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Abstract— Network Function Virtualization (NFV) and 
service orchestration has simplified the Service Function Chain 
management (SFC) tasks, while the edge cloud infrastructure 
has reduced the latency. Due to these existing technological 
advantages, there is an urgent need for a dynamic and flexible 
service chain placement model that performs resource 
allocation of substrate network in a delay-sensitive and 
resource-efficient manner. We propose an off-policy Deep 
Reinforcement Learning algorithm EdgeDQN for efficient SFC 
placement in the edge cloud environment. The problem of edge 
resource scarcity is handled by designing a network model that 
allows worst-case resource renting from neighbors and data 
centers. This network model is integrated with EdgeDQN using 
several constraints. This paper aims to find the optimal 
placement by minimizing the underlying resource utilization 
and SFC end-to-end delay for multiple SFCs at the same time. 
To achieve that, an intuitive reward model is proposed. We 
compare the proposed EdgeDQN algorithm with DQN, Q-
learning, and EdgeQL algorithms in terms of performance 
parameters such as cumulative reward, cumulative standard 
deviation, latency, and learning convergence time for 420 
different test cases. Extensive test results on a simulated and 
physical (OpenStack) testbed demonstrate the effectiveness of 
the proposed EdgeDQN algorithm. 
Keywords—AI-based Network Management, Deep Q-

Network, Reinforcement Learning, OpenStack, Edge 
Computing 

I. INTRODUCTION 
 

Managing and orchestrating VNFs has become easier than 
ever with the advent of advanced cloud management systems 
such as OpenStack [1]. It has also enabled operators to take 
advantage of Machine Learning (ML) algorithms to solve 
various VNF lifecycle management tasks [2]. SFC is one of 
the crucial VNF lifecycle management tasks. SFC provides a 
wide range of preprocessing for a request before it reaches 
the server through the chained VNFs, such as firewall, IDS, 
DPI, video optimizer, proxy, load balancer, etc. Service 
providers also use the multi-access edge computing (MEC) 
infrastructure [3] to support these SFC services with the 
desired short latency. Due to these technological advantages, 
network manager can create a dynamic and flexible service 
chaining deployment model that performs resource allocation 
of substrate network in a delay-sensitive and resource-
efficient manner. In the edge cloud environment, the model 
should take care of the scenario when there are not enough 
resources available at the edge, in such a scenario it should 
be able to rent resources from neighbors or data centers. The 

model should also be designed to accommodate multiple SFC 
placement scenarios. This research focuses on efficient 
resource allocation for multiple SFCs on the edge cloud 
environment using Deep Reinforcement Learning (DRL). 

The current OpenStack implementation provides a very 
basic approach to this problem [5], where incoming VNFs are 
placed on the least loaded server. The other option is to stack 
as many VNFs as possible on the same server. Also, the 
server resource constraints such as CPU, memory, storage 
and bandwidth etc. need to be configured separately. These 
approaches are very primitive, which gives us the scope and 
motivation to improve the SFC embedding. Embedding and 
placement is used interchangeably through this paper. 

In academia, sufficient attention has been paid to the 
placement of a single VNF [6], but much less attention is paid 
to SFC placement. Moreover, there is no research that finds 
optimal placement for multiple SFCs using machine learning. 
The Most common approach to this problem is to first place 
the VNFs and then find the appropriate VNFs to create the 
chain [7, 8]. These approaches can be categorized as flow 
scheduling and routing problem rather than embedding 
problem, and they lead to unnecessary creation of VNFs and 
infrastructure overload without considering how they should 
be chained. Therefore, before embedding VNFs of SFCs, we 
need to consider the end-to-end delay of each SFC, the 
resource utilization (RU) of the edge infrastructure, and the 
overall requirements of the SFCs in advance. 

The other common approach is to formulate the SFC 
embedding as a Virtual Network Embedding (VNE) problem 
[4]. The VNE problem is usually formulated as an 
optimization problem using graph and Integer Linear 
Programming (ILP) [9,10], where an SFC is represented as a 
set of VNFs and virtual links connecting these VNFs. VNFs 
and links require a certain amount of resources, such as 
processing power, memory, storage, and bandwidth, 
depending on the needs of clients and incoming requests. 
Based on these resource requirements of VNFs, they are 
mapped and embedded in the substrate network and link. 
These problems are combinatorial in nature, hence the ILP 
solution becomes NP-hard as the number of network 
parameters and SFC configurations increases. For the 
placement of multiple SFCs, the combinations are even 
higher, which makes ILP solutions impractical. Therefore, 
we considered ML-based approaches to solve this problem. 

Among the ML approaches, RL (Reinforcement Learning) 
is a promising alternative to solve the combinatorial 
problems. In RL, the agent interacts with the environment by 
performing actions and receiving a reward. The agent can 
decide which action is best based on the long and short-term 
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rewards after several iterations. We solved the SFC 
placement and server assignment problem for the edge cloud 
environment using an RL approach. 

