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Abstract—In the last years, Software-Defined Networking
(SDN) has provided a new approach to network programmability,
first regarding the control plane and later the data plane. With
the popularity of the data plane programming languages like P4,
SDN network automation has extended from developing con-
trol plane applications and deploying controllers to integrating
custom packet processing pipelines in this process. However,
developing control and data plane applications can become
burdensome since expertise in both fields is scarce. The process of
automating SDN networks requires (among many tasks) inter-
plane correlated application self-collection and assembly. As a
result, the orchestrator presented in this paper, named P4click,
provides high-level interfaces in order to transparently deploy
modular control and data plane applications for SDN networks.
This paper describes the architecture design of the orchestrator,
outlines the deployment structure, and provides a general view
of control plane application deployment and data plane pipeline
assembly. Besides, P4click requires no previous knowledge of data
plane programming and provides a simple interface for network
operators that have to deploy new network functionalities. The
results in this paper show which tasks in the network automation
are most influential (timewise) in bringing a network up and
running from the ground up.

Index Terms—SDN, P4, control plane, data plane, automation,
deployment

I. INTRODUCTION

Research on Software-Defined Networking (SDN) has
gained popularity since the OpenFlow protocol was first
published [1]. However, control and data plane decoupling
were already a research topic years before the OpenFlow
publication. For instance, Devolved Control of ATM Networks
(DCAN) or Open Signaling happened in the mid-1990s. Still,
OpenFlow is considered to be the de facto protocol for the first
generation SDN. A considerable number of vendors support
it in their hardware and software switching gear too. As the
OpenFlow versions evolved, more headers and actions were
being supported by the switches.

The changes in OpenFlow to adopt more features and head-
ers implied having to extend the standard continuously. The

ever-increasing use cases and new headers that have become
popular requested new approaches for programmable net-
works. Research and industry have focused on programmable
data planes (e.g., Application-Specific Integrated Circuits
(ASICs)) when the P4 language was first published by
Bosshart et al. [2]. With the advent of OpenFlow and P4,
becoming proficient in control and data plane programming
is complicated. It implicates proficiency in algorithms, ex-
pertise in different languages, and infrastructure management.
Developers and industry miss the connection of network pro-
gramming, deployment, and automation. The management of
networks with many flexible and variable components requires
an all-in-one approach to cover the necessary aspects.

This paper presents an extended work on P4click [3], an
orchestration tool that automates programmable network de-
ployment and management using P4-based modules and con-
trol applications (from the Open Network Operating System
(ONOS) controller). Section II will introduce other research
works related to the developments in P4click. Sections III
and IV serve as a general view of the platform and how
it manages to merge modules and deploy them. The use cases
will list the applications on which P4click could be useful.
The Proof-of-Concept (PoC) results (Section V) show the time
aspects of a full ground-up network deployment, and thus,
the time necessary to wait until P4click brings all necessary
network components up. The tests also show how much two
tenants within a network need to wait until the whole process
is finished and connectivity exists between them. Finally, the
paper lists the major challenges (Section VI) of the current
platform, future work and conclusion (Sections VII and VIII).

II. RELATED WORK

Previous research has already focused on SDN/NFV au-
tomation and deployment. Gharbaoui et al. [4] describe the
automation and deployment of a tenant-based SDN net-
work. The use case shown is built with the Open Source
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MANO, configuring Virtual Network Functions (VNFs) as
SDN switches and controllers. Their results point out that the
deployment time is dependent on the number of VNFs being
used. Riftadi et al. [5] created an Intent Definition Language
(IDL) that uses templates that are later merged to generate
P4 code. The presented framework by Riftadi can install and
remove intents in the field using their Proof-of-Concept (PoC)
implementation. A later work by Riftadi [6] proposed a new
framework with a genetic programming approach to generate
new P4 programs.

The work presented in the current paper (P4click) uses
preconfigured and simplified static modules to create a merged
pipeline. However, other researchers have published about
modular data plane programming, covering an elaborate and
extensive work. One early paper that merges P4 and modular
programming introduced ClickP4 [7] (the similarity with this
name is coincidental). Zhou and Bi present a programming
architecture that decomposes monolithic programs and creates
reusable modules. ClickP4 uses a token-based design to decide
which features process the packet in the pipeline. A later paper
by Zhou, presented FlexMesh [8], a further iteration to the one
presented before [7]. In this later work, Zhou et al. present
an elaborate data plane model runtime-configurable with user-
defined data plane function chains.

