a delay that depends on types of abnormalities by injecting
anomalies into the web application system. Then, we evaluated
the anomaly detection accuracy of each method using the
data collected from the web application. Finally, the clustering
approach is used for anomaly scores, which are the outputs
of these methods, to investigate whether anomaly detection
methods can provide the degree of abnormality.

The evaluations show that there is more than I-minute
delay and that delay is different for each among type of
abnormality. The anomaly detection accuracy evaluation shows
that Long Short-Term Memory (LSTM) is the best method for
our dataset. Furthermore, we found out that anomaly scores
of LSTM can potentially represent the degree of abnormality.

Contributions of this paper are as follows.

o First, this paper points out the lack of consideration
regarding auto-scaling and self-healing complicating sys-
tem operators’ tasks. This paper deals with the effect
of auto-scaling and self-healing on system operators’
tasks, which has not been considered in previous studies
of anomaly detection methods and application system
management, and clarifies that it clear that how existing
anomaly detection methods can provide useful informa-
tion for operators to manage K8s with auto-scaling and
self-healing.

e Second, comprehensive experiments are conducted by
developing a web application service using KS8s and
implementing many anomaly detection methods. Nine
types of abnormality are injected to degrade the web
application performance and execute auto-scaling and
self-healing.

o Third, by using collected metrics, we verified the de-
lay and analyzed the performance of anomaly detection
methods (i.e., evaluating accuracy of anomaly detection
and investigating whether anomaly detection methods can
provide the degree of abnormality) with auto-scaling and
self-healing. We found out that anomaly scores of LSTM
can possibly represent the degree of abnormality.

The rest of this paper is organized as follows. We explain
related work in Section II. Then, the experimental settings and
environment for our paper are described in Section III. The
abnormality-injection experiments and evaluations are shown
in Sections IV and V. Finally, we conclude this paper in
Section VI.

II. RELATED WORK

Various anomaly detection methods have been investigated
for managing legacy application systems [7]-[10]. Since in
the legacy application system, anomalies should be detected
as soon as possible so that the system operators recover
the system immediately, these papers try to detect anomalies
using metrics such as central processing unit (CPU) usage,
memory usage, traffic volume, and/or logs in the system.
However, since the application systems in these papers do not
use the cloud computing platform, performances of anomaly
detection methods with auto-scaling and self-healing are not
investigated.

For monitoring application systems with a cloud comput-
ing platform, anomaly detection methods have been devel-
oped [11]-[16]. Since the cloud computing platform increases
the number of monitoring components and metrics and the
relationship between the host server, cloud computing plat-
form, and applications is complex, application performance
degradation is challenging to detect. Thus, these methods col-
lect metrics such as CPU usage, memory usage, and network
traffic of not only host servers but also in the cloud computing
platform, and extract hidden relationships between anomalies
and metrics by using One-Class Support Vector Machine
(OCSVM) [17], AutoEncoder [8] or LSTM [18]. Moreover,
system operators have difficulty determining which layers (i.e.,
application layer, cloud computing platform, and host servers)
cause the application performance degradation. Therefore, root
cause analysis methods have also been studied [11], [16].
Jayathilaka et al. [11] used kernel density estimation to bind
the application performance degradation to metrics in the
cloud computing platform and host servers. Wu et al. [16],
constructed a causality graph to identify failed components.

However, these methods do not consider execution of auto-
scaling and self-healing. Thus, it is not clear how accurate
anomaly detection is under auto-scaling and self-healing or
what kind of information regarding degree of abnormality
these methods can provide. Thus, anomaly detection methods
for monitoring the application system on a cloud computing
platform with auto-scaling and self-healing should be compre-
hensively analyzed.

III. PERFORMANCE ANALYSIS OF ANOMALY DETECTION
A. Motivation

In short, since it is not clear whether anomaly detection
methods can detect abnormalities and the degree of abnormal-
ity under auto-scaling and self-healing, we verify the delay and
analyze the performance of anomaly detection methods (i.e.,
evaluating accuracy of anomaly detection and investigating
whether anomaly detection methods can provide the degree
of abnormality) with auto-scaling and self-healing. Therefore,
we deploy a web application and implement anomaly de-
tection methods. Figure 1 shows an example of metrics in
the applications system when the application status becomes
abnormal. At around the 40 slot, due to increasing access to
the application, the average response time starts to increase,
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Fig. 1: Example of metrics in web application on K8s

