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Abstract—VM (Virtual Machine) live migration is a server
virtualization technique for deploying a running VM to another
server node while minimizing downtime of service the VM
provides. Currently, in cloud data centers, VM live migration
is widely used to apply load balancing on CPU workload and
network traffic, to reduce electricity consumption, and to provide
uninterrupted service during the maintenance of hardware and
software updates on servers. It is critical to use VM live migration
as a prevention or mitigation measure for possible failure when
its indications are detected or predicted. Especially in NFV
(Network Function Virtualization) environment, timely use of
VNF (Virtual Network Function) live migration can maintain
system availability and reduce operator’s loss due to service
failure. In this paper, we propose a proactive live migration
method for vEPC (Virtual Evolved Packet Core) based on failure
prediction. A machine learning model learns periodic monitoring
data of resource usage and logs from servers and VMs/VNFs to
predict future vEPC paging failure probability. We implemented
the proposed method in OpenStack-based NFV environment to
evaluate the real service performance gains for open source vEPC
implementations.

Index Terms—VNEF live migration, Machine learning, Virtual
EPC

I. INTRODUCTION

With the evolution of server virtualization, service applica-
tions running in VMs have less restriction on their physical
locations (e.g., edge or central cloud) and their particularity
(e.g., available resources). VM live migration is an important
operation in server virtualization to move a running VM
to another server node with a minimum service downtime
using two alternate VMs during the migration process. The
memory synchronization between those two VMs and the
corresponding network path reconfiguration incur such service
downtime [1].

VM live migration is widely used in cloud computing to
apply load balancing on CPU workload and network traffic
and to reduce electricity consumption by consolidating active
VMs into a specific location group of servers in a data center.
VM live migration is also used to provide uninterrupted service
during the maintenance of a data center, for instance, host
kernel update or server/network repair [2]. In addition, VM
live migration can be used for a prevention or mitigation
measure to faults when their indications are detected or
predicted. As one example of fault prevention, operators can
live-migrate VMs running on a server that shows anomalously
high memory utilization and temperature for a long time, and
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take an investigation without affecting the service quality. In
NFV (Network Function Virtualization) environment, VM live
migration has an essential role in maintaining the availability
of VNFs (Virtual Network Functions) running on VMs. This
VNF live migration can reduce the operator’s loss (e.g., service
level violation) due to abrupt service down by failure.

In this paper, we propose a proactive live migration method
for vEPC (Virtual Evolved Packet Core) based on machine
learning prediction on failure. This method collects resource
usage (e.g., CPU, memory, disk), system logs (syslog), and
application/VNF logs. Such time-series data is fed to a deep
learning model to learn patterns of the system’s status over
time including failure history. Then a migration decision is
made to proactively migrate a failure-expected VEPC instance
to another (healthy) server, based on the failure score from
the prediction model. We implemented a VNF live migration
system in our OpenStack-based NFV testbed, and evaluated
the effectiveness of our solution when VEPC fails in paging
user devices for downlink data transfer in case of the host
server failure.

The remainder of this paper is organized as follows. Section
Il presents related work and Section III describes design
and implementation considerations of the proposed system.
Then, we provide a case study on a VEPC paging failure
and verification on the proactive VEPC live migration method
in Section IV. Finally, we conclude our work in Section V
including future work.

II. RELATED WORK

The pertinence problem of migrating an abnormal VNF in
core cloud to edge cloud is considered in [3]. The migra-
tion is made only when the migration cost of reconfiguring
service paths to its new location in the edge is lower than
the operator’s loss of QoS degradation from retaining the
abnormal VNF. During this migration decision-making, a deep
learning algorithm is used to predict a user mobility pattern in
a candidate edge site. This work provides a promising VNF
migration scenario in MEC (Multi-access Edge Computing),
but its verification is omitted in the paper.

In failure prediction, the authors of [4] propose a server
failure prediction model using machine learning. They feed to
the proposed model, temporal data (e.g., memory usage) and
spatial data (e.g., rack location) collected from half a million
physical servers in their data centers. The model then ranks
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top-k servers with predicted failure scores and shows that there
is a tendency that servers with failure history are more likely to
be failed again in the future. The authors prove that the overall
VM failure rate decreases by 30% after using the failure
prediction score in allocating and migrating VMs. VNF failure
also can be predicted by learning system logs [5]. In this
work, syslog of telco production VPE (Virtual Provider Edge)
router instances is fed into a deep learning model that detects
abnormal patterns of syslog and generates early warnings to
possible vPE failure. Although it is difficult for individual
researchers to access such production data in both [4] and [5],
they show the effectiveness of failure prediction using machine
learning and the possibility of applying proactive VNF live
migration in a real environment.

