
Novel HTTPS classifier driven by packet bursts,
flows, and machine learning

Zdena Tropková
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Abstract—Encryption of network traffic recently starts to cover
remaining readable information, which is heavily used by current
monitoring systems; thus, it is time to focus on novel methods
of encrypted traffic analysis and classification. The aim of this
paper is to define a new network traffic characteristic called
Sequence of packet Burst Length and Time (SBLT), which was
inspired by existing approaches and definitions. Contrary to other
works, SBLT is feasible even for high-speed backbone networks
as a part of IP flow data. The advantage of SBLT features is
shown using a machine learning classification model for HTTPS
traffic types as an example. This paper presents the definition
of SBLT, proposes a new annotated public dataset of HTTPS
traffic with 5 categories, and evaluates the developed classifier
reaching accuracy over 99 %. This classifier can help analysts
to deal with a huge amount of encrypted traffic and maintain
situational awareness.

Index Terms—classification, encrypted traffic, packet burst, IP
flow, Machine Learning, HTTPS, TLS

I. INTRODUCTION

Encrypted traffic is definitely beneficial for privacy reasons;
however, it is also a great challenge to monitoring systems
and network security tools. The rise of encrypted traffic on the
internet is enormous in recent years. According to Google’s
transparency report1, 95 % of Chrome traffic is encrypted.
Unfortunately, the encrypted traffic can be easily leveraged
for malicious purposes by threat actors, and the state-of-the-
art monitoring solutions are still not capable of its processing.
Therefore, the report [1] published by the European Union
Agency for Cybersecurity recognizes encrypted traffic as a
possible serious security threat. Also, this is the main motiva-
tion of the research of this paper — to develop a method to
classify types of encrypted traffic.

Common network monitoring tools leverage all available
readable information from the packets, mainly from Transport
Layer Security protocol (TLS) handshake. One of the most
important parameters usually sent in the first Client Hello
packet is Server Name Indication, i.e., a hostname, which
exposes domains visited by a user. The hostnames are a
valuable source of information in encrypted traffic analysis
for malware detection, parental control systems, or network
statistics measurement. However, encrypted Client Hello (RFC
draft [2]) extension is already supported in Firefox 852, and

1https://transparencyreport.google.com/https/overview
2https://blog.mozilla.org/security/2021/01/07/

encrypted-client-hello-the-future-of-esni-in-firefox/

it hides even the hostnames from monitoring infrastructure.
The IP flow-based network monitoring systems started to

deal with encrypted traffic monitoring by enriching the bidirec-
tional flows for features that are not based on packet content.
Cisco Joy3 by Cisco Systems can export a Sequence of Packet
Length and Time (SPLT) of up to the first 200 packets. It is
possible to calculate multiple features from the SPLT, offering
flexibility in designing the detection mechanisms. Neverthe-
less, the long SPLT comes with higher processing at the
flow exporters and collectors and larger flow records, which
also consume a significant portion of the monitored network’s
bandwidth, especially when dealing with backbone lines with
more than 200 Gbps throughput. Therefore, there is a need
for finding features that are similarly flexible as SPLT while
significantly reducing the flow record size.

Based on the explained motivation, we studied the most
common traffic on the internet — the HTTPS traffic. Accord-
ing to the literature and our observations and experiments,
we defined five HTTPS traffic categories and created a large
dataset of HTTPS traffic which came from environments of
large ISP’s backbone lines, and made it publicly available.
By analysis of the problem with export limitation in mind,
we proposed extending traditional IP flow records with a new
feature called Sequence of packet Burst Length and Time
(SBLT), which can aggregate large portions of information
while maintaining a small flow records size. To show usability
of SBLT in this paper, we created a machine learning model
capable of HTTPS traffic category classification with high ac-
curacy. Our classifier is helpful for network visibility, helping
to raise a situational awareness during diagnosis of operational
errors, and incident handling/response, where a large amount
of benign traffic needs to be filtered out. Additionally, it can
help with network optimization and overall statistics regardless
of the Client Hello headers’ content. However, SBLT is univer-
sal enough to be applied to many other network classification
challenges.

II. RELATED WORK

TLS is one of the most popular protocols for secure com-
munication. Therefore, multiple research works challenged its
security. Chen et al. [3] analyzed three web pages that use

3https://github.com/cisco/joy
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TLS encryption. By observing SPLT features and utilizing
the knowledge about the website, they could infer actions
performed by the user in great detail. However, their approach
is not based on IP flows and cannot work with SPLT of limited
size, and thus it is not feasible for large-scale high-speed
networks.

