

EdgeDQN: Multiple SFC Placement in Edge
Computing Environment

Suman Pandey, Tu Van Nguyen, Jae-Hyoung Yoo, James Won-Ki Hong
Dept. of Computer Science and Engineering, POSTECH, Pohang, South Korea {suman, tunguyen ,jhyoo78,

jwkhong}@postech.ac.kr

Abstract— Network Function Virtualization (NFV) and
service orchestration has simplified the Service Function Chain
management (SFC) tasks, while the edge cloud infrastructure
has reduced the latency. Due to these existing technological
advantages, there is an urgent need for a dynamic and flexible
service chain placement model that performs resource
allocation of substrate network in a delay-sensitive and
resource-efficient manner. We propose an off-policy Deep
Reinforcement Learning algorithm EdgeDQN for efficient SFC
placement in the edge cloud environment. The problem of edge
resource scarcity is handled by designing a network model that
allows worst-case resource renting from neighbors and data
centers. This network model is integrated with EdgeDQN using
several constraints. This paper aims to find the optimal
placement by minimizing the underlying resource utilization
and SFC end-to-end delay for multiple SFCs at the same time.
To achieve that, an intuitive reward model is proposed. We
compare the proposed EdgeDQN algorithm with DQN, Q-
learning, and EdgeQL algorithms in terms of performance
parameters such as cumulative reward, cumulative standard
deviation, latency, and learning convergence time for 420
different test cases. Extensive test results on a simulated and
physical (OpenStack) testbed demonstrate the effectiveness of
the proposed EdgeDQN algorithm.
Keywords—AI-based Network Management, Deep Q-

Network, Reinforcement Learning, OpenStack, Edge
Computing

I. INTRODUCTION

Managing and orchestrating VNFs has become easier than
ever with the advent of advanced cloud management systems
such as OpenStack [1]. It has also enabled operators to take
advantage of Machine Learning (ML) algorithms to solve
various VNF lifecycle management tasks [2]. SFC is one of
the crucial VNF lifecycle management tasks. SFC provides a
wide range of preprocessing for a request before it reaches
the server through the chained VNFs, such as firewall, IDS,
DPI, video optimizer, proxy, load balancer, etc. Service
providers also use the multi-access edge computing (MEC)
infrastructure [3] to support these SFC services with the
desired short latency. Due to these technological advantages,
network manager can create a dynamic and flexible service
chaining deployment model that performs resource allocation
of substrate network in a delay-sensitive and resource-
efficient manner. In the edge cloud environment, the model
should take care of the scenario when there are not enough
resources available at the edge, in such a scenario it should
be able to rent resources from neighbors or data centers. The

model should also be designed to accommodate multiple SFC
placement scenarios. This research focuses on efficient
resource allocation for multiple SFCs on the edge cloud
environment using Deep Reinforcement Learning (DRL).

The current OpenStack implementation provides a very
basic approach to this problem [5], where incoming VNFs are
placed on the least loaded server. The other option is to stack
as many VNFs as possible on the same server. Also, the
server resource constraints such as CPU, memory, storage
and bandwidth etc. need to be configured separately. These
approaches are very primitive, which gives us the scope and
motivation to improve the SFC embedding. Embedding and
placement is used interchangeably through this paper.

In academia, sufficient attention has been paid to the
placement of a single VNF [6], but much less attention is paid
to SFC placement. Moreover, there is no research that finds
optimal placement for multiple SFCs using machine learning.
The Most common approach to this problem is to first place
the VNFs and then find the appropriate VNFs to create the
chain [7, 8]. These approaches can be categorized as flow
scheduling and routing problem rather than embedding
problem, and they lead to unnecessary creation of VNFs and
infrastructure overload without considering how they should
be chained. Therefore, before embedding VNFs of SFCs, we
need to consider the end-to-end delay of each SFC, the
resource utilization (RU) of the edge infrastructure, and the
overall requirements of the SFCs in advance.

The other common approach is to formulate the SFC
embedding as a Virtual Network Embedding (VNE) problem
[4]. The VNE problem is usually formulated as an
optimization problem using graph and Integer Linear
Programming (ILP) [9,10], where an SFC is represented as a
set of VNFs and virtual links connecting these VNFs. VNFs
and links require a certain amount of resources, such as
processing power, memory, storage, and bandwidth,
depending on the needs of clients and incoming requests.
Based on these resource requirements of VNFs, they are
mapped and embedded in the substrate network and link.
These problems are combinatorial in nature, hence the ILP
solution becomes NP-hard as the number of network
parameters and SFC configurations increases. For the
placement of multiple SFCs, the combinations are even
higher, which makes ILP solutions impractical. Therefore,
we considered ML-based approaches to solve this problem.

Among the ML approaches, RL (Reinforcement Learning)
is a promising alternative to solve the combinatorial
problems. In RL, the agent interacts with the environment by
performing actions and receiving a reward. The agent can
decide which action is best based on the long and short-term

2021 17th International Conference on Network and Service Management (CNSM)

978-3-903176-36-2 ©2021 IFIP 301

rewards after several iterations. We solved the SFC
placement and server assignment problem for the edge cloud
environment using an RL approach.

