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Abstract—In today’s mobile networks, handover (HO) 
decisions are performed based on static thresholds of e.g. the 
“Received Signal Radio Power” (RSRP) or the “Received Signal 
Radio Quality” (RSRQ). In LTE networks the HO Events A1-
A6 have been defined. However, threshold based HO decisions 
often lead to poor network resource utilization, increased call 
blocking probabilities and provide low adaptivity w.r.t. user 
mobility pattern changes. In this paper, we propose a novel 
unified HO Algorithm based on Discrete Stochastic Dynamic 
Programming (DSDP), taking into account not only the radio 
conditions but also the overall resource utilization (i.e. the past, 
current and predicted future cell loads) and the impact of 
individual HO decisions on the serving and target cells. The HO 
algorithm operates in a decentralized manner – it is executed at 
each eNodeB (eNB) and attempts to achieve a balanced cell load. 
Our method can be readily integrated in legacy networks, as all 
required input parameters have been defined in the 3GPP rel. 
11. To demonstrate the performance of the proposed algorithm, 
we implemented it in a NS3-GYM simulation environment and 
investigated an indoor LTE network scenario with X2-based HO 
capability.  

Keywords—LTE mobile networks, mobility management, 
handover decision, autonomous resource optimization 

I. INTRODUCTION 

For mobile network operators, the increase in mobile data 
traffic demand poses significant challenges in network 
planning as well as in network operation, to provide a good 
user experience at economically justifiable costs. One option 
is to apply mobility load balancing (MLB) besides normal HO 
procedures (triggered only by user mobility). Our goal is to 
develop a novel unified mobility management and resource 
optimization algorithm for LTE networks which can be tuned 
to meet different operational targets of a mobile network 
operator. It considers several parameters (e.g. cell loads, user 
mobility patterns) and performs HO decisions individually for 
each mobile user and comprises a set of ML-based predictor 
models and a DSDP problem solver. The predictor models 
enable the algorithm to adapt to the user mobility as well as to 
the cell resource occupation. 

The paper is structured as follows: In Section II an 
overview of the state-of-the-art in HO decision algorithms is 
presented. In Section III a detailed explanation of our 
algorithm is provided. In Section IV we outline the ns3-gym 
simulation model which is used for the performance 
evaluation. Section V contains the performance evaluation 
results. Finally, Section VI provides a summary of our work. 

II. STATE-OF-THE-ART 

Lee et al. [1] consider adaptive and normalized cost 
function-based HO optimization schemes for LTE networks. 

However, their approach includes a user velocity estimation 
scheme, which cannot be deployed in practice. Jun Pan et al. 
[2] formulate the LTE HO decision problem as a Markov 
Decision Process considering the impact of burst data traffic, 
handover delay and handover signaling overhead. However, 
they lack to state an accurate estimation of the handover 
signaling overhead. Stephen S. Mwanje et el. [3] proposed Q-
learning based algorithms for different SON tasks in mobile 
networks like Mobility Robustness Optimization (MRO), 
Mobility Load Balancing (MLB), Coverage and Capacity 
Optimization (CCO) and Inter-Cell Interference Coordination 
(ICIC). However, their approach focuses on individual SON 
tasks and does not provide an integrated solution (e.g. the 
combination of MRO and MLB). Furthermore, the 
convergence time and computational overhead is not 
considered. The approaches in [4][5][2] are of theoretical 
nature, i.e. the considered metrics (e.g. latency) for HO 
decision making are not available within standardized 3GPP 
signaling messages. 

 HO decision algorithms might benefit from predictions of 
user locations and movement directions [6]. Conventional 
localization methods normally require a minimum of 3 
geographically diverse reception points for the location 
estimation process and usually suffer from poor accuracy. 
Probabilistic methods and ML-based techniques (NN, kNN 
and SVM) have been explored for location estimation as well 
[7][8]. Most of them also show poor accuracy because they 
rely on precise GPS or RSSI measurements which cannot be 
obtained in practice. In our approach we just carry out a coarse 
grained prediction of the next cell towards which a user will 
move and use this information to support the HO decision 
algorithm. This is practically feasible as already in 3GPP 
Release 8 it is stated, that an eNB could store history 
information about associated UEs as well as their stay duration 
[9]. Ying et al. [9] and Huaining et al. [10] proposed a simple 
probabilistic next cell estimation method based on historical 
data (the last visited cells and the respective times of stay) 
leading to a higher accuracy of the next cell estimation. 

