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Abstract—With the development of 5G, the distribution of base
stations tends to be dense. Compared with the traditional network
architecture, Cloud Radio Access Networks(C-RAN) architecture
can satisfy the current requirements of high bandwidth, low
latency and low energy consumption. Currently most energy-
saving scheme for C-RAN is complex with time cost computing,
which may not be suitable for large-scale region. For the problem
of energy-efficient resource allocation for dense distribution
of Remote Radio Heads(RRHs) in C-RAN, we use K-means
clustering algorithm to simplify the network topology and reduce
the complexity under a distributed manner. Aiming at the
problem of network resource allocation in C-RAN, we use A3C
algorithm to allocate network transmission power, and compare
the total energy consumption, system energy efficiency and Signal
to Interference plus Noise Ratio(SINR) value of terminal devices
through simulation experiments. The experimental results show
that in the same network environment, A3C algorithm has
the highest energy efficiency, and can keep the SINR value
of terminal devices in a reasonable range, which proves the
effectiveness of A3C algorithm.

Index Terms—5G Heterogeneous networks, C-RAN, K-means,
A3C, Energy efficiency

I. INTRODUCTION

With the rapid development and extensive commercial
deployment of the 5th Generation Mobile Communication
Technology(5G), we can use higher-speed and lower latency
network services through 5G devices, which also leads to
the further growth of mobile data traffic [1]. Access network
is gradually becoming a bottleneck that seriously affects the
system performance [2], so a new network framework is
urgently needed [3].

Overall, the main challenges faced by operators are as
follows: (1) High energy consumption due to the use of a large
number of Base Stations(BSs) [4]. (2) Network operation and
maintenance costs continue to increase. (3) Frequent migration
of User Equipments(UEs) leads to low utilization efficiency of
BSs [5].

In the face of the above challenges, advanced intelligent
wireless network architecture will be adopted in the future to
reduce network cost and meet the requirements of low latency
and low power consumption [6]. Using C-RAN in 5G network
will be the most favorable choice for mobile operators. C-RAN
architecture not only reduces the operation and maintenance
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costs, but also provides advanced and energy-efficient trans-
mission wireless communication system. However, it brings
some technical challenges. In the C-RAN architecture, there
are a large number of Building Base band Unites(BBUs) and
RRHs. In order to ensure the efficient and stable operation
of the system, the computing resources in BBU pool, the
transmission power of RRHs and the connection relationship
between RRHs and UEs should be controlled and distributed.
How to efficiently and intelligently allocate resources for C-
RAN is the problem this paper attempts to solve.

The research in this paper is based on C-RAN architecture.
Firstly, we use K-means clustering algorithm to obtain the
connection relationship between RRHs and UEs, and inde-
pendently allocate network resources for each cluster of RRHs
and UEs, so as to simplify the network topology and reduce
the complexity and computation of the problem. Based on
the connection relationship obtained by clustering algorithm,
A3C algorithm is used to allocate network resources for each
cluster. Finally, different reward functions and optimization
algorithms are compared through simulation, and the advan-
tages and disadvantages of different reward functions and
optimization algorithms are analyzed and discussed to verify
the effectiveness of the algorithm. The resource allocation
mechanism proposed in this paper has better performance
than Q-learning and DQN algorithms. It can make the system
have higher energy efficiency on the premise of maintaining
acceptable latency.

II. RELATED WORK

As a core technology of 5G, Ultra-Dense Network needs to
apply clustering algorithm to simplify the network topology
and reduce the complexity of the problem [7].

Several articles discuss the clustering algorithm in C-RAN.
In [8], in order to reduce the interference and improve the
utilization efficiency of network resources, a fast convergent
KNN algorithm is designed. However, this study does not
involve efficient allocation of network resources. In [9], this
paper proposes a two step joint clustering and scheduling
scheme for coordinated multipoint transmission in hetero-
geneous ultra dense networks, which considers the impact
of load on the availability of network resources. Simulation
results show that the scheme can effectively improve the
average throughput of the system. In [10], in this study,
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a data driven resource management framework is proposed,
which groups base stations into different clusters and identifies
cluster centers. On this basis, the transmission power of the
cluster center is reduced to reduce the interference to the
adjacent base stations of the cluster. Compared with the above
clustering algorithms, the K-means used in this paper has the
advantages of simple calculation and efficient.

