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Abstract—Deploying aerial base stations (AeBSs) has been
regarded as an effective solution to wireless network capacity
enhancement in specific areas with excessive traffic burden but
insufficient capacity. Since the traffic distributions in wireless
networks tend to be ever-changing, the deployed AeBS need
to adjust its position to rapidly and continuously adapt to
the drifting capacity enhancement demands, which is difficult
to handle with traditional optimization methods due to high
computational complexity and poor scalability. In this paper,
we design a multi-agent deep reinforcement learning-based 3D
AeBS deployment algorithm with the goal of maximizing the
system throughput, which is able to make decisions in dynamic
environments and conducts in a distributed manner. Additionally,
in order to address the interference issue between multiple
AeBSs, we adopt the Coordinated Multiple Points Transmission
(CoMP) in the air-to-ground communication and propose a
clustering algorithm to form groups of AeBSs for cooperative
communication based on the network interference characteristics.
Simulation results demonstrate that the proposed approach has
significant throughput gains over conventional schemes without
CoMP, and that the proposed multi-agent deep Q network
(MADQN) is more efficient than centralized DQN in deriving
the solution.

Index Terms—Unmanned aerial vehicle; cooperative commu-
nication; capacity enhancement; multi-agent deep reinforcement
learning.

I. INTRODUCTION

With the development of various emerging applications in
the era of 5G, users have higher requirements for mobile
network bandwidth and transmission rates [1]. Especially
when terrestrial base stations are destroyed or overloaded and
can hardly meet the traffic demand of the user terminals, it is
necessary to enhance the network capacity of the current area.
With unique advantages of flexible mobility, ever-reducing
cost and high possibilities of line-of-sight (LoS) links, Un-
manned Aerial Vehicle (UAV) has been widely investigated to
serve as aerial base station (AeBS) in wireless communication
networks [2]. An aerial base station can freely adjust its
location according to the distribution and traffic demand of
users, and has been regarded as an effective supplement to the
existing cellular system to improve the ground wireless capac-
ity and coverage under the ultra intensive service demand.

Generally, a single AeBS can only provide limited coverage,
while a cooperative network of multiple AeBSs can effectively

978-3-903176-36-2 ©2021 IFIP

expand the coverage area and increase the number of served
users [3]. However, interference is a critical factor in multi-
AeBS networks, which severely affects network communica-
tion performance. Coordinated Multiple Points Transmission
(CoMP) has been widely used as an effective approach to
control the interference in traditional cellular networks [4].
With CoMP technology, each user associates with several
BSs collaboratively, transforming significant interference into
cooperative signal sources and maintaining sufficiently reliable
communication links. Rich works have shown that it can
improve the transmission performance in terrestrial cellular
networks [4]-[6]. However, existing work on CoMP for sup-
porting AeBS-integrated networks is still limited.

Optimal 3D placement of multiple coordinating AeBSs
is also a challenging issue. Many works utilize traditional
optimization algorithms to solve this problem [7]-[9], which
have the problem of high computational complexity and can
not guarantee that the computed policy is still the optimal
policy once the network changes. Considering the dynamic
characteristic in multi-AeBS network, these algorithms are
difficult to be applied in practical scenarios. Deep Rein-
forcement Learning (DRL), a most trending type of Machine
Learning (ML), enables a paradigm for decision systems to
accumulate and utilize experience in changing environments.
Many works have investigated problems in AeBS-assisted
wireless networks by invoking DRL algorithms [10]-[14].
However, these studies conduct the proposed DRL algorithms
in a centralized way, i.e., assumes that there is a central
controller which can obtain all information and decide which
UAV take what action. These centralized DRL approaches are
inconvenient due to their large state space and action space.
Fortunately, these challenges can be addressed by applying
Multi Agent Reinforcement Learning (MARL) algorithms,
which handle difficulties in modelling and computation in
distributed manners [15].