All RL problems are defined in terms of state, action,
reward, and transition probability. It is also important to
design the environment well, as the agent would interact with
the environment and learn the rewards for its actions. A very
basic RL approach to solve this problem is based on Q-
learning [11, 12]. This related work is limited to a single SFC
placement. They also chose to use a simplified state model.
Their tests were limited to only 8 VNFs. We model the state
with CPU, memory, storage and bandwidth. Such a complex
state model leads to a high state-action combination, which
makes the Q-learning model very impractical. In such a
situation, we need a proper function approximation technique
which is provided by DRL. Therefore, we have chosen the
Deep Q-Network (DQN) algorithm introduced by DeepMind
[13] to solve the problem of placing multiple SFCs. Learning
from experience through neural networks and function
approximation is integrated in this selection process. The
DQN approach can efficiently determine the near optimal
solution. We call this algorithm EdgeDQN.

The two main challenges in implementing the EdgeDQN
algorithm were the size of the action space and modeling a
reward function that supports multiple SFC placements. It is
not useful to consider only the edge resource, as the edge
infrastructure can quickly reach its limits. Therefore, a
mechanism is needed that can rent the resources of the
neighbors or the data center in the worst case. However,
considering the whole network could increase the action
space tremendously. The action space in RL grows as the
target topology grows. To address these issues, we opted for
a hierarchical model of the network consisting of local, edge,
and data center servers. Constraints are introduced, so that the
EdgeDQN will look for neighbor and DC resource only if the
edge is not able to fulfill the requests due to lack of resources.
The introduction of multiple edge-specific action selection
constraints helps the algorithm to converge faster with less
exploration.

The second major challenge was to design a reward model
suitable for multiple SFC placement scenarios. Mostly,
researchers have designed a reward function based on
placement success and failure [14] or throughput [15]. These
reward models have two main drawbacks. First, these reward
models completely ignore the resource utilization of the
underlying infrastructure. Resource utilization is an
important parameter to reduce energy consumption by
keeping servers and switches in energy saving mode. Second,
they cannot be used for the multiple SFC placement scenario.
Therefore, we have developed a reward model that considers
the underlying resource utilization and optimizes the
placement for multiple SFC placement. Our reward model
awards higher rewards for more complex SFCs, e.g., SFCs
that require more resources and are longer in length.
Successful placement of such SFCs should be rewarded with
higher rewards. Moreover, our reward model maximizes the
resource utilization and minimizes the total delay of each
SFC.

Another distinguish contribution of this work is the

evaluation methodology. Most related works evaluate their
algorithm based on one test case over multiple episodes [13,
14]. This approach cannot guarantee the legitimacy of the
DRL algorithm, since a large part of the DRL algorithm
depends on the randomness posed by the e-greedy[16]. It is
possible that algorithm behaves well in one test run and
doesn’t behave well in other. Therefore, adopting a
commutative approach for evaluating DRL algorithm is
essential. We evaluated our model by comparing the
cumulative reward of 420 different test cases and the
cumulative standard deviation by running each test case 10
times. Our model performs significantly better compared to
our preliminary studies based on Q-learning and DQN. We
also evaluated this algorithm on the OpenStack physical
testbed with 42 different test cases. We found that the
cumulative latency of test cases is much lower for the
proposed EdgeDQN algorithm.

Our main contribution can be summarized as follows:
1) First attempt to use DRL for multiple SFC

placement at the same time. This is achieved by
designing a reward model based on SFC complexity,
SFC end-to-end latency and underlying network
resource utilization.

2) A hierarchical network constraint model for
reducing the action space for DRL.

3) Cumulative evaluation methodology instead of
evaluating individual test cases.

4) Evaluation of the proposed model on the OpenStack
physical testbed.

The rest of the paper is organized as follows. Section II
elaborates some of the related work. Section III defines the
service topology and environment. Section IV explains the
proposed algorithm with discussion on state, action, reward
and constraints model. Section V explains the evaluation
methodology, results and discussion. Finally, section VI
concludes our work with possible future work directions.

II. RELATED WORK

Our related work is focused on elaborating the use of DRL
in the field of VNF and SFC embedding. In the past DRL has
been used to solve this problem in two steps, where VNFs are
placed first and then linked [6, 7]. Recently DRL was also
used for flow scheduling [17]. Such approaches can be
categorized as routing and scheduling problem rather than a
placement problem.

DRL has been also used extensively for scaling and load
balancing of VNFs [18]. Some researchers used scaling and
embedding as a combined approach as well [19]. However
these research are limited to one SFC. The DRL module
would scale in and out VNFs for a single SFC. Our research
focused on embedding multiple SFC at the same time finding
the optimal placement reducing the resource utilization and
end-to-end delay. Given the scale out information, our
module can do the VNF embedding for existing SFC as well
utilizing same reward model.

Recently a few researchers have opted DDPG and A3C
algorithm to solve VNF placement [14, 15]. Two main
problems of their approach in solving an SFC placement are

2021 17th International Conference on Network and Service Management (CNSM)

302

1) high dimensionality of the state [14], as they considered
entire network in their state model. 2) large size of the
discrete action space. The high dimensionality of the state
would require a large amount of training and the large action
space would require a high exploration in the DRL. Reference
[15] proposes a Heuristic Fitting Algorithm (HFA) to reduce
the action space based on the capacity of the substrate
network to serve the query. However, this approach reduces
the action space only when the network is heavily loaded.