All RL problems are defined in terms of state, action, 
reward, and transition probability. It is also important to 
design the environment well, as the agent would interact with 
the environment and learn the rewards for its actions. A very 
basic RL approach to solve this problem is based on Q-
learning [11, 12]. This related work is limited to a single SFC 
placement. They also chose to use a simplified state model. 
Their tests were limited to only 8 VNFs. We model the state 
with CPU, memory, storage and bandwidth. Such a complex 
state model leads to a high state-action combination, which 
makes the Q-learning model very impractical. In such a 
situation, we need a proper function approximation technique 
which is provided by DRL. Therefore, we have chosen the 
Deep Q-Network (DQN) algorithm introduced by DeepMind 
[13] to solve the problem of placing multiple SFCs. Learning 
from experience through neural networks and function 
approximation is integrated in this selection process. The 
DQN approach can efficiently determine the near optimal 
solution. We call this algorithm EdgeDQN. 

The two main challenges in implementing the EdgeDQN 
algorithm were the size of the action space and modeling a 
reward function that supports multiple SFC placements. It is 
not useful to consider only the edge resource, as the edge 
infrastructure can quickly reach its limits. Therefore, a 
mechanism is needed that can rent the resources of the 
neighbors or the data center in the worst case. However, 
considering the whole network could increase the action 
space tremendously. The action space in RL grows as the 
target topology grows. To address these issues, we opted for 
a hierarchical model of the network consisting of local, edge, 
and data center servers. Constraints are introduced, so that the 
EdgeDQN will look for neighbor and DC resource only if the 
edge is not able to fulfill the requests due to lack of resources. 
The introduction of multiple edge-specific action selection 
constraints helps the algorithm to converge faster with less 
exploration. 

The second major challenge was to design a reward model 
suitable for multiple SFC placement scenarios. Mostly, 
researchers have designed a reward function based on 
placement success and failure [14] or throughput [15]. These 
reward models have two main drawbacks. First, these reward 
models completely ignore the resource utilization of the 
underlying infrastructure. Resource utilization is an 
important parameter to reduce energy consumption by 
keeping servers and switches in energy saving mode. Second, 
they cannot be used for the multiple SFC placement scenario. 
Therefore, we have developed a reward model that considers 
the underlying resource utilization and optimizes the 
placement for multiple SFC placement. Our reward model 
awards higher rewards for more complex SFCs, e.g., SFCs 
that require more resources and are longer in length. 
Successful placement of such SFCs should be rewarded with 
higher rewards. Moreover, our reward model maximizes the 
resource utilization and minimizes the total delay of each 
SFC. 

Another distinguish contribution of this work is the 

evaluation methodology. Most related works evaluate their 
algorithm based on one test case over multiple episodes [13, 
14]. This approach cannot guarantee the legitimacy of the 
DRL algorithm, since a large part of the DRL algorithm 
depends on the randomness posed by the e-greedy[16]. It is 
possible that algorithm behaves well in one test run and 
doesn’t behave well in other. Therefore, adopting a 
commutative approach for evaluating DRL algorithm is 
essential. We evaluated our model by comparing the 
cumulative reward of 420 different test cases and the 
cumulative standard deviation by running each test case 10 
times. Our model performs significantly better compared to 
our preliminary studies based on Q-learning and DQN. We 
also evaluated this algorithm on the OpenStack physical 
testbed with 42 different test cases. We found that the 
cumulative latency of test cases is much lower for the 
proposed EdgeDQN algorithm. 

Our main contribution can be summarized as follows: 
1) First attempt to use DRL for multiple SFC 

placement at the same time. This is achieved by 
designing a reward model based on SFC complexity, 
SFC end-to-end latency and underlying network 
resource utilization. 

2) A hierarchical network constraint model for 
reducing the action space for DRL.  

3) Cumulative evaluation methodology instead of 
evaluating individual test cases.  

4) Evaluation of the proposed model on the OpenStack 
physical testbed. 

The rest of the paper is organized as follows. Section II 
elaborates some of the related work. Section III defines the 
service topology and environment. Section IV explains the 
proposed algorithm with discussion on state, action, reward 
and constraints model. Section V explains the evaluation 
methodology, results and discussion. Finally, section VI 
concludes our work with possible future work directions. 

II. RELATED WORK 
 

Our related work is focused on elaborating the use of DRL 
in the field of VNF and SFC embedding. In the past DRL has 
been used to solve this problem in two steps, where VNFs are 
placed first and then linked [6, 7]. Recently DRL was also 
used for flow scheduling [17]. Such approaches can be 
categorized as routing and scheduling problem rather than a 
placement problem. 

DRL has been also used extensively for scaling and load 
balancing of VNFs [18]. Some researchers used scaling and 
embedding as a combined approach as well [19]. However 
these research are limited to one SFC. The DRL module 
would scale in and out VNFs for a single SFC. Our research 
focused on embedding multiple SFC at the same time finding 
the optimal placement reducing the resource utilization and 
end-to-end delay. Given the scale out information, our 
module can do the VNF embedding for existing SFC as well 
utilizing same reward model. 