A VNF backup method can be compared with a VNF live
migration method. A generic VNF backup method maintains
at least two instances of one master and slaves for one VNF
type to ensure one of the slaves immediately takes over the
master role when the master becomes failed [6]. This approach
has the advantage of minimized service downtime thanks
to previously configured backup paths, but it requires more
resource allocation and a refined state synchronization mech-
anism among the group of VNF instances. On the other hand,
VNF live migration has longer service downtime but it requires
fewer resources and is stateful (i.e., sessions remained after
migration). One most dominant clouding platform, OpenStack,
provides the stateful VM live migration by making many low-
level considerations transparent to users.

III. DESIGN AND IMPLEMENTATION

The proposed VNF live migration system consists of the
Monitoring module, the Prediction module, and the Migration
module (in Fig. 1). This system operates as one modular
function in the previously proposed Network Intelligence
architecture [7]. The implementation of this architecture in our
site references the ETSI NFV-MANO model [8], so the VNF
live migration system proposed in this paper is compliant with
other NFV management functions in our previous work (e.g.,
auto-scaling [9]).

In the proposed system, the Monitoring module periodi-
cally collects monitoring data of resource usage, system logs
(syslog), and application-level VNF logs from servers and
VMs/VNFs. We will show how log data is used to predict
vEPC failure in Section IV. To implement this module, we
deploy collectd as monitoring agents on both servers and VMs
to collect their CPU, memory, disk and network I/O. Likewise
syslog, log messages of individual VNFs (if generated in a
file) are also registered to the collectd log module to be sent
towards a central monitoring node. We use influxDB to store
time-series data and build Grafana and Graylog for analysis
on time-series data and log messages respectively. To integrate
with machine learning algorithms in the Prediction module,
data can be served as either query-base (Swagger OpenAPI)
or Publication/Subscription-base (Apache Kafka).

Next, the Prediction module operates machine learning
models that are used to assist VNF live migration decisions.

Proposed VNF Live Migration System
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Fig. 1: Proposed VNF live migration system architecture

We discuss in Section IV how this module predicts VEPC
failure in detail. By learning monitoring data that can reflect
repeated patterns of workload and network traffic in a data
center, the model also identifies the best destination server
for VNF live migration, based on predicted resource states or
capacities of all servers in near future.

Lastly, the Migration module generates a final decision
on VNF live migration. This module requests the Prediction
module to return the best migration destination for VNFs run-
ning in an anomalous node. We note that the best destination
server may not be the least load one because such greedy
selection does not ensure the optimality of the migration
decision if there should be an upcoming heavy workload or
traffic on the server. Then this server is likely to be overloaded,
and the next migration decision could be made against the
previously migrated VNFs again, leading to the cost of service
downtime. Whereas, our VNF live migration method uses the
prediction about upcoming server states from the machine
learning models. Fig. 2 supports the fact and provides average
throughput and response time of a web server VM in different
destination server selections for live migration. Our method
(proposed) shows 13%, 6% and 8% increase in the average
number of requests per second, compared to no-mig, random
and cpu-least policy respectively.

The NFVO module that is implemented in the previous work
[7] takes the VNF migration decision parameters of the target
VNF IDs and the destination server ID (OpenStack manages)
from the Migration module and calls OpenStack VM live
migration APIs to enforce the migration decisions into the
testbed.

IV. CASE STUDY ON VEPC LIVE MIGRATION

In this section, we describe the mechanism of paging UE
in VEPC and a vulnerability issue of the (consecutive) VEPC
paging failure [10]. Then we introduce our approach to tackle
the issue using proactive VEPC live migration based on the
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Fig. 2: Average performance of a web server VM in different
destination server selections for live migration

failure prediction. Finally, we evaluate its effectiveness as a
failover solution to cloud-based VEPC deployment from the
VvEPC failure scenario injected into our testbed (Section III).

A. Paging Mechanism in vVEPC

The EPC is the core network architecture for 3GPP LTE
(Long Term Evolution) networks. It consists of separated
network functions (NFs) of MME (Mobility Management
Entity), S-GW (Serving Gateway), P-GW (PDN Gateway),
and others. With the evolution of server virtualization, this
functional split accelerates the realization of CUPS (Control
and User Plane Separation) and the deployment of virtualized
EPC in the telco’s cloud. These virtualized NFs of vEPC that
can operate in VMs are much flexible and scalable (e.g., auto-
scaling) from benefits of cloud computing than its deployment
in vendor-specific proprietary hardware [11]. However, this
vEPC also inherits the weaknesses of server virtualization and
cloud computing. One major factor is relatively unreliable host
COTS servers that are vulnerable to malfunction or failure due
to hardware (e.g., broken disk) or software issues (e.g., security
breach).