Meanwhile, articles that discuss the network resource al-
location mechanism in C-RAN. In [11], this paper mainly
considers the computing offload of IoT application in MIMO
C-RAN. In this paper, a supervised deep learning algorithm is
proposed to minimize the total transmit power of the Internet
of Things while meeting the requirement of computing task
latency. In [12], an integer linear programming with the objec-
tive of minimizing the total cost is proposed to optimize the
function distribution of BBU pool and RRHs, and genetic algo-
rithm is used to optimize the allocation of computing resources
in C-RAN network. In [13], unsupervised feedforward neural
network is applied to transmit power optimization of C-RAN
system. Considering both uplink and downlink, the transmit
power is optimized by using directly measurable channel gain
without user location information. In [14], by using the dy-
namic remapping capability of C-RAN, the RRH is configured
to the appropriate baseband cell sector in the time-varying
service environment. At the same time, genetic algorithm and
discrete particle swarm optimization are proposed to solve
the network resource allocation problem. Simulation results
show that the proposed algorithm can reduce the proportion of
blocking users in the network. Obviously, the above algorithms
are also very efficient in network resource allocation, but they
do not take into account the complex network topology caused
by the massive network devices in Ultra-Dense Network. On
this basis, this paper uses clustering algorithm to reduce the
complexity of network topology.

III. SYSTEM MODEL

In this section, we establish a mathematical model of
network resources in C-RAN architecture. The network with
i =1{1,..,N} BBUs and j = {1,..., M} RRHs, each BBU
can connect with several RRHs, which depends on the network
traffic condition and the geographical position.

The BBU’s power consumption consists of two parts: the
static power consumption and the dynamic power consump-
tion. The static power consumption is the power consumption
of a BBU without any traffic load. The dynamic power
consumption is the additional power consumption caused by
baseband processing, cooling and etc. The power consumption
rate of the i-th BBU is PPBY(t) at time t. The static power
consumption and the dynamic power consumption are denoted
as P (t) and PP (t). PP (t) has linear relationship with traffic
rate 7;(¢) on the i-th BBU, «; is the coefficient. The power
consumption rate of the i-th BBU PPPU(t) can be expressed
as
PP(t) = ayri(t) (1)

K3

PPBY(t) = PP (t)+ PP (t) )

There are k = {1,...,WW} UEs in this network, each UE
can transfer data by connecting to a RRH. The SINR value of
k-th UE which receives the j-th RRH is denoted as ;5. s;x(t)
denotes the connection relationship between RRH j and UE k
[15]. s;x(t) = 1 denotes that the j-th RRH is connected with
the k-th UE. Assuming that p;(¢) is the power of transmission
allocated by the j-th RRH to the k-th UE. g;; denotes the
channel decay between j-th RRH and k-th UE. Additionally, o
is the Gaussian white noise in the environment. The expression
of SINR value vy is

_ sk (0)Pjk (1) gk
Yik = 1
Dic1,ing Sik()Pik(t)gir + 0

The power consumption rate of the j-th RRH is denoted as
PJ-RRH (t) [16]. The total energy consumption of the j-th RRH
is ECRAH

3)

w

PRRFE @) =" s (t)pjn(t) 4)
k=1
ot

ECHRT = /O PRI (1) dt )

The total energy consumption of the i-th BBU is ECJB BU,

t
ECPP — [ PPV dr (6)
0
The total energy consumption can be expressed as:
N M
ECiotar = »_ ECPPU 4+~ pCRRM! (7)
i=1 j=1

At time t, the k-th UE data transfer rate is denoted as r ;4 (¢),
and the j-th RRH required data rate is denoted as r;(t).

w
ri(t) = sik(t)rie(t) (8)
k=1

s;;(t) denoted as the connectivity of the i-th BBU with the
j-th RRH, the traffic load of i-th BBU r;(¢) can be expressed
as

M
ri(t) =Y si(t)r; (t) ©)
j=1

The downlink channel capacity of the k-th UE is C}j;, which
can be expressed as

Cii(t) = logy (1 + vjk)

The transferring latency of k-th UE is denoted as Dy(t),
and by (t) is the allocated bandwidth of k-th UE.