III. UNIFIED MOBILITY MANAGEMENT AND RESOURCE 

OPTIMIZATION ALGORITHM 

Figure 1 provides an overview of the unified mobility 
management and resource optimization algorithm. It 
comprises a cell load prediction model, a user mobility 
prediction model and an HO decision module based on a 
DSDP solver The algorithm is executed in each eNB and 
periodically fetches UE measurement and cell status reports, 
generates predictions and makes HO decisions for each active 
user attached at the serving eNB. The HO execution is in line 
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to the procedures defined in 3GPP Release 11 [11]. In the 
following, the key components of the algorithm are described. 

A. Cell load and user mobility prediction :  

 The user mobility prediction is based on a random forest 
classifier model. For details about the random forest classifier 
and its performance we refer to [12]. The user mobility 
prediction model explores user movement patterns from their 
cell association information history and predicts for each 
individual user its serving cell in the next time instances. Input 
for this prediction is the time series {time instance t, RSRP of 
the serving cell, RSRQ of the serving cell, RSRPs and RSRQs 
of all other cells observed by the user}. The cell load 
prediction model also uses a random forest classification 
algorithm for estimating the serving and neighbouring cell 
loads several time instances ahead. Input for the load 
prediction is the time series of the Cv values of the serving and 
neighboring cells i.e.{time instance t, load Cv}. The cell loads 
as well as the user’s possible next cells are predicted for 
multiple time steps into the future. We assume a prediction 
horizon of 4 time instances and apply a Direct multi-step 
forecasting strategy (see [13]). The forecasted values along 
with other UE specific environmental states are then taken as 
input for the DSDP-based HO decision. 

 
Fig.1. Unified mobility management and resource optimization 

algorithm (n = cell index, m= UE index) 

B. Handover decision (DSDP solver):  

       In the following, a detailed description of the HO 
decision problem formulated via discrete stochastic dynamic 
programming (DSDP) is provided. DSDP is also referred as 
Markov Decision Process (MDP) in [15]. In DSDP the system 
state evolution is modelled as a multi-stage stochastic process 
(with finite horizon) exhibiting the Markov property [14] 
[15]. It is characterized by the 4-tuple (S,A,Tr,R) - State, 
Action, Transition probabilities and Reward [15]. The time 
instances at which decisions are made are named decision 
epochs and are denoted by t1, t2, t3, … , tN where tN is last time 
instance of the finite time horizon. At each decision epoch an 
action a is performed considering the current state s - see 
Figure 2.  

 

Fig.2. Operational workflow 

 Related to mobility management, an action represents the 
decision of the next cell (current cell or a neighboring cell) an 
UE should be attached to considering the current state. After 
executing the action, the system state st+1 (= s’) and the 
corresponding value function vk+1 are updated. The goal is to 
optimize the expected total reward r(s,a,s’) for each individual 
user. In the following, the main elements of the DSDP model 
in the context of mobility management and resource 
optimization are explained. 

1. States S: The state space is denoted by S. For mobility 
management and resource optimization, the states are given 
by the occupied resources Cv (i.e. the load) of the cells. As 
our algorithm is executed at each eNB, the considered state 
space comprises the load of the serving and of all neighboring 
cells. The load is expressed as a linear metric: ‘0’ indicates an 
empty cell (all cell resources available) and ‘100’ indicates 
that no cell resources are available (full occupation) [11]. The 
Cv values are periodically exchanged between neighboring 
eNBs via the X2 interface [11]. In order to reduce the 
computational effort of our algorithm we consider a reduced 
state space by dividing the Cv value range into 4 segments 
(i.e. sub-states: Sx): low load Cv ≤ 25, medium load 25 ≤ Cv ≤ 
50, high load 50 ≤ Cv ≤ 75, very high load 75 ≤ Cv. For 
instance, a cell load Cv = 33, then mapped to sub state S3. 