The recent studies, which focus mainly on content-less traf-
fic classification, usually use deep learning methods [4]–[6].
The Deep learning approach has an indisputable advantage of
self-finding the feature-set from the SPLT. However, they also
usually require longer sequences, which cannot be exported
on high-speed networks. Thus the classical method of manual
feature engineering and statistical modeling is still common.

Luxemburk et al. [7] studied HTTPS brute-force attacks and
solved the short SPLT by concatenating flows with the same
IP addresses and destination port. Even though the presented
approach works well and the models achieved the F1 score of
0.962, it is not universal and cannot be applied for every use
case.

Hofstede et al. [8] also focused on HTTPS brute-force
attack detection; however, instead of SPLT, they enriched IP
flow for the histogram of packet sizes. The histogram aggre-
gates the SPLT vector; thus, they are much more suitable for
high-speed monitoring. Their algorithm outperformed previous
works with a recall of 59 %.

Similarly as histograms, packet burst statistics are also a
form of aggregation of SPLT. The usefulness of packet bursts
in traffic analysis was mentioned by Dyer et al. [9], and Shi et
al. [10] in terms of website fingerprinting. Leroux et al. [11]
used these studies as a basis for classification. Their proposed
classifier uses burst-like features for traffic classification into
four categories. However, these studies do not work with flow-
based data, and their burst definition vastly differs from ours
since they do not assume HTTP/2 and SPDY protocol.

We are not aware of any research work aiming to classify
TLS or specifically HTTPS traffic from IP flow-based data
enriched for bursts’ statistics.

III. PACKET BURST

SPLT is too detailed for some cases. Typically, the SPLT
record of even small multimedia transfers (such as pictures,
smalls video parts) have the majority of packets with the
maximal message transfer unit size (usually 1500 B) in one
direction and little inter-packet times. The SPLT, with a small
number of packets, covers only the beginning of the commu-
nication, unable to reveal the overall traffic shape. Therefore,
we propose a “Sequence of packet Burst Length and Time”
(SBLT) as an additional traffic property that can extend tra-
ditional IP flow records to represent information about later
behavior of connections after the establishment.

A. Packet Burst Definition

Sarvotham et al. [12] define packet burst based on the
average inter-packet times in the connection. However, this
definition cannot be applied in our case since we aim to

evaluate bursts on a running sequence of the packets without
storing large packet sizes and timestamps sequences.

Research studies [9]–[11] define a burst as a sequence of
packets sent in one direction that lies between two packets
sent oppositely. The advantage of such a definition is its in-
dependence from connection parameters since it does not rely
on any time constant. However, it requires a request/response
type of traffic, such as HTTP/1. This definition does not fit
the protocols that are capable of transmitting multiple unre-
lated communication within one connection, such as HTTP/2.
A more suitable burst definition is formulated by Taylor et
al. [13], which defines a burst by the maximal size of inter-
packet space. However, such definition allows creating packet
bursts with a single packet, which confuses the classifier.
Additionally, Taylor et al. [13] computed burst across all traffic
regardless of IP addresses and ports, which is unusable in flow-
based detection systems. Nevertheless, none of the previous
definitions are suitable. Therefore, we formulated a new packet
burst definition, inspired by Max-Interval Method [14] used in
neural biology.

Fig. 1. Illustration of proposed burst definition and its parameters. Lines
represent packets arrival in time. Dotted lines represent packets that do not
belong to any packet-burst with MinPackets = 3

Proposed definition: The novel definition splits packet
stream into two sequences based on the direction and calcu-
lates burst for each of them separately. The burst is defined
based on two constants depicted in Fig. 1. The MinPackets
constant specifies the minimal required number of concurrent
packets that can form a burst. The purpose of this requirement
is to filter out small multi-packet communications that are usu-
ally created by SETTINGS frames in HTTP/2 or by keepalive
packets in other protocols. These small one-packet transfers
are already included in SPLT sequence. Since HTTP/2 might
split header and data into two packets, we opted to choose the
minimal burst size of three packets, to select larger transfers
and filter small and insignificant ones.

The MaxInter-Packet time constant specifies the requirement
on the maximal time between two in-burst packets. Such value
strongly depends on multiple unknown parameters such as
connection quality, server’s current load, and network jitter.
Unfortunately, since the constant does not adapt to the connec-
tion parameters of each flow, it is impossible to set a threshold
that would fit all situations.