In this work, we propose a 3D deployment and user associ-
ation scheme for CoMP-assisted multi-AeBS communication.
The main contribution of this work can be organized as
follows. First of all, a capacity evaluation model of multi-
AeBS in the cooperative communication is established. Next,
in order to address the network interference characteristics,
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an Affinity Propagation (AP) clustering-based AeBS-UE par-
titioning algorithm is introduced to divide AeBSs and UEs
into different cooperative clusters. With this algorithm, AeBSs
severely interfering with each other are divided into a cluster
and provide service for their associated ground users col-
laboratively, converting strong interference into collaborative
signals, thus improving system capacity performance. Finally,
a multi-agent DQN (MADQN) algorithm, which conducts in
a distributed manner and is more suitable for multi-AeBS
environments, is designed for the 3D deployment of multi-
AeBS with the goal of maximizing the system throughput.

The rest of the paper is organized as follows. Section II
presents the related works. In Section III, the system model
of our studied cooperative multi-AeBS is introduced. Then,
a clustering-based cooperation mechanism and a MADQN-
based deployment scheme are designed to maximize the
system capacity in Section IV. Next, simulation results are
presented and discussed in Section V. Finally, Section VI
concludes this paper.

II. RELATED WORK

Early research on AeBS-assisted networks mainly focuses
on the case of a single AeBS deployed. Recently, as the
distribution of users becomes denser and the demands for
communication quality of users increase rapidly, deploying a
single AeBS can hardly meet the communication requirements.
Therefore, lots of attention has been paid to the multi-AeBS
network. Literature [12] and [16] obtain the cell partition of the
users using K-means algorithm and a genetic algorithm based
K-means respectively, and set cluster centers as the initial
locations of the AeBSs. The above works divide AeBSs and
users into different clusters based on geographical information,
ignoring the potential problem brought by interference to sim-
plify the model. However, interference is an inevitable problem
in multi-AeBS networks. In [17], the authors aim to maximize
the minimum achievable system throughput considering co-
channel interference. Reference [18] studies the cross-link
interference between AeBSs and their associated ground users
and jointly optimizes trajectory and power control to achieve
a higher system sum rate. Although these works address the
problem of interference in multi-AeBS networks, they do not
consider the utilization of the CoMP technique to transform
the interference to capacity gain.

The 3D deployment design of UAVs is a significant and
fundamental topic. Recently, much research has designed al-
gorithms for the collaborative deployment of multiple AeBSs.
In [7], a polynomial-time successive AeBS placement scheme
is proposed, aiming to minimize the number of AeBSs while
ensuring that each user is covered by at least one AeBS.
The authors in [8] develope an iterative algorithm to jointly
optimize AeBSs’ placement and user association with the aid
of the gradient ascent, dual-domain coordinated descent, and
bipartite graph matching. Literature [9] aims to maximize the
throughput by optimizing the deployment, transmit power, and
associations of the AeBSs considering backhauling constraints,

and proposes an efficient heuristic algorithm based on shrink-
and-realign process to optimize the placement of AeBSs.
However, the above algorithms require global environment
information to calculate the optimal solution, and the results
need to be recalculated once the network topology changes.
Due to the mobility of AeBSs, their network topology environ-
ment tends to change rapidly, and the process of recalculating
the optimal results is too slow for real-time operation, which
greatly limits the application of these algorithms in real multi-
AeBS environments.