2. Actions A: The action space represents the possible 
decisions to which cell an UE should be attached next. The 
concrete decision for each UE is determined as solution of the 
DSDP problem (by the DSDP agent) at each epoch. Thus the 
action space for each user is represented by A = {1,2,3,…,n} 
assuming that an UE can be attached to n possible cells 
(including the current serving cell and all neighboring cells 
that are sensed with sufficient radio signal strength). 

3. Transition Probabilities Tr = T(s,a,s’): The state transition 
probabilities can be represented through a 3-dimensional 
matrix of size (S,S,A). The state transition probabilities are 
estimated from the collected historical cell loads as well as 
from the predicted cell loads at each epoch. The matrix 
elements define the probability Tr of a transition from a sub-
state Sx at time instance t to a sub-state Sy at time instance t+1 
in case an action a is executed [2]: 

Tr = T(s,a,s’) =  Prob(Sy| Sx, a) 

4. Rewards R = R(s,a,s’): The rewards R can be represented as 
3-dimesional matrix of size (S,S,A). Each action a leading to a 
state transition from sub-state Sx at time instance t to sub-state 
Sy at time instance t+1 generates a reward R. We define the 
reward as a term with 6 variables Sx:Sy = α, UL, RP, RQ, LM, 
NCellID : 

𝑅 = 𝛼 +
1

(𝑈௅)஺
+

1

(𝑅𝑃)𝐵
+

1

൫𝑅𝑄൯
𝐶 +

1

(𝐿𝑀)𝐷
+ 𝑙𝑛൫𝑁(𝑡+𝑛)

𝐶𝑒𝑙𝑙𝐼𝐷 + 1൯ 

where A, B, C, D are parameters to control the impact of the 
components on the reward. We apply the parameter setting 
𝐴 = 𝐵 = 𝐶 = 𝐷 = 𝑙𝑜𝑔௘(𝑊)  where W represents the 
prediction horizon (expressed as number of time steps). In our 
study W=4 is assumed, yielding A, B, C, D = 0,35. 

a) Reward Component 1 (α = Sx:Sy): It accounts for the 
state transition from a sub-state Sx to a sub-state Sy. A 
transition from a lower sub-state (low load) to a higher sub-
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state (high load) (i.e. x<y) yields a low reward value and vice 
versa [16]. By this, any action a  leading to a lower cell 
resource utilization is preferred. 

b) Reward Component 2 (1/(UL)A): It accounts for the 
amount of cell resources (PRBs) a user occupies. Thus it 
accounts for the impact of a user on the load of a cell after a 
HO to this cell. The motivation is to improve the HO success 
rate by estimating the post HO load situations in the 
considered set of HO candidate cells. 

c) Reward Component 3 (1/(RP)B): It accounts for the cell 
specific signal strength RSRP. A cell which offers a better 
signal strength is preferred for HO. Accordingly, the higher 
the signal strength is, the higher is the reward and vice versa. 

d) Reward Component 4 (1/(RQ)C): It accounts for the cell 
specific RSRQ. A cell which improves the channel conditions 
of the user is preferred. Accordingly, the higher the received 
signal quality is, the higher is the reward and vice versa.   

e) Reward Component 5 (1/(LM)D): It accounts for the 
predicted mean load of a cell averaged over the next n time 
instances (we set n=4). The higher the estimated mean cell 
load is, the lower is the reward and the lower is the chance that 
the respective cell is selected as target cell for HO. 

 f) Reward Component 6 (𝑙𝑛൫𝑁(௧ା௡)
஼௘௟௟ூ஽ + 1൯): It accounts for 

the predicted cell in which a user will move within the next n 
time intervals. (we set n=4). Accordingly, the higher the 
probability that a user moves to a specific cell is (in the 
prediction horizon), the higher is the chance of choosing this 
cell as target cell for HO. 