The reward model of related work is also limited to
throughput [14] and successful placement of VNFs [15] only,
which completely ignored the energy consumption of the
placement and the complexity of the placement. Hence, we
designed a reward model that considers the complexity of the
SFC and the resource utilization (RU) of the underlying
network in addition to the end-to-end delay.

The basis of a DRL algorithm is the design of its
environment, state, action, and reward. Currently, we have
focused on these aspects and tested the DQN and Q-learning
algorithm on our model. In the future, we could easily
incorporate the DDPG and A3C algorithm into the current
design of environment, state, action and reward function. A
realistic network scenario representing an edge cloud with an
intuitive reward function and the evaluation methodology are
the main contribution of our work. The basic DQN algorithm
is also significantly modified to incorporate these aspects of
network design. To the best of our knowledge, none of the
related work has focused on the placement of multiple SFCs
with DRL.

III. SERVICE TOPOLOGY AND ENVIRONMNT VARIABLES

In this research, we represent an edge cloud environment
as a hierarchical network model. The hierarchy of nodes from
top to bottom consists of center, core, edge, spine, leaf, top of
the rack (TOR) switch, and servers as shown in Fig.1. In the
hierarchical network model, an edge router represents a
Central Office (CO). Edge routers connected to the same core
router are neighbors to each other. In SFC placement in the
edge environment, we only care about the local, neighbor,
and DC network.

The information about the edge router Re and the core Cdc
is presumed to be given in advance. Given the edge router Re,
we extract the substrate topology attached to it. That gives us
the set of local servers Sl. The substrate topology of Ce gives
us a set of servers attached to it represented as Se where Sl⊂Se.
Similarly the set of servers connected to Cdc is represented as
Sdc. This way Se, Sl, and Sdc represents the set of edge, local
and DC servers. It is important to note that the network
topology is converted to the liner sets of Se, Sl, and Sdc. For
obtaining this set from Openstack test bed, we just need edge
router Re and the core Cdc information as inputs.

Each server in the set Se, Sl, and Sdc is represented in terms
of resource availability. Resources can be CPU, memory,
storage, network bandwidth, etc. H denotes the set of servers,
server IDs from 1 to h.  denotes the set of servers in a
power-saving mode, where  ⊂  . These are the servers
without VNF placement. K denotes the types of resources,
resource type ID from 1 to k. CPU, memory, storage and

bandwidth are the main resources, and so k is 4. ah denotes a
resource vector for each server [ah1, ah2.. ahk].  denotes the
available resource, and  represents the occupied resource.

An SFC consists of multiple VNFs connected by virtual
links (VLs). Each VNF requires a certain amount of resources
according to the number of supported users and type of
services. N is the number of VNFs in SFC with sequence ID
from 0 to n. vn denotes a VNF flavor, and resource vector of
a particular vn is denoted as [vn1, vn2 … vnk]. SFC is denoted as
a list of vn [v1, v2 … vn].

VL is defined as the number of hops in the substrate link
multiplied by the link delay. The number of hops between
two VNFs ID i and i+1 is denoted as  , and the link delay
is denoted as . The value of  is assumed to be the same
unit value (e.g., 1 ms).To simplify the calculation of the
delay, we keep an array that defines the number of hops from
server to server. The number of hops for the same server is 0,
same TOR is 1, same edge is 3, neighbor is 7, and DC is 9 for
this work. We simply check which particular sets the two
nodes i and i+1 belong to in order to assign the number of
hops. The total delay of SFC can be expressed as the sum of
the delays of these virtual links between VNFs. Our delay
model can be improved in the future.

All the environment variables including Se, Sl, and Sdc ,   ,  ,  and  are used in imposing constraints
and calculating rewards. Our objective is to minimize the
overall delay of SFCs while embedding the VNFs. The other
goal is to maximizing resource utilization (RU). RU is
required to reduce the energy consumption by keeping the
servers and switches in energy-saving mode. These two
objectives are taken care while designing the reward
functions of the DRL model.

In the best case, all VNFs in an SFC should be placed to
the local CO (central Office) assuming there are sufficient
resources on the local CO. One of the best edge placements
of a first few requests of the SFC with given constraints on
edge resources with minimum delay and maximum RU is
shown in Fig. 1.

Fig 1: Possible placement operation of SFCs with minimum substrate

link delay and maximum resource utilization on an Edge cloud
environment.

IV. PROPOSED APPROACH

2021 17th International Conference on Network and Service Management (CNSM)

303

We designed an EdgeDQN algorithm by adding edge-
specific constraints to the DQN algorithm. The number of
ways SFCs can be placed in a physical network is
combinatorial. The DRL algorithm would have to try
multiple combinations to obtain the best policy. Therefore, a
simple DRL approach potentially requires a large number of
explorations to find an optimal solution. We address this
challenge by building a hierarchical model of the network
based on local, neighboring and DC. This will give the first
priority to the local servers, however in the case of resource
scarcity only the algorithm would reach to the neighbor and
DC servers. Such constraints reduces the action space while
also taking care of edge resource scarcity issues. The reward
model is designed to incorporate the energy consumption and
complexity of SFC with end-to-end latency.

We first explain the state of the art of RL algorithms,
including Q-learning and DQN, followed by a detailed
discussion and benefits of our state, action, and reward
model. We then explain the edge-specific environment
variables and their role in improving the action selection
policy, and finally we explain our overall EdgeDQN agent.
We compared the EdgeDQN algorithm with QL, DQN and
EdgeQL algorithms with common modeling of state, action,
and reward function. Our first version of QL and EdgeQL
[11] algorithm is extended to support the new reward model,
states and multiple SFC placement scenarios, same as
explained in this paper.