To handle these problems, many works have investigated the
deployment design problem of UAVs by invoking DRL algo-
rithms. Deep Q Network (DQN), a popular DRL algorithm,
has been widely used in the deployment problem of UAVs
[11]. In [11], a UAV positioning scheme is designed based
on DQN to determine the optimal link between two UAVs. In
order to achieve better performance, some works adopt algo-
rithm variations of DQN for the flight control of UAVs, such as
Dueling DQN and Prioritized Replay Double DQN. Literature
[13] utilizes DDQN to optimize the deployment of multiple
AeBSs and results validate that the proposed algorithm can
track the movement of users and obtains optimal downlink
capacity. The Prioritized Replay Double DQN algorithm in
[14] is applied to make multi-ABS placement decision and
improves the coverage rate in complex environment. However,
these proposed DRL algorithms are performed in a centralized
way, i.e., assume that there is a central controller which can
obtain all information and decide which AeBS take what
action. As the number of AeBSs increases, the action space
grows explosively, bringing huge cost of memory and time,
which is impractical for multi-AeBS scenario. But if we
directly apply single-agent DRL algorithms to the multi-agent
settings by letting each agent independently learn its own Q-
function, the environment will become non-stationary from the
perspective of any agent. MARL provides a new perspective
to address these challenges. In this paper, we modify DQN to
extend it to multi-agent environment.

III. SYSTEM MODEL

We consider a multi-AeBS communication scenario where
N AeBSs support K ground user equipments (UEs), as
shown in Fig. 1. The set of AeBSs and UEs are denoted
as N = {1,2,..,N} and K = {1,2,..., K}, respectively.
The locations of AeBS n and ground user k are expressed
as (Tn, Yn, hn) and (2, yx, 0), respectively.

A. Air-to-Ground Channel Model

The transmission link between AeBSs and UEs is an air-to-
ground (A2G) channel. The radio signal transmitted by AeBS
first propagates in free space, suffering free space pathloss.
When it reaches the urban environment, it will be shadowed
and scattered by man-made structure like buildings and trees,
which also brings the excessive path loss. Therefore, the A2G
mean path loss between AeBS n and ground user k can be
modeled as:
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Fig. 1: System model.
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where P}L; represents the free space pathloss which can be
expressed as Pgsk = 20log(4m fedn k/c), where f. is the
carrier frequency, c is the speed of light, and d, ; is the
distance between AeBS n and UE &, which can be obtained as
\/(fvn —26)2 4 (Yn — Yi)? + ha’. NLos and Ny Los
refer to the mean value of the excessive pathloss under the
LoS enviornment and non-line-of-sight (NLoS), respectively.

The probability of LoS is considered as a continuous

function determined by the environment and elevation angle
0., 1 between AeBS n and UE k.

dn,k =

1
T+ aexp [ (Gns —a))
where a and b are environment constants. The probability of
NLoS can be obtained as Py o =1— Pk,
Hence, the average pathloss between AeBS n and UE k is:

PLy = P}fé]; X PLZ’oks + PJT\Lr’fos X PL%ios “)

n,k
PLOS -

3)

B. Capacity evaluation model under cooperative scheme

We assume that multiple AeBSs are able to provide services
for users collaboratively, forming m cooperative AeBS-UE
sets. In m-th cooperative set, the set of AeBSs and UEs are
denoted as N,,, and K,,, respectively.

We divide the AeBSs with strong interference into a coop-
erative set and perform base station cooperation within the set
to convert the strong interference into useful signals, and the
interference outside the cluster becomes negligible. Therefore,
the SINR of the signal received at user k,,, (k,, € K,,) can
be approximated as:

=1
SINRy, = % (5)

where o2 is the noise power.
Then the total throughput of the system can be expressed

as:
0=>"| 3 Blog,(1+SINRy,) (6)
m kin 6 K’VTL

where B is channel bandwidth.

C. Problem Formulation

In this paper, our optimization objective is to maximize the
throughput of the whole system by adjusting the 3D locations
of the cooperative AeBSs and the association of UEs with
AeBSs. Therefore, the optimization problem is formulated as
follows:

max 0
ZTnyYnhn, MmN K,

s.t. Cl :zpmin < Tp < Tmax, V1L € N
C2

C3

Ymin < Yn < Ymax, ¥ € N

Pmin < P < Amax, VR €N (7)
C4 (xn, Yn, hn) # (x,y1, ), Vn,l € Nyn £ 1
C5:N; U..UN,, =N

C6:K, U .. UK, =K

where p is the system throughput in (6). C1-C3 constraint
AeBSs from flying out of the considered region, and C4
represents the collision constraint that prevents AeBSs from
flying to the same position. C5 and C6 represent that all users
in the system can be served.