We have experimented with various values of the Maximal
inter-packet constant on one-hour browsing traffic, and the 1 s
interval showed the best results. Even though it might seem
like an immense value, smaller interval leads to burst frag-
mentation due to connection errors. Additionally, our aim is to
pick up larger bursts during classical website browsing (such
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as regular AJAX requests and responses) or video buffering.
To explore the usability of 1 s interval on a larger portion of

traffic, we turned our faculty office into a laboratory for traf-
fic measurement by deploying ipfixprobe4 monitoring probe
and tcpdump5 on a SOHO router&Wi-Fi access point with
OpenWrt connected via 1 Gbps symmetrical ethernet line to
the internet. The laboratory consisted of 10 computers, five
smartphones, and even a smartwatch (Apple Watch in our
case). Computers and smartphones cover the most popular op-
erating systems (Windows, Linux, macOS, iOS, and Android),
and during the capture, all of them were used by university
employees and students. In this laboratory, we run a virtual
machine with Ubuntu 20.4 LTS with Firefox 86.0.1. By de-
crypting communication with exported TLS keys, we verified
that 1 s interval is a good choice for burst separation since
it identifies real communication bursts. The same experiment
was also performed in our home networks connected with 20
and 50 Mbps asymmetrical VDSL lines with similar satisfac-
tory results. Therefore, we opted to use it. Additionaly, the 1 s
interval is also supported by the paper by Taylor et al. [13].

Additionally, we used our laboratory setup to analyze a large
amount of traffic for network errors, resulting in unexpected
behavior, including large interpacket spaces. As expected, we
found in one-day traffic analysis traffic with larger interpacket
spaces caused by higher retransmission timeout, representing
a possible limitation of our burst definition. However, retrans-
missions can always be filtered out during the export process.

B. Burst Extension of IP Flow Data

Based on the definition from Sec. III-A and its parameters,
we implemented plugin to IP flow exporter ipfixprobe. The
plugin computes burst statistics and represents them in the
form of IPFIX basicList records, which allow exporting arrays
with variable length [15]. The calculated statistics for each
burst are written in the Tab. I. The implementation created in
the ipfixprobe plugin exports burst statistics as two sequences
(one for each direction) of maximal length 10, which occupy
similar bandwidth as SPLT of length 30. We did not filter out
retransmitted packets due to performance reasons — retrans-
mission filtering is computationally intensive on high-speed
traffic.

For completeness, we have performed a stress test of the
flow exporter with enabled SPLT and SBLT plugins. We used
a server with 2x Intel® Xeon Gold 5218 CPU (2.30 GHz),
96 GB of RAM and 200 Gb/s network card. The exporter was
capable of processing 170 Gb/s traffic with only negligible
packet drops.

IV. OUR APPROACH

We applied SBLT characteristics to HTTPS traffic classifi-
cation problem. HTTPS is one of the most prevalent protocols
that can be used for transferring various types of data. Thus
this section describes the identified traffic types and features
used for their classification.

4https://github.com/CESNET/ipfixprobe
5www.tcpdump.org

TABLE I
CALCULATED BURST STATISTICS

Characteristics Description
TimeStart Timestamp of first packet in burst
TimeEnd Timestamp of last packet in burst
Packets Number of transferred packets in burst
Bytes Number of transferred bytes in burst

A. HTTPS Traffic Categories

The Global Internet Phenomena Report [16] from Sand-
vine claims that most of the global traffic (in terms of vol-
ume of transferred data) is generated by Video (55 %), Web
Pages (8 %), and File Sharing (3 %). However, the data in the
report are not limited only to HTTPS traffic; therefore, we
analyzed our one-day traffic from our laboratory, previously
mentioned in Sec. III-A. These data were also used for the
analysis of HTTPS traffic types and shapes. By labeling data
by Server Name Indication from TLS Client Hello packet,
we conclude that most of the laboratory traffic falls into
five categories: (i) Live Video Streaming, (ii) Video Player,
(iii) Music Player, (iv) File Upload/Download, (v) Website and
Other Traffic

Our observations are consistent with the Global Internet
Phenomena Report [16] since the identified categories fall into
the 10 most prevalent traffic types categories; thus, we decided
to use them.