5. Optimality equations: Let vπ(s) denote the value of being in 
a specific state S, given the policy π. A value iteration based 
DSDP solver uses the value iteration algorithm to solve a 
discounted (γ) DSDP by solving the Bellman equations [10]. 
The optimality equations are as follows [2]: 

      𝑣(𝑠) = 𝑚𝑎𝑥
గ∈௽

𝑉గ(𝑠)                             (1) 

    𝑣(𝑠) = 𝑚𝑎𝑥
௔ఢ஺

{𝑅(𝑠, 𝑎) + 𝛼 ∑ 𝑇ஶ
௜ୀ଴ [𝑠ᇱ, 𝑠, 𝑎]𝑣′(𝑠′)}           (2) 

From equation (3) it is evident that a solution could be 
obtained both for an infinite time horizon (where the 
termination state is at infinity) or for a finite time horizon. 
The termination state is considered as the state after the HO. 
Accordingly, in our case equation (2) is modified as follows: 

     𝑣(𝑠) = 𝑚𝑎𝑥
௔ఢ஺

൛𝑅(𝑠, 𝑎) + 𝛼 ∑ 𝑇ଵ
௜ୀ଴ ൣ𝑠′, 𝑠, 𝑎൧𝑣′(𝑠′)ൟ (3) 

IV. NS3-GYM SIMULATION MODEL 

 For the performance evaluation of our approach we 
consider the NS3-Gym simulation framework (ns-3 with Open 
AI Gym). For detailed information on the NS3-Gym platform, 
we refer to the work of Piotr Gawłowicz et al. [17]. The 
parameters used in the simulation and their values are depicted 
in Table 1. 

1. Network scenario 

For the performance evaluation we consider an specific indoor 
scenario, the so-called ICT cubes layout [18]. In Figure 3 the 
placement of the eNB’s are shown assuming an indoor area of 
10,000sqm size with equally sized rooms of 100sqm.  

2. User traffic demand 

In the simulation, 21 UEs are used. Both high load as well as 
low load situations are simulated (see Chapter V). Each UE 
has one default bearer (with UDP traffic) and two dedicated 
bearers (one with TCP traffic and the other with UDP traffic).  

3. User mobility 

A realistic modeling of the mobility patterns of the users is 
quite challenging [19]. In this work, the user movement is 
mimicked using various memory-less movement models 
(UE1-UE6 & UE9-UE12: 2D random walk, UE13-UE15 
Gauss-Markov, UE7-UE9 & UE16-UE21: random direction 
model). 

4. Gym Agent 

The UE and cell specific measurements (RSRP, RSRQ, Cv, 
MCS, etc.) are periodically (at each sample time instance) 
transferred from the NS-3 environment to the Gym python 
agent. By utilizing the ML-library scikit-learn and the MDP-
toolbox, the HO decision algorithm is implemented as 
described in Section II. Table 2 shows the configuration 
parameters applied at the DSDP solver and at the Random 
Forrest Classifier within the Gym agent. 

 

 

 

 

 

 

 

 

 

 

Fig.3. Locations of eNBs and UEs within the indoor area (black 
nodes are eNBs and red dots are UEs) 

Table 1 Simulation Parameter Settings 
Description Value 

Number of simulated time instances 60 

Total number of eNBs 7 

Tx power of each eNB 0dBm 

Total number of UEs 21 

UE speed 1-1.5  m/s 

LTE MAC scheduler  Proportional fair scheduler 

Simulation area 10,000sqm 

NS-3 environment event step time 1 sec 

Open AI gym event step time  1 sec 

Indoor radio propagation model ITUR P.1238-7 [20] 

User traffic model 
1 Default bearer (UDP)                   

2 Dedicated bearer (UDP+TCP) 

UE mobility models 
Gauss-Markov,                               

2D random walk,                 
Random direction model. 
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Table 2: Configuration parameters  

Description Value 

DSDP Solver ε: 0.01 ; γ : 0.1;                         
max iterations : 100 

 Random Forrest ML Classier 
N-estimator : 100;                    

max-depth : 7;                           
max features : 1 

 

V. PERFORMANCE EVALUATION 

Usually metrics like HO success/failure rate, number of 
HO ping-pongs, per user throughput, HO latency and RSSI 
change rate are used to evaluate the performance of HO 
algorithms. In this work we also consider the MCS index 
applied to user connections (representing the spectral 
efficiency), the cell loads (representing the radio network 
resource utilization) and the HO rate per UE as performance 
evaluation metrics. 

