
An In-Kernel Solution Based on XDP for 5G UPF:
Design, Prototype and Performance Evaluation
Thiago A. Navarro do Amaral∗, Raphael V. Rosa†, David F. Cruz Moura†, Christian E. Rothenberg†

School of Electrical and Computer Engineering (FEEC)
University of Campinas (UNICAMP)

Campinas, Brazil
∗t159121@dac.unicamp.br, †{raphaelvrosa, dfcmoura, chesteve}@dca.fee.unicamp.br

Abstract—The edge computing infrastructure can scale from
datacenters to single device. The well-known technology for fast
packet processing is DPDK, which has outstanding performance
regarding the throughput and latency. However, there are some
drawbacks when the usage is done in the edge: (i) the polling
mechanism for packet processing keeps the CPU exclusively occu-
pied even if there is no traffic, leading to wasted resources; and (ii)
DPDK interface becomes unavailable for the applications inside
the host, so the integration between a non-DPDK application
and a DPDK application becomes a hard task. In this paper,
we propose an open-source in-kernel 5G UPF solution based on
3GPP Release 16 to be deployed in a restrictive environment like
MEC, where MEC host and UPF are collocated with the Base
Station, sharing the same computational and network resources.
The solution leverages the eBPF/XDP, a novel Linux kernel
technology for fast packet processing. We show it can scale and
achieve 10 Mpps using only 60% of the CPU with 6 cores.

Index Terms—5G networks, fast packet processing, XDP, eBPF,
MEC, UPF.

I. INTRODUCTION

Nowadays, three paradigms are changing the design of
the network infrastructure: SDN [1], NFV [2], and cloud
computing. These models make 5G networks more flexible,
scalable, open, and programmable. Though, one of the main
challenges remains meeting uRLLC (ultra-reliable low-latency
communications) requirements. To meet these specific require-
ments, the MEC (Multi-Access Edge Computing) [3] was
introduced to reduce this gap.

There are two key components in MEC: MEC host and
UPF (User Plane Function). The former one is a general
purpose computing facility that provides computing and stor-
age resources to applications [3], while the latter is mainly
responsible for handling user traffic to the appropriate DN
(Data Network). These components could be collocated within
the Base Station (edge), sharing the same network and com-
putational resources. The edge computing infrastructure can
scale from datacenters to single devices [4], depending on the
use case requirements. So, because of this diversity, portable
solutions for fast packet processing might be considered.

DPDK is a well-known fast packet processing technology.
Although it has an outstanding performance regarding the
throughput and latency [5], there are some drawbacks for a
typical MEC deployment scenario: (i) DPDK support by the
NICs; (ii) the polling mechanism for packet processing (DPDK
Poll Mode Drivers) keeps the CPU exclusively occupied even

Fig. 1: Simplified XDP architecture diagram with the possible
actions that can be applied to the received packet before
the socket buffer allocation by the operating system. Source:
adapted from [7].

if there is no traffic, leading to wasted resources; and (iii)
DPDK interface becomes unavailable for the applications
inside the host, so the integration between a non-DPDK
application and a DPDK application becomes a hard task [6].

In this paper, we propose an open-source1 in-kernel solution
based on 3GPP Release 16 as an alternative for 5G UPF
(User Plane Function). The solution leverages the eBPF/XDP
(eXpress Data Path), a novel built-in Linux kernel technology
for fast packet processing, which has advantages over DPDK
[6], i.e. (i) integrates cooperatively with the regular networking
stack; (ii) does not require dedicating full CPU cores to packet
processing. We show the proposed solution can scale and
achieve 10Mpps using only 85% of the CPU with 6 cores.

The rest of the paper is organized as follows. The section II
describes the in-kernel technology for fast packet processing
(eBPF/XDP) and the 5G System (5GS) architecture. The sec-
tion III elaborates the design and explains the key components
used in the implementation. The section IV describes the setup
and the test cases for the performance evaluation. The section
V shows the results of the proposed solution and the analyses.
The section VI describes the related works. The conclusions
are given in the last section.