The MME of EPC is the key control node for LTE access
network. It is responsible for session and mobility management
of user devices (UEs) via eNB (eNodeB). One major procedure
of session management is awakening an idle-state UE to
enable it to stop the recess period (e.g., for energy saving)
and to reattach the MME (EPC) so that downlink data can
be transferred to the UE. In this paging procedure, a paging
message is sent from MME to eNB first over the SIAP/SCTP
protocol. The idle-state UE who receives the paging message
relayed by the eNB sends back the service request message
to the MME to resume its session (e.g., data plane tunnel)
previously allocated by the EPC during the initial connection
establishment. However, in the case of MME in vEPC, if
the host server of the VEPC or vEPC VM itself becomes
malfunctioned or failed, there will be a possibility of failure
in the bidirectional paging mechanism.

According to the 3GPP standard for paging failure (3GPP
TS 24.301 [12]), a paging timer, called T3413, is created in
MME once a paging message is sent to UE, and then MME
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Fig. 3: vEPC paging failure

retransmits a paging message at the timer expiry with the
creation of a new timer (Fig. 3). At the same time of the timer
expiry, the Downlink_Data_Notification_Failure_Indication
message is sent to S-GW, who holds the downlink data in
its (limited) queue or drops it once receiving the notification
signal. If the malfunction of VEPC is temporary (e.g., resource
overload), the paging procedure can be recovered by retrans-
missions of paging messages. However, if the malfunction is
long-term due to the host server failure, it costs the following
until failover.

o Loss of downlink data: the amount of downlink data loss
is proportional to the number of UEs whose sessions are
managed by the VEPC on the failed host server.

o Wasted resources: similarly, MME must hold resources
(e.g., session information, timers) allocated to the non-
responding UEs because it does not know when attempts
to reattachment are resumed.

Failover procedure to this consecutive paging failures is not
standardized and depends on vendor-specific implementation.
For the three representative open source VEPC implementa-
tions (upstream) as of this writing, we analyze their behavior in
the case of consecutive paging failure. We observed that those
vEPC implementations behave differently, and srsRAN (suc-
cessor of srsLTE) [13] and NextEPC appear not to tackle the
paging failure properly but to pay the costs above. Open5GS
(successor of NextEPC) [14] shows an active handling for
the consecutive paging failure by freeing the resource wasted
by non-responding UEs but the loss of downlink data is
unavoidable. To properly manage this VEPC failure, an NFV
orchestration-level solution is needed considering the VEPC
deployment in a cloud data center. In this context. we propose
a proactive VEPC live migration method using deep learning-
based VEPC failure prediction.

B. Prediction on vEPC Paging Failure

As mentioned in Section II, VM/VNF live migration in
OpenStack is stateful because it ensures memory synchroniza-
tion between two VMs used in the process and the same IP
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address is preserved to the migrated VM with the correspond-
ing network reconfigurations (e.g., changing forwarding rules)
to the new location. In order words, most of the changes due
to VM live migration is transparent to peers of the existing
connections except for the short service downtime. Therefore,
VM live migration is a suitable operation to manage and
orchestrate vEPC instances. We focus on VEPC containing NFs
altogether in a single VM (all-in-one) but it is also possible to
deploy EPC NFs in different VMs of the same subnet. In the
latter case, our approach proactively migrates an MME VM.

To predict the VEPC paging failure mainly due to the
host server failure, we use an LSTM (Long Short-Term
Memory) model to learn time-series resource (CPU, mem-
ory) usage of the host server and vEPC VM. The resource
utilization values can be useful indicators for anomaly (e.g.,
overload), but they are too generic to be used solely for
comprehending the specific condition of the consecutive pag-
ing failure. Therefore, we use the VEPC log data of Down-
link_Data_Notification_Failure_Indication which is gener-
ated at the time of T3413 paging timer expiry. This log as
its name implies is a clear indication for the consecutive
paging failure but not always leads to the failure. There
would be other useful VEPC logs that can increase the failure
prediction accuracy but the logging is dependent on VEPC
implementations (i.e., vendor-specific), so we only use the
standardized log message. Considering that excessive memory
consumption is one major cause of server failure [4] [15],
we use the swap disk utilization that indirectly indicates the
out of memory state and we also refer to the syslog of
OOM killed_process_PID which is generated when a process
is forcibly terminated by the OOM (Out of Memory) killer
in the host OS kernel thread. The overall architecture of the
LSTM model to predict the VEPC failure is shown in Fig. 4.