Recently a few researchers have opted DDPG and A3C 
algorithm to solve VNF placement [14, 15]. Two main 
problems of their approach in solving an SFC placement are 
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1) high dimensionality of the state [14], as they considered 
entire network in their state model. 2) large size of the 
discrete action space. The high dimensionality of the state 
would require a large amount of training and the large action 
space would require a high exploration in the DRL. Reference 
[15] proposes a Heuristic Fitting Algorithm (HFA) to reduce 
the action space based on the capacity of the substrate 
network to serve the query. However, this approach reduces 
the action space only when the network is heavily loaded. 

The reward model of related work is also limited to 
throughput [14] and successful placement of VNFs [15] only, 
which completely ignored the energy consumption of the 
placement and the complexity of the placement. Hence, we 
designed a reward model that considers the complexity of the 
SFC and the resource utilization (RU) of the underlying 
network in addition to the end-to-end delay.  

The basis of a DRL algorithm is the design of its 
environment, state, action, and reward. Currently, we have 
focused on these aspects and tested the DQN and Q-learning 
algorithm on our model. In the future, we could easily 
incorporate the DDPG and A3C algorithm into the current 
design of environment, state, action and reward function. A 
realistic network scenario representing an edge cloud with an 
intuitive reward function and the evaluation methodology are 
the main contribution of our work. The basic DQN algorithm 
is also significantly modified to incorporate these aspects of 
network design. To the best of our knowledge, none of the 
related work has focused on the placement of multiple SFCs 
with DRL. 

III. SERVICE TOPOLOGY AND ENVIRONMNT VARIABLES 
 

In this research, we represent an edge cloud environment 
as a hierarchical network model. The hierarchy of nodes from 
top to bottom consists of center, core, edge, spine, leaf, top of 
the rack (TOR) switch, and servers as shown in Fig.1. In the 
hierarchical network model, an edge router represents a 
Central Office (CO). Edge routers connected to the same core 
router are neighbors to each other. In SFC placement in the 
edge environment, we only care about the local, neighbor, 
and DC network. 

The information about the edge router Re and the core Cdc 
is presumed to be given in advance. Given the edge router Re, 
we extract the substrate topology attached to it. That gives us 
the set of local servers Sl. The substrate topology of Ce gives 
us a set of servers attached to it represented as Se where Sl⊂Se. 
Similarly the set of servers connected to Cdc is represented as 
Sdc. This way Se, Sl, and Sdc represents the set of edge, local 
and DC servers. It is important to note that the network 
topology is converted to the liner sets of Se, Sl, and Sdc. For 
obtaining this set from Openstack test bed, we just need edge 
router Re and the core Cdc information as inputs. 

Each server in the set Se, Sl, and Sdc is represented in terms 
of resource availability. Resources can be CPU, memory, 
storage, network bandwidth, etc. H denotes the set of servers, 
server IDs from 1 to h.   denotes the set of servers in a 
power-saving mode, where  ⊂  . These are the servers 
without VNF placement. K denotes the types of resources, 
resource type ID from 1 to k. CPU, memory, storage and 

bandwidth are the main resources, and so k is 4. ah denotes a 
resource vector for each server [ah1, ah2.. ahk].   denotes the 
available resource, and   represents the occupied resource.  

An SFC consists of multiple VNFs connected by virtual 
links (VLs). Each VNF requires a certain amount of resources 
according to the number of supported users and type of 
services. N is the number of VNFs in SFC with sequence ID 
from 0 to n. vn denotes a VNF flavor, and resource vector of 
a particular vn is denoted as [vn1, vn2 … vnk]. SFC is denoted as 
a list of vn [v1, v2 … vn]. 

VL is defined as the number of hops in the substrate link 
multiplied by the link delay. The number of hops between 
two VNFs ID i and i+1 is denoted as  , and the link delay 
is denoted as . The value of   is assumed to be the same 
unit value (e.g., 1 ms).To simplify the calculation of the 
delay, we keep an array that defines the number of hops from 
server to server. The number of hops for the same server is 0, 
same TOR is 1, same edge is 3, neighbor is 7, and DC is 9 for 
this work. We simply check which particular sets the two 
nodes i and i+1 belong to in order to assign the number of 
hops. The total delay of SFC can be expressed as the sum of 
the delays of these virtual links between VNFs. Our delay 
model can be improved in the future.   

All the environment variables including Se, Sl, and Sdc ,   ,   ,   and   are used in imposing constraints 
and calculating rewards. Our objective is to minimize the 
overall delay of SFCs while embedding the VNFs. The other 
goal is to maximizing resource utilization (RU). RU is 
required to reduce the energy consumption by keeping the 
servers and switches in energy-saving mode. These two 
objectives are taken care while designing the reward 
functions of the DRL model.  