A. DRL Approach

Usually, an RL problem is modeled by 4-tuple states (s),
actions (a), state transition probabilities (pi), and rewards (r).
In RL there is a learner (also called an agent), that interacts
with the environment to select an action for moving to the
next state based on the rewards. The RL algorithm is based
on reward and value function. Reward indicates what is good
and bad in an immediate sense, and value function indicates
what is good and bad in the long term. Learning happens in
several episodes. In each episode i, the agent in state 
performs an action  , receives a reward  , and moves to the
next state . In Q-learning the action value is updated in
the Q matrix of size [s × a] with the formula given in (1). 
represents learning rate (0.05).  represents discount rate
(0.5). We use argmax to get the action that returns the highest
reward. In Q-learning the agent’s brain is Q matrix, on the
other hand in DQN the agent’s brain is a deep neural network
(DNN).
 ( , ) = (1 − )( , ) + ( +  max ( , )) (1)

In DQN we create DNN and train it to resemble (, ).
The input in the neural network is a tuple E( ,  ,  , ) for
the current environment. This information is stored in replay
memory. During the interactions between the agent and
environment, it periodically samples data from the replay
memory for training the DNN, and updating the weight
parameters ρ in the DNN to minimize the loss function, as in
equation (2).

(ρ) = (,,,)( +   ( , ) − ( , )) (2)

B. EdgeDQN States

The success of the RL algorithm depends on modeling
state, actions and rewards. In our implementation states
represent the set of VNFs. Several researchers [17] used the
entire network and VNF-FG (Forwarding Graph) request as
a state. However such an input for learning model will require
huge number of samples eventually increasing the learning
time. To avoid that we modeled our state with VNF requests
[v1, v2, v3, ø, v4, v5, v6, ø…. , vn-2 , vn-1 ,vn]. In this VNF
requests ø denotes the end of one SFC request. Each VNF
request is mapped to a resource vector of that VNF, we also
call it VNF flavor. The resource are CPU, memory, storage
and bandwidth requirement of the VNF denoted as [vn1, vn2
… vnk]. Hence each state in DRL is basically a set of 4
variables [vn1, vn2, vn3 vn4].

The substrate network state is modeled separately as
environment variables. The environment variables includes
the set of edge (Se), local (Sl), DC servers (Sdc), each server’s
available () and occupied () resources. These
environment variables are used for imposing several
constraints during action selection process. These also helps
in calculating rewards.

C. EdgeDQN Action

Action represents the selection of the appropriate server for
deployment. The set of actions are represented as [a1, a2 ..
ah]. The action space increases as the size of the network
grow. Hence it is essential to devise a mechanism to reduce
the action space. The action space is minimized by using a
carefully crafted EdgeDQN action selection policy
constraints.

D. Additional Constraints for Action Selection

Reducing the action space to suit the edge SFC placement
is one of the important aspects of this research. To reduce the
action space, we presented a hierarchical stochastic model for
our environment. Moreover, we used a hierarchy of
constraints to filter the best action that favors edge SFC
placement, followed by neighboring Edge and DC
placements.

The stochastic model of the environment is represented by
variable θ and P.  stores 1 if the server has enough
capacity to deploy the VNF, otherwise, it stores 0. h denotes
the server id, k denotes the resource type and n denotes the
VNF.  represents the available resource k on the server h,
and  represents the resource demand of resource k for
VNF n. Refer to (3) and (4). Later, this array is converted into
the state transition probability and stored in P, see (5). 
gives us the probability of server h to place VNF n. Value of  will be 0 if server h lacks to serve any of the resource
demand of VNF n.

2021 17th International Conference on Network and Service Management (CNSM)

304

  = 1,  –  > 0 0,  –  ≤ 0 (3)
  = 1, ∏  > 00, ∏  = 0 (4)

  = ∑  (5)

The hierarchical edge network model is represented by the

sets Se, Sl, Sn, and Sdc. Starting from an edge router Re and DC
core router Cdc, we can traverse the topology to extract Se, Sl,
and Sdc. By traversing the tree associated with Re, we obtain
the set Sl. If any of the resource in the server h is not enough
to serve VNF n then the value of  will be 0, and such
servers should be removed from the action space as in
equations (6~8).  represents the servers that should be
removed from the server at each hierarchy. We derive a set of
local servers Sl containing only the servers with enough
resources as described in equation (6).  represents the set
of neighboring Edge servers. These are the servers that are
connected to core edge router Ce but are not part of Sl and
have enough resources, as shown in (7).  represents the set
of DC servers that are extracted given core router Cdc in the
network topology. Then, a subset of  with sufficient
resources is derived by (8).

  =  −  where  ∈  = 0 (6)  =  −  where  = ( ∪ ) ,  ∈  = 0 (7)  =  −  where  ∈  = 0 (8)

In standard DQN algorithm we predict the q_values for a
particular states and then the q_values that gives the highest
reward is selected as the action. In our approach while
passing the q_values for the highest reward selection we
consider the actions in the hierarchy we defined using  , 
and  . When selecting the action in the EdgeDQN
algorithm, the conditions in (9) are checked in a hierarchical
way. If set  is not null action is selected from . If set  is
null then action is selected from . If  and  are all null
then action is selected from  .