(10)

Dy (t) = 7jx(t)/bi(t) (11)
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Our goal is to minimize energy consumption FECiuq,
meanwhile ensuring the coverage, signal strength, SINR value
and transferring latency.

The constraints are:

M
> sik(t)pik(t)gjn>warin (12)

j=1
Vik>OMin (13)
PPPY(t) < Pijay (14)
P (1) < PET (15)
Thtaz(k)>Dy(t) (16)

To be specific, constraint (12) indicates that the receiving
power of UEs should meet the minimum constraint wpz;n,
Z;vil sk (t)pjk(t)g;k is the receiving power value. Constraint
(13) indicates that the SINR value v,z should meet the
minimum constraint ¢ps;,. Constraints (14-15) indicate that
the power of BBUs and RRHs should be lower than the
rated maximum power [17]. Constraint (16) indicates that the
transferring latency Dy (t) of k-th UE should be lower than
the maximum transferring latency Tas.. (k), different types of
services need to set different maximum transferring latency
constraints which is adaptive to the UE ID k.

IV. DRL-BASED RESOURCE ALLOCATION MECHANISM

In this section, we proposed an DRL-Based resource allo-
cation mechanism. This mechanism works in C-RAN archi-
tecture shown in Fig.1. In order to reduce the complexity of
the problem and the amount of computation, we use K-means
clustering algorithm to cluster UEs and allocate them to the
nearest RRHs, and then use A3C algorithm to allocate the
network resources in each cluster.
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Fig. 1. The C-RAN architecture structure diagram.
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K-means is an iterative clustering algorithm, which is the
most commonly used clustering algorithm based on Euclidean
distance. The algorithm considers that the closer the distance
between two targets is, the greater the similarity is. Based on
the result of this algorithm, UEs are assigned to the nearest
adjacent RRHs. Then, the connection relationship between
UEs and RRHs can be obtained. This step simplifies the
network topology, reduces the complexity of the problem and
the amount of computation required.

Next, A3C algorithm is used to allocate power and resources
for each cluster. A3C is an actor-critic algorithm in rein-
forcement learning algorithms, which combines the advantages
of value-based algorithms and policy-based algorithms. A3C
algorithm not only can deal with discrete and continuous
problems, but also can asynchronously update to improve
learning efficiency. The algorithm flow chart is shown as Fig.2.

| Initialize the UEs clusters I

[

—'| Compute the distances, Classify the UEs |

Cluster centroids
change?

Initialize environment and threads

[

Perform optimization and compute
network parameters

Meet constraints
and termination
conditions?

Perform asynchronous and update
parameters

l

Export the solution

Fig. 2. The flow chart of the algorithm.

As shown in Fig.3, the A3C algorithm contains n worker
threads. Each thread has the same network structure. These
threads run independently and update the shared neural net-
work model parameters without interference with each other.
These threads regularly update their own neural network pa-
rameters to the public neural network to guide the environment
interaction [18].

The agent manage to obtain the maximum reward according
to the current environment, and chooses action based on it. The
reward expectation can be expressed as:
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Fig. 3. Overall structure of A3C algorithm.

Ep[X] =) PX; a7

Where X; is each possible value of X and P; is the
probability of each corresponding X;. The expectation of
reward can be regarded as the weighted average of value X
and weights P;.

The value function V F(s) is regarded as the expected
reward. Specifically, the reward that can be obtained in the
current state s is the sum of the next stats s’ and the reward
r during the state conversion. 7)(s) denotes the probability of
choosing action « in state s. V F(s) can be expressed by the
following equation:

VE(s) = Egys))[r +7VE(s)] (18)

The action value function QF (s, a) is the value function of
A3C. QF(s,a) is the value function corresponding to a single
action:

QF(s,a) =7 +~yVF(s) (19)

The A3C algorithm defines the advantage function
AF(s,a), which can be used to evaluate the value of the
current action relative to the average:

AF(s,a) = QF(s,a) — VF(s) (20)
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In each training epoch ¢, the network reports to the DRL
agent the current status of all connections between BBUs
and RRHs, RRHs and UEs. The status mainly includes the
transmission power and SINR value. The DRL agent calculates
the reward based on the value of the last action. Then, the
agent makes an action decision according to the state s and
the transmit power allocated from each BBU ¢ to each RRH
7 and from each RRH j to each UE k and the SINR value
of the UEs. The definitions of state space, action space and
reward function of A3C are as follows:

State space: state space s mainly includes the connection
relationship between BBUs, RRHs and UEs, the allocated
transmission power and the SINR value of UEs.