Additionally, Soni et al. [9] proposed a system that deploys
independently created modules and merges them (parsers,
deparser, control logic, etc.). The system uses a Linker com-
ponent that merges modules and refactors, decomposes, and
schedules tables. A later research work by Soni et al. [10] pre-
sented a new modular programming framework named µP4.
The authors define the framework as modular, composable,
and portable. This second research work from Soni shows
a high-level abstraction that can build pipelines with target-
agnostic modules. Finally, Hancock et al. [11] and Zhang et
al. [12] propose several solutions for data plane virtualization.

Module 1

Module 2

Module 3

SDNC app 1

SDNC app 2

SDNC app 3

Repository

Fig. 1. Data plane modules have a matching control plane application
deployed at the same time.

III. DESIGN

P4click is a platform that orchestrates data plane modules
and control plane applications into SDN network automation
and deployment. As seen in Figure 1, P4click relies on
the simple principle of matching data plane modules with
SDN controller (SDNC) applications. One data plane module
matches an SDN control plane application, and both are pulled
from the repository simultaneously.

Overall, the system will let network managers decide which
control plane infrastructure to use, that is, the type and number

of controllers, the switching gear to use, and how the data
and control plane look like as seen in Figure 2. The general
overview in Figure 2 is further detailed in Figure 3.

Currently, P4click accepts CLI input and blueprints or
descriptors to build modular SDN deployments. The platform
can download data plane modules from a central repository
and merge them. It also deploys the corresponding control
plane applications in a centralized control plane. When the
platform builds the merged pipeline, it is responsible for
supplying the resulting p4info.txt, and bmv2.json files to one
of the control plane applications.
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Fig. 2. An overview of the P4click orchestrator as per the whole deployment
architecture.

These files are necessary for the pipeconf, which relies upon
one of the various control plane applications. In the current
PoC implementation, the Access-control list (ACL) SDNC
application is responsible for pipeconf configuration in order
to keep the ACL and the rest of the modules independent. In
the tests shown in the Section V, the ACL SDNC application
handles packet in messages for LLDP, ARP, or IPv4 packets.
The rest of the SDNC applications are responsible for L2
forwarding and L3 forwarding.
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Fig. 3. Procedure for generating a data plane pipeline and the control plane
applications.

Composing the pipeline: A straightforward approach

In order to provide a simple procedure to generate data
plane pipelines, modules are packaged as compressed files
(with a .p4z extension) that P4click retrieves from a central
repository. The control plane applications are also retrieved
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and deployed later on. When P4click has decompressed the
data plane modules, it checks the configuration files (from
each module) to process the headers, parser, deparser, etc. It
analyses all modules’ parsers and merges them: the platform
detects the same parse states, the same forward transitions, the
same backward states, builds merged conditional transitions,
and so on. It finds the proper deparsing structure by identifying
the parsing stage of each header. For instance, Figure 4 shows
IPv4 and IPv6 headers being parsed after Ethernet, following
the same order in the deparser.

EthSt Acc

0x0800
IPv4

IPv6
0x86DD

Eth AccSt

IPv4Eth Acc

0x0800

St

IPv6Eth AccSt

0x86DD

TM

Egress / Comp. 
Checksum

Ingress / Verif. 
Checksum

Parser Deparser

V1Model

Fig. 4. Merging 3 different module parsers into the same union parser and
deriving the deparser structure.

The Ingress and Egress match-action pipelines consist of
sequentially applying control blocks from each of the mod-
ules (Figure 5). This approach for integrating the P4 logic
into the merged pipeline expects that control blocks can run
independently. However, modules can detect that if a particular
functionality was executed. For instance, in Section V’s test
case, the ACL module checks if any module has set the
egress port for the current packet being processed (to trigger
PACKET IN messages). In terms of checksum verification and
computation, the functionality is partially supported too.

Module1 
Ingress 
block

Module3 
Ingress 
block

Module2 
Ingress 
block

Module1 
Egress 
block

TM

Egress / Comp. 
Checksum

Ingress / Verif. 
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Parser Deparser
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Fig. 5. Integrating control blocks from modules to the Ingress and Egress
match-action pipelines.