In the best case, all VNFs in an SFC should be placed to 
the local CO (central Office) assuming there are sufficient 
resources on the local CO. One of the best edge placements 
of a first few requests of the SFC with given constraints on 
edge resources with minimum delay and maximum RU is 
shown in Fig. 1.  

 

 
Fig 1: Possible placement operation of SFCs with minimum substrate 

link delay and maximum resource utilization on an Edge cloud 
environment.  

 

IV. PROPOSED APPROACH 
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We designed an EdgeDQN algorithm by adding edge-
specific constraints to the DQN algorithm. The number of 
ways SFCs can be placed in a physical network is 
combinatorial. The DRL algorithm would have to try 
multiple combinations to obtain the best policy. Therefore, a 
simple DRL approach potentially requires a large number of 
explorations to find an optimal solution. We address this 
challenge by building a hierarchical model of the network 
based on local, neighboring and DC. This will give the first 
priority to the local servers, however in the case of resource 
scarcity only the algorithm would reach to the neighbor and 
DC servers. Such constraints reduces the action space while 
also taking care of edge resource scarcity issues. The reward 
model is designed to incorporate the energy consumption and 
complexity of SFC with end-to-end latency.  

We first explain the state of the art of RL algorithms, 
including Q-learning and DQN, followed by a detailed 
discussion and benefits of our state, action, and reward 
model. We then explain the edge-specific environment 
variables and their role in improving the action selection 
policy, and finally we explain our overall EdgeDQN agent. 
We compared the EdgeDQN algorithm with QL, DQN and 
EdgeQL algorithms with common modeling of state, action, 
and reward function. Our first version of QL and EdgeQL 
[11] algorithm is extended to support the new reward model, 
states and multiple SFC placement scenarios, same as 
explained in this paper.  

 

A. DRL Approach 
 

Usually, an RL problem is modeled by 4-tuple states (s), 
actions (a), state transition probabilities (pi), and rewards (r). 
In RL there is a learner (also called an agent), that interacts 
with the environment to select an action for moving to the 
next state based on the rewards. The RL algorithm is based 
on reward and value function. Reward indicates what is good 
and bad in an immediate sense, and value function indicates 
what is good and bad in the long term. Learning happens in 
several episodes. In each episode i, the agent in state  
performs an action  , receives a reward  , and moves to the 
next state . In Q-learning the action value is updated in 
the Q matrix of size [s × a] with the formula given in (1).  
represents learning rate (0.05).   represents discount rate 
(0.5). We use argmax to get the action that returns the highest 
reward. In Q-learning the agent’s brain is Q matrix, on the 
other hand in DQN the agent’s brain is a deep neural network 
(DNN).  
 ( , ) = (1 − )(  , ) + ( +  max ( ,   ))   (1) 
 

In DQN we create DNN and train it to resemble (, ). 
The input in the neural network is a tuple E( ,  ,  , ) for 
the current environment. This information is stored in replay 
memory. During the interactions between the agent and 
environment, it periodically samples data from the replay 
memory for training the DNN, and updating the weight 
parameters ρ in the DNN to minimize the loss function, as in 
equation (2). 

 

(ρ) = (,,,)( +   ( , ) −  (  ,   ))    (2) 
 

B. EdgeDQN States  
 

The success of the RL algorithm depends on modeling 
state, actions and rewards. In our implementation states 
represent the set of VNFs. Several researchers [17] used the 
entire network and VNF-FG (Forwarding Graph) request as 
a state. However such an input for learning model will require 
huge number of samples eventually increasing the learning 
time. To avoid that we modeled our state with VNF requests 
[v1, v2, v3, ø, v4, v5, v6, ø…. , vn-2 , vn-1 ,vn].  In this VNF 
requests ø denotes the end of one SFC request. Each VNF 
request is mapped to a resource vector of that VNF, we also 
call it VNF flavor. The resource are CPU, memory, storage 
and bandwidth requirement of the VNF denoted as [vn1, vn2 
… vnk]. Hence each state in DRL is basically a set of 4 
variables [vn1, vn2, vn3 vn4].  

The substrate network state is modeled separately as 
environment variables. The environment variables includes 
the set of edge (Se), local (Sl), DC servers (Sdc), each server’s 
available ( )  and occupied ( ) resources. These 
environment variables are used for imposing several 
constraints during action selection process. These also helps 
in calculating rewards. 

C. EdgeDQN Action  
 

Action represents the selection of the appropriate server for 
deployment. The set of actions are represented as [a1, a2 .. 
ah]. The action space increases as the size of the network 
grow. Hence it is essential to devise a mechanism to reduce 
the action space. The action space is minimized by using a 
carefully crafted EdgeDQN action selection policy 
constraints. 

 

D. Additional Constraints for Action Selection  
 

Reducing the action space to suit the edge SFC placement 
is one of the important aspects of this research. To reduce the 
action space, we presented a hierarchical stochastic model for 
our environment. Moreover, we used a hierarchy of 
constraints to filter the best action that favors edge SFC 
placement, followed by neighboring Edge and DC 
placements. 