i.e., the application performance starts to degrade. Since the
auto-scaling is activated at around the 45 slot and the number
of containers starts to increase, the CPU usage of containers
will decrease. However, the average response time is not still
recovered immediately. The average response time starts to
improve at around the 50 slot and needs more time to be fully
recovered. Moreover, access failures to the web application
occurs at around the 70 slot. Thus, the system operators
need to detect an anomaly and monitor the metrics until the
application performance is recovered, even when the auto-
scaling or self-healing are executed. For these reasons, the
delay (which is the time difference between auto-scaling or
self-healing and recovery of application performance) needs
to be analyzed by injecting anomalies to the web application
system, evaluating the anomaly detection accuracy of each
method, and investigating information regarding the degree of
abnormality.

B. Application system on Kubernetes and Experimental Envi-
ronment

For our analysis, we deploy a web application using K8s
and collect metrics of the web application, K8s, and host
servers. The constructed web application is shown in Fig-
ure 2. As shown in the figure, a three-tier web application
is implemented using Nginx, Rails, and MySQL containers,
and Prometheus and Grafana [19], [20] are used for collecting
and visualizing metrics, respectively. LOCUST [21], which
is load testing software, is used to imitate user requests for
the web application by sending HTTP requests to the web
application. The average response time to the web application
is also collected by Prometheus. For performance analysis,
we use LOCUST to inject abnormal statues by setting a high
number of requests to imitate an abnormality that occurs in
the real web application. Detailed settings of LOCUST are
described Section IV-A. We also use PUMBA [22], which
is software to crash containers or pods, to inject container

LOCUST PUMBA

}ﬂ{lheus /

Pod Pod

Kubernetes

Cluster
Prometheus

Federation

Nginx MySQL

Rails

Host server

Fig. 2: Constructed web application and experimental environ-
ment

failures or pod failures. The detailed settings of PUMBA also
are described in Section I'V-B.

When the constructed web system status becomes overload,
Horizontal Pod Autoscaler, which is the name of auto-scaling
in K8s, or self-healing will work depending on the situation
of the web application. Horizontal Pod Autoscaler controls the
number of pods and has two parameters: 1) the threshold set by
operators to determine whether the number of pod is increased,
decreased, or kept and 2) the maximum number of pods.
Threshold metrics can be set to CPU usage, memory usage,
or other metrics, and Horizontal Pod Autoscaler controls the
number of pods by the following equation.

#pods

where Metrictpreshold 1S the metric for threshold, #pods is the
number of running pods, and pods,ax is the parameter for the
maximum number of running pods in K8s. On the other hand,
when a certain pod fails in the application system, self-healing
regenerates new pods so that the number of running pods equal
the number of running pods before the failure occurred.

We collect the metrics of host server, K8s, and the web
application in normal status and abnormal status caused by
LOCUST and PUMBA using Prometheus every 15 seconds.
Regarding settings of our web application, we set the number
of containers of Nginx and Rails to 2 and containers of
MySQL to 1. For the setting of auto-scaling, we select CPU
usage and set Metricinreshold as 35 % and podspax as 5.

Threshold < (#pods < podsmax), (1)

C. Implementation of Anomaly Detection Method

For analyzing the performance of anomaly detection meth-
ods, density-based, machine learning (ML) based, and deep
learning (DL) based methods are implemented, which are
explained in Section II. We explain each method briefly in
this section.

Let 7" be the final time slot of collected metrics, where
time ¢ is slotted as ¢t = 1,2,...,7 with window size w.
Let x; be a [-dimensional vector whose elements are metrics
at time t , where [ is the number of kinds of metrics
collected from the application system and y; is a label of the
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application system at time ¢, which takes 1 if the application
system is normal and -1 otherwise. Since we investigate the
performance of machine learning-based and deep learning-
based anomaly detection methods, a training dataset and a
test dataset are prepared. Let the d-th training data be a set of
tuples, {(x, yt)}tTil, and Dy;ain be a set of the d-th training
data, {{(a}t,yt)},tril},‘ipt{a““). Similarly, let D be a set of

d-th test data, {{(a’:t,g]t)}tTil}l}i“fS". Here, | - | denotes the
cardinality. In the training phase, weights of anomaly detection
methods are trained using a training dataset Di,ain, and in the
test phase, the anomaly score of &; is calculated to estimate
whether g; is a normal or abnormal status. Here “denotes data
in the test dataset, y; in the training dataset Dy;,i, always
takes 1, and g in the training dataset Dy.s; takes 1 or -
1 depending on the application system status. For anomaly
detection methods that do not need a training phase, only test
data is used.