IV. 3D DEPLOYMENT OF COOPERATIVE AEBSS FOR
CAPACITY MAXIMIZATION

In this section, we propose a two-step mechanism in order
to solve the problem presented in (7). Firstly, we divide
AeBSs which interfere severely with each other into a cluster
according to the interference characteristics. Secondly, we
propose a MADQN-based deployment algorithm to decide the
positions of AeBSs to achieve maximum system throughput.

A. APC-based cooperation mechanism for AeBSs

The A2G channel between AeBSs and ground users is a
LoS-dominated link with inevitably strong cross-link interfer-
ence, especially in multi-AeBS networks. In the deployment
design of the multi-AeBS, many studies adopt a user-clustering
approach based on geographical information to simplify the
system model, which fails to reflect well the interference
characteristics in the actual network. In this paper, we adopt
Affinity Propagation (AP) clustering algorithm proposed in
[19] for AeBS-UE partitioning, considering the interference
characteristics. Specifically, we characterize interference be-
tween AeBSs as similarity matrix, and AP algorithm clusters
data points based on this matrix. After clustering, AeBSs
within one cluster serve their UEs collaboratively, transform-
ing strong interferences to cooperative signals.

Considered a network with N AeBSs, the similarity matrix
is denoted as:

S = [sni]NxN, ¥
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where s,,; indicates the interference of AeBS [ to AeBS n
associated users Ky, n1 = > cp PPLyy,.

AP algorithm treats all data points as potential cluster
centers, called exemplar. Two types of information are passed
between data points in the AP algorithm, responsability R
and availability A. AP clustering is a process of iteratively
updating the matrix R = [r,, ;] and A = [ay ]. 7, indicates
whether AeBS [ is suitable to be the exemplar of AeBS n, and
ay, reflects the suitability of AeBS n to choose AeBS [ as its
exemplar. The update process of 7, ; and a,,; is using the rule
of Eq. 1 and Eq. 2 of [19], respectively. The detailed process
of our proposed AP clustering-based AeBSs cooperation is
illustrated in Algorithm 1.

Algorithm 1: Affinity Propagation Clustering for AeBSs
Cooperation

1 Input: Locations of AeBSs and UEs

2 Output: AeBS-UE cooperative set C

3 Initialize responsibility R = [0]nx~ and availability
A=[0]nxn

4 Get initial AeBS-UE association: UE k chooses the AeBS
with the strongest receiving power, ie.,

Ny = argmaxP, PL,, i
neN
5 Calculate similarity matrix S according to (8)

6 for iteration < 1 : max_iteration do
7 Calculate responsibility R and availability A and
broadcast
8 for each AeBS n € N do
9 Get cluster centers:
L exemplar(l) = argmax, c - {an,i + Tn,1}

B. MADQN-based 3D Deployment of multi-AeBS for Capacity
Maximization

We propose a MADQN-based 3D deployment algorithm
with the goal of moving AeBSs to achieve better capacity
performance. In our proposed scheme, the basic components
are defined as follows:

State: The state of AeBS n is s, = {l,,u,s}, where
l, = (zn,Yn,hn) is the current 3D location of the AeBS
n, u represents the locations of all ground users and s is the
locations of other AeBSs.

Action: The action of AeBS n is moving torward 6 di-
rections or remaining stationary, i.e., a, = {LEFT, RIGHT,
FORWARD, BACKWARD, UP, DOWN, HOVER}.

Reward: The reward is the total system throughput in (6)
after each AeBS’s position changes at time ¢.