To apply supervised learning to our LSTM model for better
prediction accuracy, failure label (ground-truth) data is needed.
The vEPC log of BROKEN_PIPE can be an obvious failure
label in that in Linux it represents “connection closed by peer”,
which means the tunnel for control signal between VEPC
and UE (via eNB) is closed by the eNB/UE side first. This
happens when eNB finds from its SCTP configurations (e.g.,
max retransmissions, heartbeat timeout) that vVEPC (MME) is
unreachable and then closes the socket. The connection can
be reopened by an attach-request from the UE side, but vVEPC
should be still not responding until failover.

Finally, we generate a dataset' by repeatedly injecting re-
source anomaly and VEPC failure scenarios (“broken pipe”) of
different periods and there premonitory conditions (‘“downlink
data failure indication”). According to [15], flapping network
cards and unexpected host memory consumption are major
causes of server (node) failure in data centers, and they
use VM live migration to maintain the service quality by
relocating VMs to healthy servers. To simulate such server
failure cases, we implemented a server failure injector that
utilizes a resource stress tool (stress-ng) and some Linux

Thttps://github.com/syjeong96/vEPC_failure_prediction.git
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commands to control network interfaces of servers in our
testbed (Fig. 1).

C. Verification

1) Prediction model: We use the dataset of 11,696 records
and each record for a time unit (e.g., 5 seconds monitor-
ing interval) includes CPU/memory/swap space utilization,
the number of “vEPC downlink failure indication” logs, the
number of “OOM killed process” syslog, and the occurrence
of “vEPC broken pipe” log as a failure label (0 or 1). The
proportion of failures in the total time units is 2,898 and the
total failure duration consists of 95% of short-term (30, 50, 100
time units) and 5% of long-term (500, 1000, 2000 time units).
We assume that the failures in short-term periods represent
temporary server anomaly (e.g., resource overload) which can
be resolved over time and the resulting VEPC paging failures
also can be recovered by paging retransmissions. Proactive
vEPC migration to avoid those short failure periods may be an
excessive measure with no benefit or even degradation in ser-
vice performance, considering the incurred service downtime
and completion time possibly longer than the failure period.
We used Keras and TensorFlow to build the LSTM models in
the Prediction module (Fig. 1).

2) Downlink throughput: In this section, we compare
downlink throughput measurements with and without the
proposed proactive VEPC live migration, using the generated
vEPC failure prediction models and the testing dataset which
is a part of the collected dataset (records) in the previous
section. In the testing scenario, the iPerf client VM sends TCP
traffic to the eNB/UE simulator (srseNB/srsUE in srsRAN)
VM via the vEPC (srsEPC in srsRAN) VM. We can expect
the followings: if the vVEPC under the test is in a failure period,
the downlink throughput is 0, else the VEPC is proactively
migrated to one healthy server before entering a failure period,
then the downlink traffic is preserved with a temporary loss
from the live migration service downtime. The timing of a
migration can be tuned by a threshold for the predicted failure
score at the moment; a threshold of 0.5 leads to an aggressive
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Fig. 5: Visualization of downlink traffic in different proactive migration policies

policy with more migrations and a threshold of 0.9 leads to a
conservative policy with fewer migrations.

The average downlink throughput in different policy param-
eters are shown in Fig. 5. The blue patterned boxes indicate
the actual failure periods (ground-truth) of the VEPC in the
testing dataset. The black curved line represents downlink
traffic throughput measured at the eNB/UE simulator VM.
There are two types of the plunge in downlink throughput:
one is from service downtime during the live migration and the
other one is from the vEPC failure. For the former, the amount
is negligible, compared to the amount of loss when the failure
is not handled by proactive migration. For the latter, it occurs
when the migration decision is not enough early for the actual
migration process to be completed before the failure (i.e., the
original VEPC VM still serves the traffic) or the migration
decision itself is not made due to the policy parameters (in-
cluding the model prediction accuracy) being not sufficiently
tuned well to catch the failures. For all the policies in Fig. 5,
no one properly tackles the two short failures in the 400 to 600
time units. Nevertheless, the proposed proactive live migration
effectively prevents the downlink traffic loss during the long-
term VEPC failures. The average downlink throughput without
any migration policy was measured as 13.2778Mbps which is
65% of the best migration policy.

V. CONCLUSION

In this paper, we propose the proactive VEPC live migration
method based on machine learning-based prediction on VEPC
paging failure. The proposed LSTM model learns about re-
source utilization, OS/VEPC logs and vEPC failure history (as
labeled data) so that it can predict the future failure score of
the target VEPC. We then verify the method can migrate a
failure-expected VEPC to another server proactively enough
and compare the downlink traffic throughput for different
configurations of the method in our OpenStack-based NFV
testbed with an open source VEPC implementation.

Due to the difficulty of accessing open server/service failure
data in real cloud data centers, we plan to refine our failure
injection strategy to be more specific and useful by inspecting
various cloud computing and NFV use cases more. We will
also improve the machine learning models for prediction.
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