1) LOF: Local Outlier Factor (LOF) is a density-based
method, in which the anomaly score of a certain data point
is calculated using the average distance of the k-nearest
neighbor. Let Ni(x;) be a set of data in k-nearest neigh-
bor of #;, and reachability — distance, (¢, B) be maxz{k —
distance(B), d(£;, B)}. Then, the local reachability distance
of ; is calculated as follows.

| Nk (£¢)|
. reachability — distance, (£, B
BENy (:Ef) k

Irdy (2¢) = )
The anomaly score LOF () for the test data is calculated
by the following equation.

_ ZBGNk(:it) h‘dk(B)

LOF(4;) = |Np(Z¢) [Irdy () (3)

More details can be found in Breunig et al. [7].

2) OCSVM: One-Class Support Vector Machine (OCSVM)
is an unsupervised machine learning trained by normal status
data so that z; in normal status data satisfies the following
equation.

whesymt — b > 1, 4)

where wocgsyMm is the weight vector of OCSVM. Then, test
data &; is calculated to determine whether the status is normal
or abnormal by using the trained OCSVM. More details can
be found in Tax and Duin. [17].

3) AE: AutoEncoder (AE) is AN unsupervised encoder-
decoder based method in which parameters are trained by a
normal status dataset so that input data and output data by AE
are the same. In AE, for the encoder, weight parameters W3
in the j-th layer are trained by the following equation.

2 = g(Wiga L+ V), (5)

where 20 is z;, ando is activation function, and &’ are bias

functions. For the decoder, weight parameters VNViE in the j-th
layer are trained by the following equation.

= g(Wig# 1t + V), (6)

where 20 is z7, and J is the number of AE layers. Then, AE
is trained so that the reconstructed vector z; is equals to x;
as follows.

Lxe) = [lw — &4l %)

where Z; is calculated by encoding z; and decoding z”. To
calculate the anomaly score for test data &, the difference be-
tween Z; and predicted ; is calculated by using Equation (7).
More details can be found in Sakurada and Yairi. [8].

4) LSTM: Long Short-Term Memory (LSTM) [18], which
is a type of recurrent neural network, predicts the data x;1
from time-series xg,...,x¢. In LSTM, z;,1 is predicted as

follows.
fi = o(Wyray+Uspzi_q +by)
itv = o(Wixy+ Usmi—1 +b;)
o = o(Woxy + Usi—1 + bo) ®)
¢ = froo(Wewy +Uewi—1 + be)
Tir1 = opooa(cr),

where f; is the forget gate at time ¢, ¢; is the input gate at time
t, o, is the output gate at time ¢, c; is the cell state vector at
time ¢, Wy, W;, W,, W, Uy, U;, U, are weight matrices, and
by, bi, b, b are bias. To calculate the anomaly score for the
test data ¢, the difference between £; and predicted Z; is
calculated by using Equation (8). More details can be found
in Jozefowicz et al. [18].

5) LSTM-AE: LSTM-AE is an unsupervised encoder-
decoder based method with LSTM. In LSTM-AE, first, x; is
input to LSTM and h; is output by replacing z;_; and Z;11
with h,_; and h; in Equation (8), respectively. Then, h; is
input to AE, and Z; is output using Equation (6). To calculate
the anomaly score for the test data £;, the difference between
4, and predicted Z; is calculated by using Equation (7). More
details can be found in Diamanti et al. [12].

IV. EXPERIMENTS

In this section, we describe how to inject abnormalities to
the constructed web application and the settings of LOCUST,
PUMBA. Metrics during experiments are collected by using
Prometheus, and collected data is used for evaluating delay of
auto-scaling and self-healing and anomaly detection methods.

In the following subsection, we first explain the LOCUST
setting to inject overload status for executing auto-scaling.
Then, we show the PUMBA settings to inject failures for
executing self-healing.