B. Feature Engineering

From the thorough analysis of the identified traffic cate-
gories, we have created an initial feature vector of 75 charac-
teristics. We used connection statistics such as the number of
transferred bytes and packets in each direction, packet sizes
statistics such as minimum, maximum, standard definition,
and quantiles. The same statistics were calculated from burst
bytes, burst packets, inter-burst spaces, and burst durations.
Additionally, we used PCA dimension reduction on packet
lengths and burst sequences. Last but not least, we included the
first 10 individual burst sizes and the first 10 individual packet
sizes into our feature vector. When flow does not contain at
least 10 packets or 10 bursts, we filled the rest of the values
with zeros.

V. DATASET CREATION

Even though some previous studies published their TLS traf-
fic datasets, their scope was mainly focused on one particular
type of TLS traffic. Therefore, we decided to create our own
data set and made it publicly available [17].

For each identified category in Sec. IV we have chosen
the service representatives known for particular traffic type
based on two website popularity lists6,7. We also used several
popular websites that primarily focus on the audience in our
country. The identified traffic classes and their representatives
are provided below:

6https://s3.amazonaws.com/alexa-static/top-1m.csv.zip
7https://moz.com/top500
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Live Video Stream Twitch, Czech TV8, YouTube Live
Video Player DailyMotion, Stream.cz, Vimeo, YouTube
Music Player AppleMusic, Spotify, SoundCloud
File Upload/Download FileSender9, OwnCloud, OneDrive,

Google Drive
Website and Other Traffic Websites from Alexa Top

1M list10

However, since the dataset is the most important part of
Machine Learning algorithms, the local data only would not be
representative enough. The number of communication errors,
connection speed, and unexpected user interactions are the
corner cases that should be represented in the dataset. How-
ever, the corner cases are complicated to simulate realistically.
Therefore, we used data from CESNET2 academic backbone
infrastructure that connects more than half a million users to
the internet.

Due to the limitation of the capture infrastructure of CES-
NET2 network, we could filter the wanted traffic only by IP
addresses and ports. However, capturing Website and Other
category traffic only by IP address would be very challenging
since many requests are created dynamically by JavaScript
to multiple servers. Thus we split the dataset into two parts.
Computers in our laboratory generated the Website and Other
traffic category, and other categories were captured in the
backbone environment.

a) Generated capture: The website traffic was generated
by an automated script in our laboratory previously mentioned
in Sec. III-A. Our 1 Gbps symmetrical connection represents
a typical end-user setup in the CESNET2 network. Users can
also typically connect via Wi-Fi; therefore, we generated traffic
via classical Ethernet and also Wi-Fi connections with the Wi-
Fi access point located in our lab.

We used the script that commanded the browser to visit the
first 200 (the first 100 were accessed by ethernet and the rest
by Wi-Fi) most popular websites from the Alexa TOP 1 million
list in random order random wait time (between 10–60 s) on
each web-page. We used two Major browsers, Google Chrome
and Mozilla Firefox in their default settings.

We are aware of possible artifact creation since we merge
two data samples from different environments. Therefore, we
used typical end-user connection setups used in the CESNET2
network to minimize this possibility.

b) Backbone traffic capture: The traffic categories other
than Website and Other were captured directly on backbone
lines, and the creation of this part of the dataset was done in
multiple steps.

As a first step, we obtained address spaces that are used
by representatives of each category. Then, we created traffic
filters distributed on the ISP’s network, measuring and cap-
turing points located at its infrastructure’s perimeter. As a
result, there were PCAP files of raw backbone traffic that were
automatically and immediately converted into enriched IP flow

8www.ceskatelevize.cz/ivysilani/
9filesender.cesnet.cz

10Includes social network, chat, and other various types of traffic

TABLE II
THE NUMBER OF IP FLOWS PER EACH GROUP

Traffic Category Number of unique IP Flows
Live Video Stream 10,373
Video Player 12,553
Music Player 10,701
File Upload 10,862
File Download 20,393
Web Browsing 80,789

data with ipfixprobe exporter. The process also included auto-
matic anonymization and filtering based on the SNI from the
first step. The flow data contain the previously defined burst
characteristics and SPLT of length 30.

c) Dataset statistics: The dataset statistics are shown
in Tab. II. The significant imbalance in the Web Browsing
category is selected on purpose for more realistic evaluation
because Web Browsing also outnumbers other types of HTTPS
traffic in the natural network environment.