The stochastic model of the environment is represented by 
variable θ and P.  stores 1 if the server has enough 
capacity to deploy the VNF, otherwise, it stores 0. h denotes 
the server id, k denotes the resource type and n denotes the 
VNF.    represents the available resource k on the server h, 
and    represents the resource demand of resource k for 
VNF n. Refer to (3) and (4). Later, this array is converted into 
the state transition probability and stored in P, see (5).  
gives us the probability of server h to place VNF n. Value of  will be 0 if server h lacks to serve any of the resource 
demand of VNF n. 
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  = 1,              –   > 0 0,              –   ≤ 0                                                        (3) 
   = 1,        ∏     > 00,         ∏   =  0                                                   (4) 

  = ∑                                                                        (5) 

 
The hierarchical edge network model is represented by the 

sets Se, Sl, Sn, and Sdc. Starting from an edge router Re and DC 
core router Cdc, we can traverse the topology to extract Se, Sl, 
and Sdc. By traversing the tree associated with Re, we obtain 
the set Sl. If any of the resource in the server h is not enough 
to serve VNF n then the value of  will be 0, and such 
servers should be removed from the action space as in 
equations (6~8).  represents the servers that should be 
removed from the server at each hierarchy. We derive a set of 
local servers Sl containing only the servers with enough 
resources as described in equation (6).  represents the set 
of neighboring Edge servers. These are the servers that are 
connected to core edge router Ce but are not part of Sl and 
have enough resources, as shown in (7).   represents the set 
of DC servers that are extracted given core router Cdc in the 
network topology. Then, a subset of   with sufficient 
resources is derived by (8).  

  =  −        where   ∈  = 0          (6)  =  −    where    = ( ∪   ) ,  ∈  = 0      (7)  =  −    where    ∈  = 0        (8) 
 

In standard DQN algorithm we predict the q_values for a 
particular states and then the q_values that gives the highest 
reward is selected as the action. In our approach while 
passing the q_values for the highest reward selection we 
consider the actions in the hierarchy we defined using    ,   
and   . When selecting the action in the EdgeDQN 
algorithm, the conditions in (9) are checked in a hierarchical 
way. If set  is not null action is selected from . If set    is 
null then action is selected from . If    and    are all null 
then action is selected from  .  

  =    (),                                            ≠  ∅, deploy at local    (),        =  ∅ ∧    ≠ ∅, deploy at neighboring    (),                         =  ∅ ∧   =  ∅, deploy at DC  (9) 
 
Even though we have incorporated the graph embedding 

approach by computing the shortest path in our reward 
function, this is not sufficient to guarantee edge placement in 
the DQN unless we train the algorithm with a significantly 
large number of episodes. The action selection policy 
proposed in EdgeDQL not only reduces the number of 
episodes and the amount of exploration but also ensures that 
local servers are given the highest priority, followed by the 
neighbor and DC servers.  

 

E. Reward 
 

Rewards are feedback to the agent about how good its 
actions are. This reward function represents the throughput 

and cost of the placement combined. The reward is calculated 
cumulatively after all VNF placements in a chain are 
completed. In addition to successful SFC placement, we also 
aim to minimize the overall latency and maximize the 
utilization of physical resources. Therefore, we modeled our 
reward function based on the complexity of an SFC, the E2E 
delay of the SFC, and the energy consumption of the 
placement. 

It is important to consider SFC complexity in case of 
multiple SFC placement. A successful placement of an SFC 
with higher complexity should receive a higher reward. An 
SFC which requires higher amount of resources such as CPU, 
memory, disk or bandwidth is of higher complexity. It is 
harder to place such SFCs. As the length of the SFC increases 
the number of VNFs increases and it can also increase the 
resource demand. Hence we defined the complexity of the 
SFC in terms of its resource requirements as in (10). k here is 
the type of resource CPU, mem, disk and bandwidth and n is 
length of SFC.    represents each resource requirement of 
a VNF in the chain of SFC. Higher value of   should 
receive higher reward.  

  = ∑ ∑                                                                   (10) 
 
The latency of an SFC   is modeled by (11). Therefore, 

the number of hops for each VNF placement in a sequence is 
stored in a virtual link array  , and at the end of the chain, 
the total delay is calculated cumulatively. We took a ratio of  and n to normalize the latency parameter, where n is the 
length of SFC. The reward should be low for high value of /.  Therefore, we chose an exponentially decaying profile 
to include it in the reward function. It is possible to improve 
this delay equation bye considering several other factors such 
as propagation delay, processing delay of VNF etc. in future. 
  =                                                                  (11) 

 
Additionally maximizing resource utilization is required to 

reduce the energy consumption by keeping the servers and 
switches in energy-saving mode. RU is modeled as (12). Here 
h is number of servers, that is length of set H, and ℎ 
represents number of servers in saving mode, that is length of . k represents type of resource.   represents the available 
resource and   represents the occupied resource on a server 
h. At the end of the sequence, the resource utilization RU of 
the placement is calculated using (12). A higher value of RU 
represents better resource utilization and hence lower energy 
consumption. 