IV. USE CASES

The design of P4click to automate control and data plane
deployment and configuration envisions several use cases. This
section depicts three main use cases:

• Gradual module aggregation: Involves adding new func-
tionalities to one or more existing switches in the net-
work. Since P4click requires no P4 or control plane

programming knowledge, a non-expert network operator
can transparently add modules to the existing switches.

• Sliced pipeline: Secondly, P4click can be used to assign
modules or features to different tenants. The switch would
identify tenants by ingress port, VLAN IDs, IP subnet,
etc. Then control blocks from modules can be linked to
one of the existing slices and their tenants (works similar
to [11]).

• NFV MANO component: Third, due to the open inter-
faces of P4click, third-party network configuration and
management entities can deploy services and network
control applications with a blueprint/descriptor.

V. RESULTS

In the following tests, P4click [13] is running on a virtual
machine (VM) with 32 GB of RAM and 3 cores from an
Intel Xeon E5-1680. To emulate the network, Mininet is
used with the Stratum OS and BMv2 software switches, all
running on a container. The controller is the Open Network
Operating System (ONOS) version 2.2. As mentioned in the
previous sections, P4click handles a complete SDN network
management: from controller deployment, through control and
data plane app retrieval and building, to providing tenant
connectivity. Therefore, our tests have measured the necessary
time to build a ground-up modular SDN network. The test
case includes one tenant (tenant A) constantly sending ICMP
requests to another tenant (tenant B). The test shows the
time that each relevant task takes in the network deployment
until connectivity between tenants exists (i.e., ICMP responses
arrive at tenant A). With this information, each task can be
compared with others and contextualize the results.

P4click first receives a blueprint or processes CLI com-
mands to define pipeline modules, features, infrastructure
details, etc. P4click is responsible for first building the pipeline
that includes different modules. Left boxplot at Figure 6
shows that P4click needed an average of 220 ms to collect
compressed modules and control plane apps from the central
repository and decompress them. The central repository runs
an HTTPS server (see Figure 1). The outlying results in
module retrieval are due to the inconsistencies of the library
when uncompressing modules. To build the merged pipeline
(right boxplot at Figure 6), the orchestrator spent 16 ms on
average. This task involves assembling the parser, ingress and
egress blocks, and the deparser.

Once the P4 pipeline is built, P4click is responsible for
deploying the ONOS controller(s). ONOS is deployed locally
in a container, but P4click supports deploying the SDN
controller in any machine as long as the addressing and
authentication information is provided. Deploying ONOS is
the longest task, which takes 59.5 seconds on average (left
boxplot at Figure 7). Since no hardware switches were used,
P4click deployed Mininet and the Stratum+BMv2 switches
in a container (with a predefined topology and scenario). This
task lasts 2.2 seconds on average (middle boxplot at Figure 7).
Once the controller and the switches are deployed, P4click pro-
vides a network configuration to the controller used for various
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Fig. 6. P4click’s module retrieval process (left)
and assembling a union pipeline (right).
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tasks, mainly, to define the network switches configuration and
management information. The network configuration results
in network discovery (i.e., ONOS detecting the switches and
links). Events like controller-switch connections and networks
discovery (among others) last 4.1 seconds on average in total
(right boxplot at Figure 7).

Once the pipeline is assembled and the infrastructure de-
ployed, P4click compiles the pipeline and distributes the
p4info.txt and the BMv2 configuration files to the ACL SDNC
application, since that is the one carrying the pipeconf for the
SDN controller. The average time to build the P4 app is under
3 seconds (left boxplot at Figure 8). When these tasks are
finished, P4click compiles the ACL, L2 forwarding, and L3
forwarding applications (used in this example) if necessary.
Generally, the repository distributes control plane applications
as oar packages. Building control plane apps lasts 16 seconds
on average (middle boxplot at Figure 8). Installing ONOS
apps on the controller until they become operational slightly
varies from app to app, but average results show that after
1.5 seconds, the apps are ready to function (right boxplot at
Figure 8).