Action space: action space a is defined as the allocation of
transmission power and computing resources among BBUs,
RRHs and UEs. The minimum particle size of power adjust-
ment is 0.01W.

Reward: the reward represents the energy efficiency of the
system and the performance of the mechanism. The greater
the reward, the higher the energy efficiency. Here are three
different reward functions considered:

(1)The first reward function R1 is defined as:

Ty
il E Ototal

where r,, is the total required data rate, and EC}ytq is the
value of energy consumption after performing this action.

(2)The second reward function R2 is defined as:

Ty
R2 =
ECiotal — QLEBBU—diff

21

(22)
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Where ¢l is the normalization coefficient of Eppy_diff-
Eppu—aifys is the difference between the maximum energy
available of BBUs and the power currently allocated by the
BBUs:

T N
Eppu—diff = / Z(Pﬁff—PiBBU(t))dt (23)
t=0 ,_

Here the PHBY is the maximum energy consumption of
the i-th BBU, the PPBU (t) is the current power consumption
of the i-th BBU. Sum the difference between the two values
up, and integral it by time, the Eppy_q:;5 Will be obtained.
By introducing the difference between the maximum energy
available of BBUs and the power currently allocated by the
BBUs, the power limit of BBUs can be guaranteed. When
the power of BBUs decreases, the reward increases and the
punishment decreases.

(3)The third reward function R3 is defined as:

Ty

R3 =

24

ECiotat — Q1EBBU—diff — 12ERRH—diff (24)

Where ¢2 is the normalization coefficient of Frrp_qdify.

Here, Errr—qifs is the difference between the maximum

power of RRHs and the current power consumption, which
is given by the following equation:

T M
ERrb-diff = / > (Piiit = PRRH(1)dt - (25)
t=0 5

Where PR is the maximum transmitting power of the
j-th RRH and P*R#(t) is the current power of the j-th RRH.
Similar to the case of R2, the difference between the maximum
power and the current power of RRH is also considered in R3.
That is, the power limitation of the RRHs is also satisfied.
When the power of RRH decreases, the reward increases and
the punishment decreases.

V. SIMULATION RESULT AND DISCUSSIONS

In this section, we describe the parameters setting of simu-
lations and the analysis and discussion of the results.

A. Parameter Settings

Next, we numerically evaluate the performance of the pro-
posed Al-based resource allocation mechanism. We consider a
network which includes 3 BBUs and 10 RRHs. That is, N=3,
M=10 serving W=30 UEs. In this network, different types of
UEs have different requirements for network resources, and
the network resource requirements of the UEs change with
time. The traffic data of each UE is randomly selected from
an open source dataset, which logging the user activity within
the TIM (Telecom Italia Mobile) cellular network for the city
of Milan during the months of November and December 2013
[19]. And we set the pathloss between RRHs and BBUs at
148.1429.3logs2(d). Other parameter settings can be found in
TABLE 1.

TABLE I
SIMULATION PARAMETERS

Parameters [symbols] Values [units]

Number of BBUs, N 3
Number of RRHs, M 10
Number of UEs, W 30
Noise power spectral density, o -174 dBm/Hz
Static energy consumption of BBU in active, P (¢) 50 W
Static energy consumption of BBU in sleeping, P (t) 10W
Dynamic energy consumption of BBU, PP (¢) 5-120 W
Energy consumption of RRH, P/*H (t) 20-80 W
Data rate requirement of UE, 7 (t) 2-10 Mbps
Minimum SINR of UE, ¢sin -45 dBm
Maximum power consumption of BBU, P2 5U 170 w
Maximum power consumption of RRH, PfiEH 80w
Maximum transferring latency, Tasq. (k) 200 ms
Normalization coefficient of Eppy—aifys, ql 0.1
Normalization coefficient of Errm—aif s, g2 0.3

B. Simulation of K-means Clustering Algorithm

The future network topology will become more and more
complex. Therefore, it is necessary to cluster the whole dense
network reasonably, simplify the network topology and reduce
the computational complexity of resource allocation. In this
paper, the UEs are clustered based on the distance, and
then connecting to adjacent RRHs. Supposing in an area of
1000mx1000mx1200m, there are 30 UEs of various types
distributed intensively and randomly. The distribution of UEs
satisfies Poisson distribution. Based on K-means clustering
algorithm, we obtains the clustering results of UEs, as shown
in Fig.4, which is a possible UEs distribution in 3D space.
It can be seen that all the UEs in the region is divided into
three clusters, and there is enough isolation space between
different clusters, which effectively avoids the interference
between clusters.