A. Overload Cases

To imitate overload of the web application and execute
the auto-scaling, we send a specified number of HTTP re-
quests using LOCUST. LOCUST has three parameters: the
maximum number of requests per second, number of pitches
(which represents the increase in requests per second until
the maximum number of requests is reached), and duration.
Thus, to extensively analyze the effect of auto-scaling, we
imitate various overload situations that might occur in real web
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TABLE I: Settings of LOCUST

. Maximum request Pitch Duration
Experiment .
per second per second (min)
Normal status 10 5 180
Experiment 1 50 5 20
Experiment 2 100 5 10
Experiment 3 100 5 20
Experiment 4 100 50 10
Experiment 5 300 50 10
Experiment 6 500 50 10

applications, by preparing six types of LOCUST setting (which
are combinations of maximum number of requests per second,
the number of pitches, and duration) and collect metrics of the
web application.

Experiments 1, 2 and 3 are ramp-up types that gradually
increase the number of requests. An example of these cases is
when a website becomes popular due to gradually becoming
widely known by the users. Experiments 4, 5 and 6 are burst
types that drastically increase the number of requests. An
example of these cases is when a website appears in a TV show
and many people try to access it. By changing the maximum
number of requests per second, the number of pitches, and
duration, we prepared six types of experiments. The settings
of LOCUST of each experiment are summarized in Table I.

Additionally, to imitate the normal status of the web appli-
cation, we conducted the experiment by setting the maximum
number of requests to 10, the number of pitches per second
to 5, and duration to 180 min. Metrics during normal status
are used as training data, and metrics during each experiment
are used as test data for anomaly detection methods.

B. Failure Cases

To fail the web application and execute self-healing, we
inject failures to pods by using PUMBA. Note that PUMBA
can kill containers and pods, so we killed pods in our
experiments. Since PUMBA randomly sends the kill signal
among specified pods with specified intervals, we imitated
three types of failures that might occur in real web applications
and configured the settings of PUMBA so that it randomly kills
pods including Nginx, Rails, and MySQL.

The first type is killing a pod, which is Experiment 7. The
example of this case is an accidentally failed pod. For this
type, we stop the PUMBA once a pod is killed and self-healing
automatically regenerates the killed pod. The second type is
killing several pods which is Experiment 8. The example
of this case is a compound failure in which multiple pods
simultaneously fail. The third type is killing the same pod
many times, which is Experiment 9. The example of this case
is a software failure in which the same pod repeatedly fails
due to software bugs. The settings of PUMBA are summarized
in Table II. During Experiments 7, 8, and 9, we use LOCUST
to imitate the user access to the web page. The settings of
LOCUST are the same as those of the normal status described
in Section IV-A.

We experimentally killed the pod including Nginx and Rails,
and the pod including MySQL in each Experiment 7 and 9.

TABLE II: Settings of PUMBA

. . The number
Experiment Failed pod of failures
Experiment 7 One pod one time
Experiment 8 Multiple between one time
P pods and 10 times
Experiment 9 One pod more than 10 times

Since each experiment described above is executed three
times, the number of test data for overload cases and failure
cases are 18 and 15 (3 for Experiment 8 and 6 for Experiment
7 and 9), respectively. Thus, |Dyest| is 32. For training data,
|Dtrain‘ is 1.

V. RESULTS AND EVALUATION

In this section, we verify the delay (which is the time
difference between auto-scaling or self-healing and recovery
of application performance by injecting anomalies to the web
application system), evaluate the anomaly detection accuracy
of each method using the data collected from the web ap-
plication, and investigate information regarding the degree
of abnormality by each anomaly detection method by using
metrics described in Section IV.

A. Delay of Auto-scaling and Self-healing

To verify the delay, we measured the time from the start of
the response time degradation.

Table III summarizes the mean time and the standard
deviation of duration until response time starts to be improved
by auto-scaling, duration until scaling out, and duration until
Rails CPU usage starts to improve from when response time
degraded. In the experiments, the minimum and maximum
delays are 1 minute in Experiment 1 and 9.5 minutes in
Experiment 6, respectively. For Experiments 5 and 6, appro-
priately 9 minutes elapsed before the response time started to
improve. Thus, the delay depended on types of abnormality.
Furthermore, it took more time for the response time to fully
recover.

Figure 1 shows sequences of metrics in Experiment 1. Here,
the interval of each data point is 15 seconds. As described in
Section III, average response time took appropriately 90 to
start to improve and appropriately 15 minutes to fully recover.

Comparing the duration until scaling out with duration until
Rails CPU usage starts to improve, by taking into account
the standard deviation, once auto-scaling increases the system
resources, CPU usage tends to improve except in Experiment
1.