The goal of each agent is to maximize future rewards by
selecting actions through interaction with the environment.
Generally, immediate rewards corresponding to the actions
selected at each point in time are usually not indicative of a
good or bad strategy. Reinforcement Learning assumes that
future rewards decay over time with a discount factor .
Therefore, the sum of future reward at the moment ¢ can be
expressed as:

Algorithm 2: MADQN for Multi-AeBS Deployment

1 Initialize:

2 Replay memory M with capacity N

3 Online network @ for each AeBS n with random weights 6,,
4 Target network @’ for each AeBS n with weights 0;, = 0,

5 The distribution of ground UEs

6 for episode < 1 : max_episode do

7 Initializes the locations of AeBSs and get initial state s}’

8 for step < 1 : max_step do

9 for AeBS n<+1:N do

10 Choose an action a¢,, according to e-greedy
policy: with probability 1 — €, AeBS n selects
the action an, = argmaxQ™ (Sn,, an,;0n);

QAn
otherwise, selects a rartldom action.

1 Store the action a¢,, into the list ai*, which also
holds the action selections of the other agents
in step ¢;

12 Execute the actions in the list a}’

13 Execute AeBSs clustering according to Algorithm 1
and calculate the throughput under the cooperation
scheme.

14 Observe reward r; and get the new state s’ 1;

15 Store (si', ay,re,siyq) in replay memory M

16 Sample a random minibatch D from M

17 for AeBS n<+1:N do

18 Perform a gradient descend step on loss function
according to (12) with respect to weight 6,
using data set D

19 Every C steps update target nework for each
AeBS n: 0], + 0,

T
Re=Y"+"""ry. )

t'=t

For agent n, the maximum action value function Q* (s, a,)
represents the maximum expectation of the reward that can be
achieved by a subsequent arbitrary strategy m,, after observing
state s, and executing action a,, which can be defined as
follows:

Q*(371,7 an) = H;&X]E [Rt ‘ St = Sn, Gt = An, 7Tn] (10)

The above formula can be reduced to Bellman’s equation:

Q*(3n7an) =E|r, +'7H;‘:1XQ* (S;“CL;) | Snyan (11)

Loss function is used to gauge the error between the
predicted value and the target value, which can be formulated
as:

Ly, (en) =E [yn - Q (Sna (2778 en)]z (12)

where y, = r + 7 - maxq Q (sp,ar,;0,). The Q network
needs to be continuously optimized to minimize the loss
function in each iteration of the training process. To ensure
the computational efficiency, stochastic gradient descent is
generally used to optimize the loss function and update the
weight parameters. Detailed steps of our proposed MADQN-

based multi-AeBS 3D deployment algorithm are shown in
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Algorithm 2.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, the performance of our proposed MADQN-
based 3D deployment scheme of cooperative AeBSs is evalu-
ated. We consider a region of 6km x 6km, in which the ground
user terminals are randomly distributed. The vertical flying
region of AeBSs is [100m,300m]. The main parameters of
network environment are listed in the Table I. Each AeBS has
its own online and target network, and each neural network is
a 3-layer fully connected neural network that contains a hidden
layer with 100 neurons and ReLU activations. The simulations
are implemented based on the Python 3.6 and PyTorch 1.8
environment.

TABLE I: Main simulation parameters

Simulation Parameters Values
Carrier frequency 2500 Hz
Channel bandwidth B 20 MHz
Transmit power of AeBS Py, 30dBm
Environmental constants a, b 9.61, 0.16
Excessive pathloss 11,05, MNLosS 1,20
Speed of light c 3 x 10% m/s
Thermal noise power density -174dBm/Hz
Learning rate 0.1
€ in e-greedy 0.1
Memory size 10000
Batch size 512
Discount factor 0.9

First of all, we validate if the considered system remains
stable by implementing our proposed MADQN algorithm for
multi-AeBS cooperative communication in the Fig. 2. In all
experiments in this work, we set the number of steps in each
episode as 200 and the learning starts after the number of
samples of transitions is larger than the capacity of replay
memory. Fig. 2a shows the reward achieved per episode during
the training stage of the MADQN. The reward curve starts to
rise after 50 episodes and gradually converges. Fig. 2b shows
that the loss function of our proposed algorithm decreases
rapidly and becomes smoother as the training proceeds, which
indicates the trained MADQN is convergent.