 
 RU = ( ∑ ∑        ) /( ℎ −  ℎ)    (12) 
 
Equation (13) represents our overall reward function 

calculated after each SFC. This reward function gives high 
rewards for lower E2E latency. The exponential delay 

equation  e     gives higher reward for lower value of    
and  e  will give higher value for higher resource 
utilization. Finally multiplying it with SFC complexity will 
give higher rewards for complex SFCs.   
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  =  ×  × e                                                       (13) 
  and β and λ are the constants that can be adjusted to give 

higher importance to one or the other parameter. In this 
simulation,  represents a higher value, e.g., 50, and β and λ 
represent a lower value, e.g., 2.  

F. Agent 
 

The agent takes the set of the SFC requests and substrate 
topology as input. The substrate topology is converted in the 
environment variables explained in Section II. The VNF in 
the SFC requests is modeled as states of RL algorithm and 
represented as 4 tuple tensor [vn1, vn2, vn2 vn4] indicating CPU, 
memory, storage and bandwidth requirement of each VNF. 
The output of the algorithm is a list of actions. Fig 2. shows 
the overall functioning of Agent. 

The action represents the servers to embed a particular 
VNF. The important point to note here is that, reward is 
calculated for each SFC in a commutative manner, not just 
for one VNF. Also the reward for each state is updated only 
after the sequence is complete, as we can see in line 18, 19 in 
EdgeDQN agent algorithm.  

 

 
Figure 2: EdgeDQN Model  

In DQN agent improves action selection strategy by 
switching between exploration and exploitation of the 
solution space for each hierarchy as shown in line 9, 11 and 
13 . ε-greedy selection helps the learner uses a small amount 
of randomness to explore new solutions. ε-greedy method 
indicates that the agent has a probability of 1− ε  to choose 
the action an  that maximizes (, ), and has the probability 
of ε to randomly choose the action an. Periodic decay of Q-
values is taken care of using gamma (discount factor epsilon 
= epsilon/1.5).  

The agent predict the q_values for a particular states and 
then the q_values that gives the highest reward is selected as 
the action. However, while passing the q_values for the 
highest reward selection we consider the actions in the 
hierarchy    ,    and   .  This way if set    is not null 
action is selected from   . If set    is null then action is 
selected from   . If    and     are all null then action is 
selected from  . 

After each action selection, we also update the 
environment variables again (line 15). The selected action is 
then appended in the list of action. This action list is passed 
to the reward function after each SFC. The action list helps in 
calculating the overall latency. Based on the complexity of 
the SFC, overall latency and resource utilization of the SFC 
the reward is calculated and added to the commutative 
reward. All the past experience is then stored in the memory 
(line 23). The neural network used by the DQN agent updates 
its gradient using backpropagation to finally converge (line 
25). DQN was modeled with two hidden ReLU layers. Mean 
square error (MSE) based loss function and ADAM optimizer 
are used. 

 
 

Algorithm : EdgeDQN Agent  
1. Input : Network topology, SFC requests [v1, v2, v3, ø, v4, 
v5, v6, ø…., vn-2 , vn-1 ,vn].   
2.Output: list of actions [a1, a2 .. an] 
3.env.initialize() 
4.For all episodes 
5.   Initialize reward=0, action = []  
6.   For all states vn 
7.      If  vn != ø:  
8.         If env.  ≠  ∅ 
9.              =  random. choice( env.  , env. P[ ])                               q =  model. predict( ), argmax(q [])      
10.       Else If    =  ∅ ∧    ≠ ∅     
11.             =  random. choice( env.  , env. P[ ])                         q =  model. predict( ), argmax(q []) 
12.       Else If    =  ∅ ∧   =  ∅ 
13.            =  random. choice( env.  , env. P[ S])                       q =  model. predict( ), argmax(q [ S])  
14.       End If 
15.       env.update( ,  ) based on (3) ~ (8) 
16.       action.append ( ) 
17.     Else 
18.         Reward is calculated after the end of each SFC .            =  +  ×  × e      based on (13)     
20.      End If 
21.   End For  
22.   For all states vn 

23.       remember(Transition (vn,  , r, vn+1)) 
24.   End for 
25.   replay(batch_size) based on (2) 
26.End For 

 
 
Our EdgeDQN implementation is not a simple DQN 

implementation. We introduced several environment 
variables and constraints, divided the network in a hierarchy, 
after each action selection we also updated the environment 
to reflect the action. Apart from that we introduced a 
communicative reward function which gives higher rewards 
to complex SFC with lower delay and higher resource 
utilization. All these properties make this algorithm superior 
to the current state of art DQN algorithms for SFC 
embedding.  