  =    (),  ≠ ∅, deploy at local   (),  = ∅ ∧  ≠ ∅, deploy at neighboring   (),  = ∅ ∧  = ∅, deploy at DC (9)

Even though we have incorporated the graph embedding

approach by computing the shortest path in our reward
function, this is not sufficient to guarantee edge placement in
the DQN unless we train the algorithm with a significantly
large number of episodes. The action selection policy
proposed in EdgeDQL not only reduces the number of
episodes and the amount of exploration but also ensures that
local servers are given the highest priority, followed by the
neighbor and DC servers.

E. Reward

Rewards are feedback to the agent about how good its
actions are. This reward function represents the throughput

and cost of the placement combined. The reward is calculated
cumulatively after all VNF placements in a chain are
completed. In addition to successful SFC placement, we also
aim to minimize the overall latency and maximize the
utilization of physical resources. Therefore, we modeled our
reward function based on the complexity of an SFC, the E2E
delay of the SFC, and the energy consumption of the
placement.

It is important to consider SFC complexity in case of
multiple SFC placement. A successful placement of an SFC
with higher complexity should receive a higher reward. An
SFC which requires higher amount of resources such as CPU,
memory, disk or bandwidth is of higher complexity. It is
harder to place such SFCs. As the length of the SFC increases
the number of VNFs increases and it can also increase the
resource demand. Hence we defined the complexity of the
SFC in terms of its resource requirements as in (10). k here is
the type of resource CPU, mem, disk and bandwidth and n is
length of SFC.  represents each resource requirement of
a VNF in the chain of SFC. Higher value of  should
receive higher reward.

  = ∑ ∑  (10)

The latency of an SFC  is modeled by (11). Therefore,

the number of hops for each VNF placement in a sequence is
stored in a virtual link array  , and at the end of the chain,
the total delay is calculated cumulatively. We took a ratio of  and n to normalize the latency parameter, where n is the
length of SFC. The reward should be low for high value of /. Therefore, we chose an exponentially decaying profile
to include it in the reward function. It is possible to improve
this delay equation bye considering several other factors such
as propagation delay, processing delay of VNF etc. in future.
  =     (11)

Additionally maximizing resource utilization is required to

reduce the energy consumption by keeping the servers and
switches in energy-saving mode. RU is modeled as (12). Here
h is number of servers, that is length of set H, and ℎ
represents number of servers in saving mode, that is length of . k represents type of resource.  represents the available
resource and  represents the occupied resource on a server
h. At the end of the sequence, the resource utilization RU of
the placement is calculated using (12). A higher value of RU
represents better resource utilization and hence lower energy
consumption.

 RU = (∑ ∑   ) /(ℎ − ℎ) (12)

Equation (13) represents our overall reward function

calculated after each SFC. This reward function gives high
rewards for lower E2E latency. The exponential delay

equation e  gives higher reward for lower value of 
and e will give higher value for higher resource
utilization. Finally multiplying it with SFC complexity will
give higher rewards for complex SFCs.

2021 17th International Conference on Network and Service Management (CNSM)

305

  =  ×  × e    (13)
  and β and λ are the constants that can be adjusted to give

higher importance to one or the other parameter. In this
simulation,  represents a higher value, e.g., 50, and β and λ
represent a lower value, e.g., 2.

F. Agent

The agent takes the set of the SFC requests and substrate
topology as input. The substrate topology is converted in the
environment variables explained in Section II. The VNF in
the SFC requests is modeled as states of RL algorithm and
represented as 4 tuple tensor [vn1, vn2, vn2 vn4] indicating CPU,
memory, storage and bandwidth requirement of each VNF.
The output of the algorithm is a list of actions. Fig 2. shows
the overall functioning of Agent.

The action represents the servers to embed a particular
VNF. The important point to note here is that, reward is
calculated for each SFC in a commutative manner, not just
for one VNF. Also the reward for each state is updated only
after the sequence is complete, as we can see in line 18, 19 in
EdgeDQN agent algorithm.

Figure 2: EdgeDQN Model

In DQN agent improves action selection strategy by
switching between exploration and exploitation of the
solution space for each hierarchy as shown in line 9, 11 and
13 . ε-greedy selection helps the learner uses a small amount
of randomness to explore new solutions. ε-greedy method
indicates that the agent has a probability of 1− ε to choose
the action an that maximizes (, ), and has the probability
of ε to randomly choose the action an. Periodic decay of Q-
values is taken care of using gamma (discount factor epsilon
= epsilon/1.5).

The agent predict the q_values for a particular states and
then the q_values that gives the highest reward is selected as
the action. However, while passing the q_values for the
highest reward selection we consider the actions in the
hierarchy  ,  and  . This way if set  is not null
action is selected from  . If set  is null then action is
selected from  . If  and  are all null then action is
selected from  .

After each action selection, we also update the
environment variables again (line 15). The selected action is
then appended in the list of action. This action list is passed
to the reward function after each SFC. The action list helps in
calculating the overall latency. Based on the complexity of
the SFC, overall latency and resource utilization of the SFC
the reward is calculated and added to the commutative
reward. All the past experience is then stored in the memory
(line 23). The neural network used by the DQN agent updates
its gradient using backpropagation to finally converge (line
25). DQN was modeled with two hidden ReLU layers. Mean
square error (MSE) based loss function and ADAM optimizer
are used.