II. BACKGROUND

A. eBPF

It is a general purpose engine that allows you to execute
instructions in the Linux kernel itself [8]. It was built around

1https://github.com/navarrothiago/upf-bpf

2021 1st Joint International Workshop on Network Programmability and Automation

978-3-903176-36-2 ©2021 IFIP 146



two goals: (i) to have minimal overhead when mapping these
instructions to native instructions and (ii) to be able to ensure
that the program is safe at load time. This technology has
been available since kernel version 3.14. The program can
be hooked in specific areas (e.g. network stack) in the Linux
kernel and its execution is triggered by an event (e.g. a received
packet). The eBPF program portability to different Linux
kernel versions has been addressed by the CO-RE (Compile
Once, Run Everywhere) technology [9]. Our proposal is based
on this technology in order to be compatible with the diversity
of the edge computing infrastructure.

B. XDP

It is a hook point located in the reception chain of a network
device driver before memory (i.e. socket buffer) allocation by
the operating system. As a result, XDP enables fast packet
processing within the Linux kernel itself. When the packet is
received by the network device driver, the eBPF program is
executed and various actions can be taken, such as dropping
the packet, redirecting to another interface, or continuing to
be processed in the protocol stack (see in Figure 1). The
network device driver must support XDP to take full advantage
of technology benefits. If not supported, the program can be
run in generic mode, but with a degraded performance. More
information about XDP is available at [10].

C. 5G Network Architecture

The architecture of 5G networks is represented in the
Figure 2. The colored regions represent the 5G network core,
called New Generation Core (NGC), where the green block
represents the UP (User Plane) component, while the blue
one stands for CP (Control Plane) component. One of the
main changes regarding LTE networks is to provide a service-
oriented architecture (SOA), i.e., composed of virtual network
functions with well-defined interfaces. These functions can be
performed on commodity hardware equipment and accessed
through a communication protocol (e.g. HTTP). Furthermore,
the 5G architecture follows the CUPS (Control and User Plane
Separation) model. This paradigm enables the deployment of
UP closer to applications and services, thus reducing latency
and traffic in the core of these networks.

In the next sections, two components of the NGC will be
detailed: SMF (Session Management Function) and UPF.

1) SMF: SMF is part of the 5G CP. One of the most
relevant SMF functions is to manage the sessions used for
data traffic between the UE (User Equipment) and the DN,
namely Session PDU (Protocol Data Units). Each session is
represented by a logical tunnel passing through the UE, RAN,
and UPF. When a PDU session is established, a context is
created in each of these components. A context contains a
set of specific rules that will be applied in the data packet in
order to guarantee QoS (Quality of Service) and to forward
the packet to the next hop. In the case of UPF, this context is
represented by the PFCP Session.

PFCP (Packet Forwarding Control Protocol) is the signaling
protocol used for communication between SMF and UPF

Fig. 2: Simplified 5G System architecture. Highlighted, the
SMF and UPF components are addressed in the next sessions.
The colored region represents the core of the 5G network.

Fig. 3: Simplified procedure for requesting session establish-
ment.

components. This communication involves PFCP session man-
agement procedures. The communication interface between
the two components is represented by reference point N4 in
Figure 2.

CP components communicate with SMF through the service
provided by Nsmf PDUSession [11]. This service involves
PDU session creation, update, and removal procedures. One
session establishment use case example is when the UE is
registered at the core of the network and has data to send
to the DN. If there is no session established, the procedure
for requesting session establishment will be carried out as
shown in the Figure 3. After performing the session estab-
lishment, the UE will be able to send/receive data in the sense
uplink/downlink.

Compared with LTE networks, the SMF encompasses a
set of functionalities from the MME (Mobility Management
Entity) component within EPC (Evolved Packet Core). Addi-
tionally, the N4 reference point encompasses a set of function-
alities defined for the Sxa/Sxb/Sxc interfaces, which are also
used for signaling between the CP and the UP [12].

2) UPF: One of the main user plane components for NGC
is the UPF. It is responsible for several functionalities related
to user data traffic, such as forwarding and routing packets,
applying rules to ensure quality of service, generating traffic

2021 1st Joint International Workshop on Network Programmability and Automation

147



Rules Interfaces

Sxa Sxb Sxc N4

PDR x x x x

FAR x x x x

URR x x x x

QER - x x x

BAR x - - x

MAR - - - x

TABLE I: Relation between the signaling interfaces (5G and
LTE) between the CP and UP and the packet rules applied.