Figure 4 depicts the resource utilization of eNB3 and 
eNB1 over time. It can be seen that the cell load fluctuations 
are less in case of our algorithm compared to the conventional 
threshold based HO method. Thus the resource balancing 
works better, leading to an increased call admissions success 
rate and better utilization of under loaded cells. 

 
Fig 4. Resource consumption of eNB3 and eNB1 

 

 
Fig 5. MCS index for UE3 and UE9 

 A high MCS index indicates 1) A good signal quality SINR 
at the UE, and 2) A high throughput as more data can be 
transmitted per time unit using the same number of Physical 
Resource Blocks (PRBs). Figure 5, depicts the achieved MCS 
index for a specific UE over time. It can be seen that in high 

load situations, the algorithm attempts to optimize the network 
resource utilization by handing off the UE to less loaded cells 
without affecting the user throughput (remark: the fluctuations 
are due to HO events). Thus, the average throughput for UEs 
remains similar compared to the conventional threshold based 
HO method despite the superior load balancing capability of 
our algorithm. 

 
 Fig 6. Average loads of all eNBs 

Fig 7. Total number of HOs per UE 

The overall load balancing performance can be observed 
in Figure 6. Note, that Figure 6 has to be viewed in conjunction 
with Figure 4 and 5. Figure 7 shows the total number of 
observed HOs for each UE for both the low and the high traffic 
load case. It can be seen, that there exists a tradeoff between 
the number of HOs and the achieved load balancing. 

 

Fig 8. Load of eNB1 (occupied PRBs) over time w.r.t. different 
settings of the A, B, C, D parameters 

Figure 8 shows the load of eNB1 (in terms of occupied 
PRBs) over time w.r.t. different settings of the A, B, C, D 
parameters. These parameters can be used to influence the 
impact of the respective reward component according to the 
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preferences of the network operator. It is inextricable that 
improving one performance metric will lead to a degradation 
of the other metrics. For example, if an operator wants to 
improve the channel quality of UEs, he has to tune the 
parameters B and C accordingly (e.g. set A=D=0.35 and 
B=C=0.2). But, this greedy setting would lead to unbalanced 
cell loads and utilization of cell resources (as can be seen from 
Figure 8 and Figure 9). This in turn causes a reduction of the 
available PRBs (although the SINR is fairly good) in some 
cells and a degradation of the average UE throughput. Table 3 
shows the total number of handover ping-pong events during 
the simulation period. It can be inferred that our algorithm 
with default parameter settings and convenient prediction 
window size (W=4 and W=8) achieves a competitive 
performance compared to a conventional HO algorithm. 

 
Fig 9. Cumulative sum of MCS index values for UE3 over time w.r.t. 

different settings of the A, B, C, D parameters 

Table 3. Total number of HO Ping-Pong events 

Scenario Ping-
Pongs 

A3 Event Based HO (Low/High Loads) 0 

Unified Algo based HO(A,B,C,D=0.35), W=4, Low Load 4 

Unified Algo based HO(A,B,C,D=0.35), W=4, High Load 1 

Unified Algo based HO(A,B,C=0.35,D=0.2), W=4, High Load 5 

Unified Algo based HO(A,B,C=0.35,D=0.5), W=4, High Load 3 

Unified Algo based HO(A,D=0.35,B,C=0.2), W=4, High Load 4 

Unified Algo based HO(A,D=0.35,B,C=0.5), W=4, High Load 7 

Unified Algo based HO(A,B,C,D=0.35),W=8, High Load 0 

 

VI. CONCLUSION 

 This work focuses on mobility management and resource 
optimization in LTE networks and proposes a novel DSDP 
based HO algorithm. The performance evaluation shows its 
superior load balancing capability compared to conventional 
(event A3 based) HO algorithms. It also yields good channel 
conditions for each UE irrespective of their mobility behavior 
and a fair tradeoff in the total number of HOs per UE. In our 
future work, we intend to extend our algorithm so that it could 
be also applied in 5G networks. 
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