V. RESULTS AND EVALUTATION 
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A. Simulation Results 
 
Our simulation and physical testbed topology are similar 

to MEC scenario, as shown in Fig. 1. Our simulation network 
consists of 6 edge routers, 3 Tor switches attached to each 
router and 9 servers attached to each Tor switch. Which 
makes it to be 162 servers all together. The Leaf and Spine 
switches are merged with the edge routers for simplicity. 
Each edge server has compute, memory, storage and 
bandwidth capacity of 6 CPU core, 8 Gb, 90 Gb and 50Gbps 
units respectively. DC servers have a higher amount of 
compute, memory, and storage resources of 32 CPU core, 48 
Gb, 120 Gb and 100Gbps units respectively. VNFs are taken 
with varying capacity of 1 to 8 CPU core and 1 to 8 Gb 
memory and 1 to 20 Gb storage. SFC bandwidth demand 
varies from 1Gbps to 5Gbps. Delay between two hops is 
considered as 1 ms. We tested our algorithm up to 64 VNFs 
divided into 10 SFCs of various resource demands. 

We designed 420 different test cases with different SFC 
lengths, VNF flavors, and random server loads. We used 
tensor-flow and Keras to implement Q-learning and DQN 
algorithms. We ran our AI module on a Linux machine with 
2GB ram and 4 VCPUs.  

We compared our EdgeDQN algorithm with three base 
case scenarios QL, DQN, and EdgeQL. QL and DQN are 
basic Q-learning and DQN algorithms, respectively. All of 
our algorithms have the same state, action, and reward 
models, but EdgeQL and EdgeDQN include edge-specific 
action selection constraints and hierarchical network 
modeling. The QL and DQN algorithms, despite having the 
shortest path reward function, require more training to 
converge to the best results. We compared these algorithms 
with four different evaluation matrics: 1) cumulative reward 
2) cumulative SD 3) cumulative latency 4) learning time.  

A legitimate comparison of the algorithms requires that we 
compare multiple test cases, and thus it is best to use a 
cumulative value of the finally learned reward of all 420 test 
cases, as shown in Fig. 3. It can be seen that EdgeDQN learns 
the best reward compared to all other algorithms. 

 

 
Figure 3: Cumulative reward of 420 different test cases  

 
The standard deviation defines the difference in learning 

between multiple runs of the same test case. We ran the same 
algorithm T=10 times with the same hyperparameters and 
averaged the final learned reward. Lower SD represents the 
stability of the algorithm, and EdgeDQN outperforms all 
other algorithms (Fig. 4). 

 

  
Figure 4: Cumulative SD of the finally learn rewards, N = 10  

 
Fig. 5. Shows the cumulative latency of multiple SFCs. 

64(10) in x axis of Fig 5, represents 64 VNFs divided into 10 
different SFCs. These 10 SFCs are of size 3, 5 and 8 length. 
As we increase the size of the VNFs for placement, we 
observe that performance of DQN is much better. DQN 
performs better even for small number of states. Even for the 
SFC of length 5 the performance of EdgeDQN is better as 
compare to EdgeQL.  

 
 

 
Figure 5: Cumulative link delay 

 

 
Figure 6: Learning time of Algorithm 

 
We also observed that the learning time for EdgeDQN is 

higher as compare to EdgeQL. Neural networks and 
backpropagation mechanism used by EdgeDQN consumes 
time. The learning time is linearly proportional to the 
resource demand of the SFCs as shown in Fig 6.  Higher 
resource demand such as CPU, memory etc. required higher 
amount of learning time in EdgeDQN algorithm. Here the 
resource demand in plotted only based on CPU demand. The 
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profile is similar for all other resource. One way to improve 
this learning time is by using Actor Critic method such as 
A3C. A3C uses multiprocessing and it can help reduce this 
learning time significantly. We will consider improving 
learning time in our future work.  

 
 

B. OpenStack Testbed Results 
 
We also verify our algorithm on the physical testbed with 

OpenStack environment. Fig.7 shows the overall integration 
of and testing approach of EdgeDQN with OpenStack. Our 
EdgeDQN modules interact with NFV monitoring modules 
to collect data, and NVF orchestrator1 module to deploy SFC. 
The time-series database (InfluxDB2) is used to store the 
network state information. Collectd3 is used as a collector of 
data from the testbed. This infrastructure consists of 8 edge 
servers and 1 DC server. Delay is emulated on this testbed 
using DEMU4. The delay between edge and core switch is 
5ms and DC and core switch is 12 ms.  5 different types of 
VNFs were used which include iptables, ntopng, nDPI, 
Suricata, and HAProxy. 

Our AI node runs the EdgeDQN algorithm and interacts 
with the monitoring and orchestrator module. It takes the list 
of SFC requests as well as edge_switch_id and DC_core_id 
as inputs from the json file. It extracts the topology 
information using the monitoring module and creates the 
EdgeDQN environment. It outputs the list of servers for 
provisioning each VNF. With the help of orchestrator VNFs 
are deployed and chained. Stress-ng is used to generate 
random loads on the servers. Traceroute is used to check SFC 
placement and chaining, and wrk is used to measure overall 
SFC latency from the client. 