Table IV also shows the delay for failure cases. In the
failure cases, since self-healing regenerates the failed pods
within 15 seconds once the pods are killed by PUMBA, we
may not be able to collect the duration from executing self-
healing to regenerating the pod. However, initialized processes
are needed in the regenerated pods and containers in the
regenerated pods, so there is a period in which the web
application is not accessible. Thus, after regenerating pods and
containers, CPU usage starts to improve after appropriately
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TABLE III: The delay, time difference between auto-scaling, and recovery of application performance

Duration until response time Duration until scaled out Duration until CPU usage of Rails

Experiment starts to recover (sec) Rails containers (sec) starts to improve (sec)
Experiment 1 95.0 (£8.7) 35.0 (£31.2) 110.0 (£67.6)
Experiment 2 190.0 (£8.7) 95.0 (£52.7) 105.0 (£26.0)
Experiment 3 185.0 (£8.7) 115.0 (£22.9) 100.0 (£31.2)
Experiment 4 195.0 (£0.0) 130.0 (£8.7) 120.0 (£15.0)
Experiment 5 600.0 (£0.0) 145.0 (£8.7) 120.0 (£15.0)
Experiment 6 735.0 (£77.9) 175.0 (+£95.3) 135.0 (£77.9)

TABLE IV: The delay, time difference between self-healing and recovery of application performance

Duration until failures

Duration until the container

Duration until CPU usage of each container

Experiment starts to reduce (sec) regenerated (sec) starts to improve (sec)
Experiment 7 40.0 (£39.9) - 30.0 (£19.0)
Experiment 8 45.0 (£30.0) - 10.0 (£17.3)
Experiment 9 40.0 (£24.5) - 20.0 (£24.5)
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Fig. 3: Metrics in Experiment 7

30 seconds on average. Then, the performance of the web
application finally starts to improve after 40 seconds, and the
standard deviation of delay is different each experiment.

Figure 3 shows the sequence of metrics in Experiment 7.
Here, although it seems that a pod and a container in that
pod was always running, a container was in fact killed once.
This is because since Prometheus collects metrics at 15-second
intervals, we could not detect the period in which containers
failed in this experiment. Since in this case, the pod which
includes a MySQL container was killed by PUMBA around
between 12 and 15, the values were missing for CPU usage of
the MySQL container and network traffic of the pod in which
the MySQL container is placed. Thus, the access failures
occurred during these times. Note that since the ratio of access
failures is calculated by dividing the number of access failures
at a certain time slot by the maximum number of requests, the
ratio of access failures can be greater than 1.

Owing to this analysis, we verified that there is the delay
that depends on types of abnormality.
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B. Anomaly Detection Accuracy

We evaluated the anomaly detection accuracy for the web
application on K8s with auto-scaling and self-healing. For
training data, we used three hours of normal status data that in-
cludes 19 kinds of metrics (i.e., [ = 19) on host servers, pods,
and containers, such as CPU usage, memory usage, disk read
and write, network traffic, and the number of containers. For
test data, data during the experiments described in Section IV
is used. To label test data, we calculated the average and
standard deviation of average response time and ratio of access
failures during normal status. If the average response time or
ratio of access failures at a certain data point in the test data
exceeds a certain value (which is the average response time
plus three sigma, which is the standard deviation in normal
data), we label that data as abnormal, and otherwise normal.
As an evaluation metric of anomaly detection methods, the
area under the receiver operating characteristic (AUROC) is
selected. LOF and OCSVM were implemented using Scikit
Learn [23], and AE, LSTM, and LSTM-AE were implemented
using Pytorch [24]. Each method was evaluated three times.

For the hyper-parameters of each anomaly detection
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TABLE V: AUROC:s of