Fig. 4: Flow of packet processing in UP function defined by
UPF and SPGWu, components of NGC and EPC respectively.

usage reports, and inspecting packets [11]. It works like a
gateway between the RAN and the external DN (e.g. Internet,
IP Multimedia System, local data network, etc). Regarding
4G/LTE networks, the UPF encompasses the functionalities of
SGW (Servicing Gateway) and PGW (Packet Data Network
Gateway)2.

Data traffic takes place through a PDU session that is
represented by contexts stored in the UE, RAN, and UPF
components. In the case of the UPF, the context is repre-
sented by the PFCP Session, which contains the following
rules: PDRs (Packet Detection Rules), FARs (Forwarding
Action Rules), QERs (QoS Enforcement Rules), URRs (Usage
Reporting Rules), BARs (Buffer Action Rules), and MARs
(Multi-Access Rules).

Table I shows the relationship between the signaling inter-
faces (5G and LTE) used between the CP and UP of 5G and
LTE networks and the rules applied in the packet. Our proposal
focuses on the PDRs and FARs.

The flow for processing packets in the UP is represented in
Figure 4. When the packet is received, its header is analyzed
to find the PFCP Session to which the packet belongs. Once
the session is found, the highest priority PDR is selected. The
PDR contains all the FARs, QERs, URRs, BARs, MARs that
are applied in the package in the next step. Finally, the packet
is forwarded to the network interface as defined in the FAR.
It is important to highlight that this flow of UP activities fits
both 5G networks (UPF) and LTE networks (SPGWu) [12].

One of the protocols used to load user data packets is GTPu
(GPRS Tunneling Protocol User Plane) [14]. The original

2In this work, the term SPGW will be used to refer to the combination of
the SGW and PGW components as specified in [13]. SPGWu represents the
component responsible for implementing the user plan functionalities for LTE
networks.

Fig. 5: Protocols stack used in communication between UP
elements.

packet (IP datagram) is called a T-PDU (Transport Protocol
Data Unit). When combined with the GTPu header, the packet
is called a G-PDU (GTP encapsulated user Protocol Data
Unit). The diagram representing the protocol stack used in
the communication between the UP elements is represented
in Figure 5.

III. DESIGN AND IMPLEMENTATION

This section describes our proposed architecture and imple-
mentation for fast packet processing using eBPF/XDP for user
plane on the mobile core network (5G/LTE).

A. Features

Routing and forwarding packets are amongst the most
relevant dataplane features in 5GS [11]. We have defined these
actions as the core functionalities of the proposed solution,
as part of the PFCP session context, which is created by
sending PFCP Session Establishment Request message from
the control plane (i.e. SMF for 5G network or SPGWc for LTE
networks) to the dataplane (i.e. UPF for 5G and SPGWu for
LTE). This request is sent when the UE has data to transmit to
the network, for instance. The diagram presented in Figure 6
shows the PFCP session context data model of the proposed
solution based on [12]. It does not support all IEs, but only
the PDRs and FARs to forward packets in the core network
user plane. The main features supported are:

i PFCP session management: create, read, update, and
remove PFCP sessions, PDRs and FARs;

ii Fast packet processing for uplink and downlink user data
traffic: classify and forward UDP and GTP traffic based
on PDR and FAR, respectively.

B. Design

The library is divided in two layers: Management Layer,
and Datapath Layer. The high level library design is shown in
Figure 7.

1) Management Layer: It is an user space layer to manage
PFCP sessions and eBPF programs lifecycle. A client can
create/read/update/delete PFCP sessions through API. When
a PFCP session establishment request message is received by
the user plane component, the message is parsed and a call

2021 1st Joint International Workshop on Network Programmability and Automation

148



Fig. 6: The PFCP context data model with the IEs of the
proposed solution.

Fig. 7: High level design of the user plane library using
eBPF/XDP.

is made to the library via PFCP Session Manager API. The
PFCP Session Manager calls the eBPF Program Manager to
load dynamically an eBPF bytecode, which represents the new
PFCP session context, i.e., there is an eBPF program running
in kernel space for each PFCP session. The program contains
the eBPF maps used to store the PDRs and FARs IEs. All the
communication between the user space and the kernel space
is through the libbpf library [15], which is maintained by the
Linux kernel source tree. The PFCP Session Manager parses
the structures received to an eBPF map entries and updates
the maps with them. The PFCP session context is created in
Datapath Layer, where the user traffic will be handled.