 

 
 Figure 7: Integrating EdgeDQN with OpenStack 

 
In Fig. 8, we compared our EdgeDQN algorithm with the 

OpenStack standard approach to VNF embedding. We placed 
several SFCs using the EdgeDQN and OpenStack standard 
approaches, and then tested two SFCs of length 5 and 3 by 
generating traffic for 3 hours. We measured the response time 
for simple web traffic going through these SFCs to the target 
Nginx server. In Fig. 8, we can see a significantly better 
performance of the EdgeDQN embedding compared to the 
standard OpenStack embedding. 

                                                           
1 OpenStack SFC, https://opendev.org/openstack/networking-sfc 
2 InfluxDB v1.7.9, https://github.com/influxdata/influxdb 
3 Collectd v5.8.1, https://github.com/collectd/collectd 

OpenStack default VNF placement distributes instances 
evenly across all hosts (nova-scheduler) 5 . It assigns the 
weight for placing VNF on all available hosts. This weighting 
mainly depends on the available resources on the servers. The 
server with higher available resource is selected for 
placement. In this way, Openstack tries to maintain equal 
load on each server. We can manually configure the 
distribution option based on all types of resources, including 
CPU, ram and disk, using the cpu_weight_multiplier, 
ram_weight_multiplier and disk_weight_multiplier flags 
respectively. This approach has several drawbacks: First, 
each resource must be configured separately; second, this 
approach does not take into account the SFC and the end-to-
end delays of the SFC. VNFs are provisioned first and then 
the network administrator selects the appropriate VNFs for 
chaining. This approach also does not consider resource 
utilization and energy saving. Our RL approach finds the 
appropriate embedding considering the SFC end-to-end delay 
and energy saving. 

OpenStack also provides two other types of embedding, 
namely stacking and usage-aware embedding. In stacking, 
VNFs are stacked on the same server instead of spreading out. 
In utilization-aware embedding, we can configure the 
utilization ratio of CPU, Ram and Disk etc. Despite various 
configuration parameters, there is no comprehensive method 
for placement considering the entire SFC requirements, 
hence a Machine Learning based approach followed by 
EdgeDQN is justified. EdgeDQN-based embedding provides 
much better placement of VNFs compared to OpenStack 
default embedding. 

 
Figure 8: Response time, OpenStack default and EdgeDQN 

 
C. Discussion 

 
We see that EdgeDQN provides better sampling efficiency 

using the replay buffer, but longer convergence time. The 
learning time of EdgeDQN depends on the SFC length and 
the resource requirement of the SFC. When the SFC length 
was longer and the resource requirement was lower, the 
learning time was still lower, but when the resource 
requirement was high, the learning time was higher because 

4 DEMU, https://github.com/ryousei/demu 
5 https://docs.openstack.org/nova/latest/admin/configuration/schedulers.html 

2021 17th International Conference on Network and Service Management (CNSM)

308



 
 

it is difficult for the algorithm to place the SFC with very high 
resource requirement. There are several variations of RL such 
as A3C that can be adapted to further reduce the learning 
time. Tuning Hyperparameter should also be considered in 
the future. As the network size grows, we need to increase the 
number of episodes and decrease the gamma variable 
proportionally. 

VI. CONCLUSION 
 

Inspired by the use of DRL to solve resource management 
and planning problems, in this paper we attempted to enable 
DQN to do the SFCs placement nearby edge in a way that 
minimizes the E2E delay of each SFC and maximizes the 
resource utilization of underlying infrastructure. EdgeDQN 
algorithm divides the network into a hierarchy of local, 
neighbor and DC networks and prioritizes the local edge for 
placement. This approach can successfully deal with the large 
size of discrete action space. This will also enable renting 
neighbor and data center resources in case of resource 
scarcity at local CO. An intuitive reward model reduces 
latency and increases resource utilization, saving energy. Our 
evaluation on the physical testbed as well as the simulation 
network model proves that EdgeDQN is an effective model. 
We also found that the DRL algorithm should always be 
compared based on the cumulative reward, delay, and 
standard deviation. Comparing individual test cases cannot 
justify the efficiency of the algorithm due to its e-greedy 
nature. Based on the cumulative reward, delay and standard 
deviation of 420 different tests, we conclude that EdgeDQN 
provides the best placement for SFCs compared to simple 
DQN. Our OpenStack tests also prove the efficiency of 
EdgeDQN over the standard OpenStack placement options.  
In the future, we will extend this work to DDPG and A3C. 
We will also propose tuning of hyperparameters, including 
episodes, gamma, learning rate, and epsilon for all different 
DRL approaches. We will fine tune these parameters based 
on the size of the network and the type of algorithm. 
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