Considering the results of all tasks, the overall tests can
show how much time it takes to build a modular SDN network
from scratch. In other words, the time it takes until connectiv-
ity exists between tenant A and tenant B. From the moment
that P4click starts processing the last submitted command or
deployment descriptor until the first ICMP response arrives at
tenant A: 70.53 seconds passed (worst case scenario). If the
controller is already running, the wait time is reduced to 11.03
seconds. Consider that these results did not include the time
taken to build the control plane applications but included the
rest of the network events.

VI. CHALLENGES

Merging data plane modules and having different control
plane applications running in the same controller implies great
complexity. Configuring the control and the data plane requires
independent code to run seamlessly. We list some challenges
detect while designing the system depicted in this paper.

Inter-module communication

In our approach, modules are expected to run independently
without passing any information among modules. According
to the current design, the module execution logic entails
calling different control blocks per module. This simplifies the
procedure of integrating different modules’ logic. However,
some cases might need an efficient communication interface
that can indicate if a certain action happened. For instance, if
a module performed a forwarding decision (that might not
be overridden), other modules might need to check if this
happened. To exemplify this case, in our PoC test, L2 and
L3 forwarding modules change the fwd done user metadata
field to true when the egress port is set to a value. This
metadata indicates to other modules that forwarding decisions
were made. A similar case happens when a firewall decides
to drop a packet that could also be forwarded to a port by
another module integrated into the pipeline. While this is
partially solved by selecting the order of module execution,
standardized user or local metadata fields (like fwd done)
become a valuable communication interface for modules.

Control plane dependencies

The first conceptual design of P4click intended to have inde-
pendent control plane applications. This can be achieved since
several controllers support archive-based applications that can
be imported at runtime. However, incorporating applications
that support flexible pipelines implies translating high-layer
forwarding abstractions for applications using abstractions
for OpenFlow-based pipelines. For instance, link discovery
applications that process LLDP packets request that any LLDP
packet must be sent to the controller. This is directly mapped
to a flow rule with a particular Ethernet type value as key
and an output action to be sent to the controller. This further
implies that mapping high-level forwarding abstractions from
pipeline-agnostic applications can only be done by the pipeline
interpreter (typically by the pipeconf in the ONOS controller)
associated with the merged pipeline. This condition requires
that specific mappings and forwarding objective translations
must be integrated too in the control plane or delegate to only
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one of the control plane applications (as done in our PoC
implementation).

The cost an inter-layer integration

In the design depicted in this paper, data plane modularity
follows a rigid but straightforward process. The logic of a
module is contained within one or more P4 control blocks,
and the rest of the pipeline information is outlined as YAML
configuration files (although future developments could parse
P4 syntax directly, without needing YAML configuration files).
This type of module brings simplicity to users as no knowledge
of data plane programming is required to build a pipeline,
which differentiates P4click from other projects referenced in
Section II. Unfortunately, this design implicates a very tight
architecture and module composition since control plane ap-
plications are bound to the module as written when packaged
as a p4z module. Further pipeline changes when integrating
several modules (e.g., mixing control blocks, changing tables,
action names, headers/fields, etc.) would also involve changes
in the control plane.

VII. FUTURE WORK

This paper presents an all-in-one orchestrator to deploy
modular data and control plane applications in SDN networks.
However, covering a wide variety of aspects in network au-
tomation and deployment implies simplifying several aspects
too. Having pre-built control plane applications implies that no
data plane header, fields, tables, control block statements, etc.,
can change. There is very little flexibility in this sense as the
current PoC implementation does not consider different header
names, header field sizes, or names if modules are extended.
Besides, the modular approach is simple and straightforward
compared to the ones described [8] [10] [14] in Section II,
which offer other value-added features. P4click does not bound
to any module structure, so integrating with other projects like
µP4 [10] is a plausible extension in order to integrate more
robust modularity. Still, further integration with other modular
structures requires updating compatibility with control plane
applications and how those applications are managed.

VIII. CONCLUSION

This paper describes the structure, functionality, and work-
ing procedure of the P4click orchestrator. To our knowledge,
this is one of the first works that try to encompass a SDN
cross-layer modular network automation. The results show that
that pipeline assembly and compilation are not the bottleneck
in the network but starting the SDN controller is. Having an
already active controller lowers down tenant connectivity time
by almost 60 seconds. If the network deployment only involves
control and data plane application retrieval, assembly, and
deployment, (no control/data plane infrastructure deployment)
the total wait time lowers to 4.7 seconds.
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