VI. EVALUATION

We used the annotated dataset from real backbone traffic
described in Sec. V. The dataset was split with stratified
sampling into the Design part and Validation part in ratio 7:3.
The Design part was used with cross-validation for feature
elimination and hyper-parameter selection during classifier
creation. The Validation part was used for the testing of
classifier performance.

We also applied the method for imbalanced learning since
we do not have equally distributed classes in the dataset. We
applied random under-sampling for the the File Download
and Web Browsing category as it is one of the most common
approach for dealing with imbalanced datasets (e.g., according
to [18]). The dataset balancing method is applied only on the
data given to the training phase of the algorithms since it is
usually not recommended to apply it to the testing data.

A. Feature reduction

We have evaluated the contribution of each feature by using
Random Forest Classifier on the Design part of the dataset,
and we eliminated redundant features with zero or negative
impact. The final set of selected features and their model
importances (calculated with Gini index) can be seen in Fig. 2.

B. Performance of the multiple classifiers

In order to classify HTTPS traffic, we experimented with
five ML algorithms: K-Nearest Neighbours (We use 5-NN
in our study), Extremely Randomized Trees, Random Forest,
and Gradient boosting. The input parameters (also called hy-
perparameters) of each algorithm were set experimentally by
evaluating the combination of preselected values. The hyper-
parameter tuning was performed with 5-fold cross-validation
on the Design part of the dataset.

The performance of each classifier can be found in Tab. III,
according to which all classifiers achieved similar perfor-
mance, which shows that our feature vector is very robust
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Fig. 2. The final feature vector and features’ importances (Gini Index) for
the Random Forest Classifier, which was used for feature selection.

TABLE III
COMPARISON OF THE OVERALL ACCURACY AND F1 SCORE OF

EVALUATED CLASSIFIERS.

Algorithm Accuracy F1 score Precision Recall
Random forest 0.987 0.979 0.976 0.982
Extra trees 0.990 0.985 0.982 0.988
Gradient boosting 0.992 0.987 0.985 0.990
5-NN 0.917 0.868 0.857 0.882

and discriminative enough. However, we selected the Gradient
Boosting classifier for further evaluation and inspection, which
has the best accuracy.

Evaluation of Gradient Boosting Classifier: The Gradient
boosting classifier was used with 300 trees; each of them was
limited by a maximal depth of 10. The classifier was also used
with a standard scaler and was evaluated in two ways. At first,
we trained the classifier on the Design dataset and evaluated
it on the Validation dataset. The results can be seen in the
form of a confusion matrix in Tab. IV.

VII. CONCLUSION

HTTPS is one of the most prevalent protocols on the internet
but is also very challenging for network analysis due to its
encryption and wide usage. Current network monitoring tools

TABLE IV
CONFUSION MATRIX OF GRADIENT BOOSTING TLS TRAFFIC CLASSIFIER.

THE COLUMN HEADERS ARE AS FOLLOWS: L – LIVE VIDEO STREAM,
V – VIDEO PLAYER, M – MUSIC PLAYER, U – FILE UPLOAD, D – FILE

DOWNLOAD, AND W – WEBSITE AND OTHER TRAFFIC, CP – CLASS
PRECISION, CR – CLASS RECALL

Predicted Label
D L M P U W

Tr
ue

La
be

l

D 6018 23 33 32 12 0
L 13 3073 12 12 0 2
M 19 11 3176 2 0 2
P 9 8 1 3743 0 5
U 4 0 0 0 3255 0
W 23 11 79 40 3 24 081
CR 0.98 0.99 0.99 0.99 1.00 0.99
CP 0.99 0.98 0.97 0.98 1.00 1.00

are trying to deal with it mainly by using unencrypted infor-
mation from TLS handshake; however, this information might
not be available in the future [2]. Therefore, we have studied
the feasibility of traffic type classification based on IP flows
that do not rely on content inspection. Traffic type recognition
helps to maintain situational awareness by security specialists
in incident handling or response situations. The main contribu-
tions of this paper are the i) new dataset, ii) a novel extension
of IP flow for SBLT, iii) the method for HTTPS traffic category
classification, which achieves an F1 score of more than 0.99.

The proposed extension of IP flow data called SBLT over-
comes the problems of SPLT with limited length. The SBLT
proved to be an essential source of information for traffic type
recognition, and it is the reason behind such high accuracy
of our classification method. Overall, our results show that
already existing SPLT combined with novel SBLT is a viable
source of information for encrypted traffic analysis, particu-
larly demonstrated in HTTPS.
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