C. Performance of Different Reward Functions Within A3C
Algorithm

After connecting UEs with RRHs reasonably by using K-
means clustering algorithm, A3C algorithm is used to control
whether the BBUs sleep or not and the transmitting power
of RRHs. The performance of A3C algorithm with different
reward functions is analyzed by simulation. In DRL methods,
the strategy is improved by numerical iteration to get the
optimal value. At the same time, through policy iteration,
the agent redefines the policy at each epoch step to obtain
the optimal policy. It converges when the optimal policy and
optimal value are found [20]. In this paper, if the compensation
deviation is at least 10 steps in the range of (0,0.3), the method
is considered to be convergent. Meanwhile, the exhaustive
search method is used to obtain the global optimal value
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Fig. 4. Clustering result of UEs based on K-means algorithm.
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Fig. 5. Convergence analysis of A3C algorithm with different reward function.
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Fig. 6. The cumulative distribution of SINR of A3C algorithm with different
reward function.

of energy efficiency as the benchmark. As shown in Fig.5,
we can observe that A3C with R3 has the best performance,
and the obtained scheme has the lowest energy consumption,
while keeping the SINR value within a reasonable range. The

performance of A3C with R1 is close to A3C with R2, but they
are weaker than A3C with R3. Compared to A3C with R1 and
A3C with R2, considering the power limitation of BBUs and
RRHs, A3C with R3 has faster convergence speed and higher
reward. The SINR values of the schemes based on the three
reward functions meet the minimum threshold. The results are
shown in Fig.6.

D. Performance of Different Resource Allocation Methods

In this part, A3C is compared with DQN and Q-learning
respectively. Due to the superiority of R3 performance, it is
used as a reward function. The result as shown in Fig.7 (a) and
(b), compared to other two RL algorithm, A3C yielded higher
rewards and lower energy consumption. The effectiveness of
the A3C with R3 framework can be shown. The cumulative
distribution of SINR of different algorithm with R3 as shown
in Fig.8. Compared to the other two RL algorithm, A3C
with R3 has the highest SINR value. The SINR value of
the other two RL algorithm are very closing, but they are
all lower than A3C with R3. Meanwhile, the SINR value of
the three RL methods meet the constraints. Obviously, A3C
algorithm achieves better performance than other algorithms,
and the SINR value satisfies the constraints, which proves the
effectiveness of our mechanism.

Among the three RL methods, A3C has the best perfor-
mance, the highest reward, the highest energy efficiency. The
main reason is that A3C method can learn stochastic policies
by combining “actor” and critic” as well as asynchronous
workers. In addition to A3C, DQN performs best among the
three RL methods, while Q-learning method performs poorly.
Compared with Q-learning method, DQN method introduces
experience replay and off-policy strategy to improve the per-
formance.

VI. CONCLUSIONS AND FUTURE WORK

The research goal of this paper is to optimize the energy
efficiency and energy consumption of C-RAN heterogeneous
network on the premise of ensuring network QoS and consum-
ing less computing resources. K-means clustering algorithm
is introduced to obtain the connection relationship between
RRHs and UEs to simplify the network topology and problem
size. On this basis, a DRL framework based on A3C algorithm
is proposed to obtain the optimal solution. The algorithm
solves each cluster to get the network resource allocation
scheme. Through the analysis and discussion of the simu-
lation results, the effectiveness of the framework is verified.
Compared with other methods, the mechanism we proposed
achieves better performance and meets the QoS requirements
of different types of UEs.

In the future work, we need to consider a more complex
scenario with more BBUs, RRHs and UEs as well as the
mobility of UEs. Additionally, different clustering algorithms
should be considered for further work. Different clustering al-
gorithms have different advantages and disadvantages, suitable
for different scenarios, we will discuss this kind of problems
in the future work.
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Fig. 8. The cumulative distribution of SINR of different algorithm with R3.
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