Fig. 3 plots the 3D positions of the AeBSs and UEs, and
different colors characterize the association between AeBSs
and UEs. We set the number of AeBSs and ground UEs
as 4 and 50, respectively. At initial stage, as shown in the
Fig. 3a, AeBSs and UEs are randomly distributed, and each
UE chooses AeBS with the strongest signal as its service
BS. Fig. 3b and Fig. 3c present the AP clustering and K-
means result of initial stage, respectively. As we can see,
the K-means-based AeBS-UE partitioning method is simply
based on the location information of ground users and AeBS
selects UEs which are closer rather than UEs with better
channel conditions. In addition, clustering result by K-means
is uncertain and is influenced by the initial setted clustering
center, while AP clustering can obtain definite clustering
results once the interference characteristics are determined.
Fig. 3d shows the converged locations of AeBSs and AeBS-
UE’s association by our proposed scheme. It can be observed
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Fig. 2: Convergence of proposed MADQN. (a): reward
versus episodes; (b): loss versus training steps.

that AeBSs are divided into 2 clusters, one of which contains
3 AeBSs providing service collaboratively for the users within
the cluster.

To verify the capacity performance improvement brought by
the cooperative scheme, we compare it with the "No-CoMP"
solution, in which each UE chooses AeBS with the strongest
signal as its service BS, without the process of clustering
and cooperation. Fig. 4 shows that the proposed cooperative
mechanism gets a higher system spectral efficiency when the
number of AeBSs increases, while the spectral efficiency of
"No-CoMP" system decreases instead of increasing due to the
increase of introduced interference. Fig. 4 also shows the effect
of the number of UEs on the performance. In the proposed
cooperative mechanism, additional users can also collaborate
with the AeBSs to establish links and convert the interfering
signals into collaborative sources, thus improving the system
spectral efficiency. While the No-CoMP system fails to support
a large number of users, since there is little significant increase
in system spectral efficiency as the number of UEs increases.

We compare our proposed MADQN with centralized DQN
in computational time and average converged spectral effi-
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UEs. (a): Initial stage; (b): Initial stage after AP clustering.

(c): Converged stage by K-means algorithm adpoted in [12].
(d): Converged stage by our proposed algorithm.

ciency, as shown in the Fig. 5. We train the MADQN and
centralized DQN over 400 training episodes and set the num-
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ber of steps in each episode as 200. The two algorithms show
little difference in converged . Although the converged system
spectral efficiency of DQN is 3.46% higher than MADQN,
MADQN tends to be more stable as the number of AeBSs
increases. In terms of running time, MADQN consumes less
time to train than centralized DQN thanks to its smaller size
of action and state space. Additionally, the time required for
DOQN increases significantly as the number of AeBS increases,
while MADQN remains relatively stable.

VI. CONCLUSION

This paper proposes a two-step approach for capacity max-
imization in the multi-AeBS network, in which AP clustering
is used to obtain the cooperation scheme according to the in-
terference characteristics and MADRL is utilized to make de-
ployment decisions of AeBSs. Simulation results demonstrate
that the proposed cooperative scheme can greatly improve
the network capacity performance since strong interference
is eliminated. Result also shows that our proposed MADQN-
based multi-AeBS deployment algorithm can achieve higher
efficiency in time compared to centralized DQN. In future
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work, we will consider the cooperation mechanism between
the AeBS-assisted network and the terrestrial network. More
factors, such as energy consumption and resource allocation,
will also be considered in the formulated optimization prob-

lem.
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