Algorithm : EdgeDQN Agent
1. Input : Network topology, SFC requests [v1, v2, v3, ø, v4,
v5, v6, ø…., vn-2 , vn-1 ,vn].
2.Output: list of actions [a1, a2 .. an]
3.env.initialize()
4.For all episodes
5. Initialize reward=0, action = []
6. For all states vn
7. If vn != ø:
8. If env.  ≠ ∅
9.  =  random. choice(env.  , env. P[]) q = model. predict(), argmax(q [])
10. Else If  = ∅ ∧  ≠ ∅
11.  =  random. choice(env.  , env. P[]) q = model. predict(), argmax(q [])
12. Else If  = ∅ ∧  = ∅
13.  =  random. choice(env.  , env. P[S]) q = model. predict(), argmax(q [S])
14. End If
15. env.update(, ) based on (3) ~ (8)
16. action.append ()
17. Else
18. Reward is calculated after the end of each SFC .  =  +  ×  × e    based on (13)
20. End If
21. End For
22. For all states vn

23. remember(Transition (vn, , r, vn+1))
24. End for
25. replay(batch_size) based on (2)
26.End For

Our EdgeDQN implementation is not a simple DQN

implementation. We introduced several environment
variables and constraints, divided the network in a hierarchy,
after each action selection we also updated the environment
to reflect the action. Apart from that we introduced a
communicative reward function which gives higher rewards
to complex SFC with lower delay and higher resource
utilization. All these properties make this algorithm superior
to the current state of art DQN algorithms for SFC
embedding.

V. RESULTS AND EVALUTATION

2021 17th International Conference on Network and Service Management (CNSM)

306

A. Simulation Results

Our simulation and physical testbed topology are similar

to MEC scenario, as shown in Fig. 1. Our simulation network
consists of 6 edge routers, 3 Tor switches attached to each
router and 9 servers attached to each Tor switch. Which
makes it to be 162 servers all together. The Leaf and Spine
switches are merged with the edge routers for simplicity.
Each edge server has compute, memory, storage and
bandwidth capacity of 6 CPU core, 8 Gb, 90 Gb and 50Gbps
units respectively. DC servers have a higher amount of
compute, memory, and storage resources of 32 CPU core, 48
Gb, 120 Gb and 100Gbps units respectively. VNFs are taken
with varying capacity of 1 to 8 CPU core and 1 to 8 Gb
memory and 1 to 20 Gb storage. SFC bandwidth demand
varies from 1Gbps to 5Gbps. Delay between two hops is
considered as 1 ms. We tested our algorithm up to 64 VNFs
divided into 10 SFCs of various resource demands.

We designed 420 different test cases with different SFC
lengths, VNF flavors, and random server loads. We used
tensor-flow and Keras to implement Q-learning and DQN
algorithms. We ran our AI module on a Linux machine with
2GB ram and 4 VCPUs.

We compared our EdgeDQN algorithm with three base
case scenarios QL, DQN, and EdgeQL. QL and DQN are
basic Q-learning and DQN algorithms, respectively. All of
our algorithms have the same state, action, and reward
models, but EdgeQL and EdgeDQN include edge-specific
action selection constraints and hierarchical network
modeling. The QL and DQN algorithms, despite having the
shortest path reward function, require more training to
converge to the best results. We compared these algorithms
with four different evaluation matrics: 1) cumulative reward
2) cumulative SD 3) cumulative latency 4) learning time.

A legitimate comparison of the algorithms requires that we
compare multiple test cases, and thus it is best to use a
cumulative value of the finally learned reward of all 420 test
cases, as shown in Fig. 3. It can be seen that EdgeDQN learns
the best reward compared to all other algorithms.

Figure 3: Cumulative reward of 420 different test cases

The standard deviation defines the difference in learning

between multiple runs of the same test case. We ran the same
algorithm T=10 times with the same hyperparameters and
averaged the final learned reward. Lower SD represents the
stability of the algorithm, and EdgeDQN outperforms all
other algorithms (Fig. 4).

Figure 4: Cumulative SD of the finally learn rewards, N = 10

Fig. 5. Shows the cumulative latency of multiple SFCs.

64(10) in x axis of Fig 5, represents 64 VNFs divided into 10
different SFCs. These 10 SFCs are of size 3, 5 and 8 length.
As we increase the size of the VNFs for placement, we
observe that performance of DQN is much better. DQN
performs better even for small number of states. Even for the
SFC of length 5 the performance of EdgeDQN is better as
compare to EdgeQL.

Figure 5: Cumulative link delay

Figure 6: Learning time of Algorithm

We also observed that the learning time for EdgeDQN is

higher as compare to EdgeQL. Neural networks and
backpropagation mechanism used by EdgeDQN consumes
time. The learning time is linearly proportional to the
resource demand of the SFCs as shown in Fig 6. Higher
resource demand such as CPU, memory etc. required higher
amount of learning time in EdgeDQN algorithm. Here the
resource demand in plotted only based on CPU demand. The

2021 17th International Conference on Network and Service Management (CNSM)

307

profile is similar for all other resource. One way to improve
this learning time is by using Actor Critic method such as
A3C. A3C uses multiprocessing and it can help reduce this
learning time significantly. We will consider improving
learning time in our future work.