anomaly detection results

Experiment [ LOF [ OCSVM [ AE [ LSTM [ LSTM AE
Experiment 1 | 0.035 (£0.016) | 0.062 (£0.016) | 0.074 (£0.011) | 0.999 (£0.001) | 0.972 (£0.012)
Experiment 2 | 0.070 (£0.014) | 0.935 (£0.014) | 0.939 (£0.016) | 0.961 (£0.041) | 0.922 (£0.022)
Experiment 3 | 0.057 (£0.012) | 0.038 (£0.023) | 0.046 (£0.022) | 0.958 (£0.015) | 0.929 (£0.028)
Experiment 4 | 0.087 (£0.017) | 0.913 (£0.007) | 0.928 (£0.017) | 0.986 (£0.011) | 0.925 (£0.030)
Experiment 5 | 0.101 (£0.021) | 0.877 (£0.063) | 0.960 (£0.014) | 0.987 (£0.010) | 0.960 (£0.017)
Experiment 6 | 0.039 (£0.005) | 0.963 (£0.004) | 0.963 (£0.007) | 0.974 (£0.012) | 0.952 (£0.013)
Experiment 7 | 0.369 (£0.164) | 0.420 (£0.218) | 0.730 (£0.145) | 0.958 (£0.083) | 0.810 (£0.089)
Experiment 8 | 0461 (£0.108) | 0.525 (£0.087) | 0.560 (£0.037) | 0.005 (£0.143) | 0.814 (£0.184)
Experiment 9 | 0.529 (£0.217) | 0.637 (£0.093) | 0.545 (£0.159) | 0.955 (£0.072) | 0.818 (£0.206)
Average 0.241 (£0.232) | 0.748 (£0.237) | 0.802 (£0.198) | 0.964 (£0.067) | 0.885 (£0.127)
2000
3000
1500 3000
2 , 2000 n
= 1000 = “ <2000
£ £ 1000 &
500 1000
, e
0 0 e
0 20 40 60 80 100 120 0 20 40 60 80 0 20 40 60 80 100 120
Duration (15 sec) Duration (15 sec) Duration (15 sec)
(a) Experiment 1 (b) Experiment 2 (c) Experiment 3
4000 4000
4000
3000 3000 \
% r , 3000 . N
= 2000 J = A = 2000 Al
7 s 72000 vl 7 Il
| & I\ = 1000
1000 | A 1000 } ! ‘w
i\ r N A~AAANAL /
0 obr— & A4 ’
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Duration (15 sec) Duration (15 sec) Duration (15 sec)
(d) Experiment 4 (e) Experiment 5 (f) Experiment 6
100 120 150
100
80
60 80 100
= I = <
& 40 / \ R /'/ \\ £ 50 — N\ = //\
B} . \ " e fl ) \J
0 - 0 / N - o ~
2 0 2 4 6 8 10 12 14 0 2 4 6 8 10 0 2 4 6 8 10 12 14
Duration (15 sec) Duration (15 sec) Duration (15 sec)

(g) Experiment 7

Fig. 5:

method, we prepared several patterns and evaluated the
anomaly detection performance for each hyper-parameter. For
LOF, we prepared 1, 10, 20, 30, and 40 as the numbers of
neighbor points. For OCSVM, we prepared LINEAR kernel
and RBF kernel, and kernel hyper-parameter of each kernel is
set to 1073,1072 and 10~L. For AE, three layers are prepared,
and the final hidden dimension is set to 2, 4, and 6. For LSTM,
two-layered LSTM was used and the final hidden dimension
is set to 2, 4, and 6. For LSTM-AE, similar to the LSTM,
two-layered LSTM was used and final hidden dimension is
set to 2, 4, and 6. We also set the learning rate of AE, LSTM,
and LSTM-AE as 103,102 and 10!,

The AUROCSs and standard deviation of each method for
each experiment are summarized in Table III and Figure 4,

(h) Experiment 8

(i) Experiment 9

Test loss of LSTM for each experiment

which show the results of the best pattern of hyper-parameters
for each anomaly detection method. In the anomaly detection
method, LSTM is the best for each experiment. This is
because LSTM can take into account time dependency, which
is important for anomaly detection since used data such as
CPU usage, memory usage, and network traffic has time
dependency. Although LSTM-AE has a LSTM structure, it
does not directly take into account time dependency during
the decoding. Thus, LSTM-AE and other methods that also
cannot capture time dependency have lower AUROCs than
LSTM. LOF, a density-based method, is the worst at detecting
anomalies in the web application system.
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Fig. 6: Clustering result of OCSVM for each experiment
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Fig. 7: Clustering result of AE for each experiment

C. Investigating Degree of Abnormality

We investigated whether anomaly detection methods can
provide information of the degree of abnormality in each
experiment by visualizing and clustering the anomaly scores.
Since how much the application system performance degrades
and duration of each experiment are different, the anomaly
score that represents the distance from the normal state may
differ among experiments. Therefore, we tried to extract that
information by clustering those anomaly scores and evaluated
the clustering results.