B. OpenStack Testbed Results

We also verify our algorithm on the physical testbed with

OpenStack environment. Fig.7 shows the overall integration
of and testing approach of EdgeDQN with OpenStack. Our
EdgeDQN modules interact with NFV monitoring modules
to collect data, and NVF orchestrator1 module to deploy SFC.
The time-series database (InfluxDB2) is used to store the
network state information. Collectd3 is used as a collector of
data from the testbed. This infrastructure consists of 8 edge
servers and 1 DC server. Delay is emulated on this testbed
using DEMU4. The delay between edge and core switch is
5ms and DC and core switch is 12 ms. 5 different types of
VNFs were used which include iptables, ntopng, nDPI,
Suricata, and HAProxy.

Our AI node runs the EdgeDQN algorithm and interacts
with the monitoring and orchestrator module. It takes the list
of SFC requests as well as edge_switch_id and DC_core_id
as inputs from the json file. It extracts the topology
information using the monitoring module and creates the
EdgeDQN environment. It outputs the list of servers for
provisioning each VNF. With the help of orchestrator VNFs
are deployed and chained. Stress-ng is used to generate
random loads on the servers. Traceroute is used to check SFC
placement and chaining, and wrk is used to measure overall
SFC latency from the client.

 Figure 7: Integrating EdgeDQN with OpenStack

In Fig. 8, we compared our EdgeDQN algorithm with the

OpenStack standard approach to VNF embedding. We placed
several SFCs using the EdgeDQN and OpenStack standard
approaches, and then tested two SFCs of length 5 and 3 by
generating traffic for 3 hours. We measured the response time
for simple web traffic going through these SFCs to the target
Nginx server. In Fig. 8, we can see a significantly better
performance of the EdgeDQN embedding compared to the
standard OpenStack embedding.

1 OpenStack SFC, https://opendev.org/openstack/networking-sfc
2 InfluxDB v1.7.9, https://github.com/influxdata/influxdb
3 Collectd v5.8.1, https://github.com/collectd/collectd

OpenStack default VNF placement distributes instances
evenly across all hosts (nova-scheduler) 5 . It assigns the
weight for placing VNF on all available hosts. This weighting
mainly depends on the available resources on the servers. The
server with higher available resource is selected for
placement. In this way, Openstack tries to maintain equal
load on each server. We can manually configure the
distribution option based on all types of resources, including
CPU, ram and disk, using the cpu_weight_multiplier,
ram_weight_multiplier and disk_weight_multiplier flags
respectively. This approach has several drawbacks: First,
each resource must be configured separately; second, this
approach does not take into account the SFC and the end-to-
end delays of the SFC. VNFs are provisioned first and then
the network administrator selects the appropriate VNFs for
chaining. This approach also does not consider resource
utilization and energy saving. Our RL approach finds the
appropriate embedding considering the SFC end-to-end delay
and energy saving.

OpenStack also provides two other types of embedding,
namely stacking and usage-aware embedding. In stacking,
VNFs are stacked on the same server instead of spreading out.
In utilization-aware embedding, we can configure the
utilization ratio of CPU, Ram and Disk etc. Despite various
configuration parameters, there is no comprehensive method
for placement considering the entire SFC requirements,
hence a Machine Learning based approach followed by
EdgeDQN is justified. EdgeDQN-based embedding provides
much better placement of VNFs compared to OpenStack
default embedding.

Figure 8: Response time, OpenStack default and EdgeDQN

C. Discussion

We see that EdgeDQN provides better sampling efficiency

using the replay buffer, but longer convergence time. The
learning time of EdgeDQN depends on the SFC length and
the resource requirement of the SFC. When the SFC length
was longer and the resource requirement was lower, the
learning time was still lower, but when the resource
requirement was high, the learning time was higher because

4 DEMU, https://github.com/ryousei/demu
5 https://docs.openstack.org/nova/latest/admin/configuration/schedulers.html

2021 17th International Conference on Network and Service Management (CNSM)

308

it is difficult for the algorithm to place the SFC with very high
resource requirement. There are several variations of RL such
as A3C that can be adapted to further reduce the learning
time. Tuning Hyperparameter should also be considered in
the future. As the network size grows, we need to increase the
number of episodes and decrease the gamma variable
proportionally.

VI. CONCLUSION

Inspired by the use of DRL to solve resource management
and planning problems, in this paper we attempted to enable
DQN to do the SFCs placement nearby edge in a way that
minimizes the E2E delay of each SFC and maximizes the
resource utilization of underlying infrastructure. EdgeDQN
algorithm divides the network into a hierarchy of local,
neighbor and DC networks and prioritizes the local edge for
placement. This approach can successfully deal with the large
size of discrete action space. This will also enable renting
neighbor and data center resources in case of resource
scarcity at local CO. An intuitive reward model reduces
latency and increases resource utilization, saving energy. Our
evaluation on the physical testbed as well as the simulation
network model proves that EdgeDQN is an effective model.
We also found that the DRL algorithm should always be
compared based on the cumulative reward, delay, and
standard deviation. Comparing individual test cases cannot
justify the efficiency of the algorithm due to its e-greedy
nature. Based on the cumulative reward, delay and standard
deviation of 420 different tests, we conclude that EdgeDQN
provides the best placement for SFCs compared to simple
DQN. Our OpenStack tests also prove the efficiency of
EdgeDQN over the standard OpenStack placement options.
In the future, we will extend this work to DDPG and A3C.
We will also propose tuning of hyperparameters, including
episodes, gamma, learning rate, and epsilon for all different
DRL approaches. We will fine tune these parameters based
on the size of the network and the type of algorithm.

ACKNOWLEDGMENT
This work was supported by the Institute of Information &

Communications Technology Planning & Evaluation (IITP)
grant funded by the Korean government (MSIT) (2018-0-
00749, Development of Virtual Network Management
Technology based on Artificial Intelligence) and the ITRC
(Information Technology Research Center) support program
(IITP-2021-2017-0-01633).

REFERENCES
[1] M. Ersue, “Etsi nfv management and orchestration-an overview,” in

Proc. of 88th IETF meeting, 2013.
[2] S. Lange et al., "A Network Intelligence Architecture for Efficient VNF

Lifecycle Management," in IEEE Transactions on Network and Service
Management, 2020, doi: 10.1109/TNSM.2020.3015244.

[3] X. Wei, S. Wang, A. Zhou, “MVR: An Architecture for Computation
Offloading in Mobile Edge Computing,” in Proc. IEEE Int. Conf. Edge
Comput. (EDGE), vol. 27, pp. 89-95, Sep. 2017.

[4] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer and X. Hesselbach,
"Virtual Network Embedding: A Survey," in IEEE Communications

Surveys & Tutorials, vol. 15, no. 4, pp. 1888-1906, Fourth Quarter
2013, doi: 10.1109/SURV.2013.013013.00155.

[5] OpenStack compute schedulers,
https://docs.openstack.org/nova/latest/admin/configuration/schedulers
.html

[6] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
slicing and softwarization: A survey on principles, enabling
technologies, and solutions,” IEEE Communications Surveys, vol. 20,
no. 3, pp. 2429–2453, 3rd Quart., 2018.

[7] D. Lee, J. -H. Yoo and J. W. -K. Hong, "Q-learning based Service
Function Chaining using VNF Resource-aware Reward Model," 2020
21st Asia-Pacific Network Operations and Management Symposium
(APNOMS), Daegu, Korea (South), 2020, pp. 279-282, doi:
10.23919/APNOMS50412.2020.9236975.

[8] J. Pei, P. Hong, K. Xue and D. Li, "Efficiently Embedding Service
Function Chains with Dynamic Virtual Network Function Placement
in Geo-Distributed Cloud System," in IEEE Transactions on Parallel
and Distributed Systems, vol. 30, no. 10, pp. 2179-2192, 1 Oct. 2019,
doi: 10.1109/TPDS.2018.2880992.

[9] N. Tastevin, M. Obadia, and M. Bouet, “A graph approach to placement
of service functions chains,” in Proc. IFIP/IEEE IM, May 2017, pp.
134–141.

[10] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P.
Gaspary, “Piecing together the NFV provisioning puzzle: Efficient
placement and chaining of virtual network functions,” in Proc.
IFIP/IEEE IM, May 2015, pp. 98–106.

[11] S. Pandey, J. W. -K. Hong and J. -H. Yoo, "Q-Learning based SFC
deployment on Edge Computing Environment," 2020 21st Asia-Pacific
Network Operations and Management Symposium (APNOMS),
Daegu, Korea (South), 2020, pp. 220-226, doi:
10.23919/APNOMS50412.2020.9236981.

[12] S. Pandey, J. W. Hong and J. -H. Yoo, "Environment Aware Adaptive
Q-Learning to Deploy SFC on Edge Computing," 2020 16th
International Conference on Network and Service Management
(CNSM), Izmir, Turkey, 2020, pp. 1-5, doi:
10.23919/CNSM50824.2020.9269046.

[13] M. Volodymyr at el. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[14] M. Dolati, S. B. Hassanpour, M. Ghaderi and A. Khonsari, "DeepViNE:
Virtual Network Embedding with Deep Reinforcement
Learning," IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), Paris, France,
2019, pp. 879-885, doi: 10.1109/INFCOMW.2019.8845171.

[15] P. T. A. Quang, Y. Hadjadj-Aoul and A. Outtagarts, "A Deep
Reinforcement Learning Approach for VNF Forwarding Graph
Embedding," in IEEE Transactions on Network and Service
Management, vol. 16, no. 4, pp. 1318-1331, Dec. 2019, doi:
10.1109/TNSM.2019.2947905.

[16] Sutton, R. S., and Barto, A. G. Reinforcement learning: An introduction.
MIT press, 2018.

[17] Y. Liu, Y. Lu, X. Li, W. Qiao, Z. Li and D. Zhao, "SFC Embedding
Meets Machine Learning: Deep Reinforcement Learning Approaches,"
in IEEE Communications Letters, doi:
10.1109/LCOMM.2021.3061991.

[18] L. Chen, J. Lingys, K. Chen, and F. Liu, “AuTO: Scaling deep
reinforcement learning for datacenter-scale automatic traffic
optimization,” in Proc. ACM Conf. Special Interest Group Data
Commun. (SIGCOMM), 2018, pp. 191–205.

[19] D. Lee, J. -H. Yoo and J. W. -K. Hong, "Deep Q-Networks based Auto-
scaling for Service Function Chaining," 2020 16th International
Conference on Network and Service Management (CNSM), 2020, pp.
1-9, doi: 10.23919/CNSM50824.2020.9269107.

2021 17th International Conference on Network and Service Management (CNSM)

309