Figure 5 shows the sequence of test loss (i.e., anomaly
scores) of LSTM for each experiment. For each experiment
in overload cases, the maximum scores are different, and the
higher the number of maximum requests, the higher the maxi-
mum score tends to be. This is because, since metrics such as
CPU usage are affected by the number of maximum requests,
the difference between predicted data by LSTM and test data
also depends on the number of maximum requests. Moreover,
comparing anomaly scores of LSTM of each experiment, the
anomaly scores of ramp-up types (i.e., Experiments 1, 2 and 3)
tend to be flatter than those of burst types (i.e., Experiments
4, 5, and 6). Thus, LSTM has the potential to extract the
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Fig. 8: Clustering result of LSTM for each experiment
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Fig. 9: Clustering result of LSTM AE for each experiment

characteristics and degree of abnormality in each experiment.
For each experiment in failure cases, the anomaly scores are
lower than those in overload cases. This is because, since the
self-healing regenerates pods quickly, the metrics recovered
sooner than in overload cases as shown in Tables III and IV.

To investigate how each anomaly detection method extracts
the degree of abnormality, we clustered the anomaly scores of
each anomaly detection method except LOF since the AUROC
of LOF was very low. By treating each sequence of anomaly
scores as a vector, we used the K-means algorithm [25] for
clustering and set the number of centroids as 9. Figures 6, 7, 8§,
and 9 summarize clustering results of each method for each
experiment. ID and count represent centroid id and the number
of test data classified into that id, respectively. For each
method, the anomaly scores of failure cases (i.e., Experiments
7, 8, and 9) are classified into the same ID. This is because
the anomaly scores of overload cases and failure cases have
different characteristics. For the case of LSTM in Figure 8§,
all anomaly scores of Experiment 1 labeled as ID 3, and ID 5
and 9 have only the results of anomaly scores of Experiment
3. ID 2 and ID 7 represent anomaly scores Experiments 5
and 6, which are the burst types, except a small number
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of anomaly scores of Experiment 2 in ID 2. However, the
K-means algorithm was not able to classify anomaly scores
of Experiments 7, 8, and 9 and Experiments 2, 3, and 4
whose maximum numbers of requests are the same. Thus,
the clustering results of anomaly scores of LSTM depend
on abnormality types (i.e., overload cases or failure cases)
and the maximum number of HTTP requests. This means
that LSTM can provide information regarding how much the
application performance is degraded, which is one part of the
degree of abnormality, but cannot provide how long the delay
lasts for overload cases, which is another part of the degree
of abnormality.

Clustering results of OCSVM are similar to those of LSTM.
Figure 6 shows that all IDs except ID 1 and ID 2 have anomaly
scores of only one type of experiment. However, ID 2 has
not only experiments of failure cases but also all types of
experiments of overloaded cases. Moreover, clustering results
of the other two methods are worse, e.g., almost all anomaly
scores labeled as ID 2, ID 4, ID 7, or ID 8 in the AE case 7.
Thus, the ability to classify the results of anomaly scores is
highly dependent on the anomaly detection methods.

VI. CONCLUSION

In this paper, we analyzed the performance of anomaly
detection methods with auto-scaling and self-healing in Ku-
bernetes (K8s). By deploying a web application on K8s and
implementing anomaly detection methods, we evaluated the
anomaly detection accuracy of each method using the data
collected from the web application. Furthermore, a clustering
approach was used for anomaly scores to investigate infor-
mation regarding the degree of abnormality. The evaluation
results show that our analysis provides useful information for
operators to manage K8s with auto-scaling and self-healing
since we found that Long Short-Term Memory (LSTM) can
extract information regarding how much the application per-
formance is degraded, which is one part of the degree of
abnormality.

The following remains for future work. First, we will
conduct more evaluations using datasets in a large application
system. Although we comprehensively prepared experiment
types and injected anomalies, we need to validate that anomaly
detection methods can extract characteristics and the degree of
abnormality by using a large application system and various
types of anomalies. Second, we will investigate the difference
in each anomaly detection method regarding clustering results.
Third, we need to investigate each anomaly detection method
in real-time situations. Although we used full sequences of
test data (i.e., data from the start to end of an anomaly)
in clustering, system operators need to know the types of
abnormality as soon as possible. Thus, clustering method
needs to be developed that use only several points of data
from the start of an anomaly.
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