2) Datapath Layer: It is a kernel space layer to process
the user traffic inside the XDP. A service chain function was
created with three main components: the Parser, the Traffic
Classifier and the Traffic Forwarder. The Parser parses the
ingress traffic to check if it is a uplink (GTPu) or a downlink
(UDP) flow. If it is an uplink/downlink flow, the TEID (Traffic
Endpoint Identifier)/UE (User Equipment) IP address key is
used to get the PFCP session context. Then, the packet is
passed to the PFCP session context represented by an eBPF
program via tail calls. Here, the Traffic Classifier accesses
the eBPF hash maps in order to find a PDR associated to

Fig. 8: Workflow in Datapath Layer.

the packet. If there is a PDR stored, the packet passes to the
Forwarder. Finally, the Forwarder uses the FAR ID from the
PDR to find the FAR, which is stored in an eBPF hash. The
FAR contains the action (e.g. forward) that will be applied, the
outer header creation and the destination interface. Besides,
the Forwarder accesses other eBPF maps to check the MAC
address of the next hop and the index of the destination
interface where the packet will be redirected. The datapath
workflow is shown in Figure 8.

C. Implementation

The components were developed in C++ (Management
Layer) and restrict C (Datapath Layer). The source code
is available through Apache-2.0 License. The PFCP Ses-
sion Manager component UTs were implemented using the
GoogleTest framework. Besides, a HTTP API was developed
for end-to-end tests. This API simulates the PFCP control
plane and wrappers the proposed solution. So, when a HTTP
request is received, the JSON message is converted to the
library structures and is passed through via function call to
Session Manager API. It is important to highlight that the same
structures used in the Management Layer are also used in the
Datapath Layer and were based on the data model as described
in Figure 6. The end-to-end performance evaluation was
developed in python using Trex Stateless API [16] and will
be described in the next section. All the tests were automated
and the report of the test was generated automatically. Some
of the challenges and limitations faced during the development
of the eBPF/XDP program are well addressed in [17].

IV. PERFORMANCE EVALUATION

A. Setup

We have tested the proposed solution taking RFC2544-like
measurements. The testbed is composed by two server Intel(R)
Xeon(R) CPU E5-2620 v2 @ 2.10GHz, 32GiB of the DRAM,
15M of L3 cache, 6 cores (hyper-threading disabled), dual-
port 82599ES 10-Gigabit SFI/SFP+ NIC. Both machines have
Ubuntu 20.04.02 LTS installed with Linux kernel v5.4.0-72-
generic compiled with BTF flags enabled. One machine is used

2021 1st Joint International Workshop on Network Programmability and Automation

149



to generate user traffic with TRex Traffic Generator [18] and
the other is the DUT (Device Under Test) where is deployed
the proposed solution. The NICs were configured with toeplitz
hash algorithm. The setup is shown in Figure 9.

Fig. 9: Testbed setup.

B. Test case

We created a test case to evaluate the scalability and the
workload when the solution achieves the maximum throughput
for a specific traffic generation flow. Both uplink and downlink
scenarios were tested. The tests consisted in (i) run Trex Traffic
Generator server, (ii) run HTTP API (DUT), (iii) send a PFCP
session establishment request via HTTP API to DUT, (iv)
configure the number of Rx queue [19] in DUT, (v) generate
traffic (GTP or UDP) using Trex Traffic Stateless API and,
finally, (vi) collect workload per core (DUT) and throughput
(Trex Traffic Generator) metrics. We create a JSON message
to define the PFCP session establishment request to be sent to
DUT. This message contains the PDRs (uplink and downlink)
and FARs IEs and the static ARP table of the next hop. The
PFCP session context message is shown in Figure 10.

C. Data Traffic Generation

The traffic was generated using the Field Engine modules
available in Trex Stateless API. This engine generates 1000
flows varying the source IP address randomly. This technique
is used to avoid the assignment to a specific receive queue,
distributing the traffic between the receive queues in the DUT.
So, this improves the throughput due to the load balance
between the cores. The GTP or UDP headers are generated
depending on the test (uplink or downlink) based on the PFCP
Session Establishment Request message. In both cases, the
frame size is 64 bytes.

V. RESULTS

Figures 11 and 12 show the throughput per number of
cores and the distribution of the CPU load for the cases
when the number of cores is 4, 5 and 6 cores, respectively.
There is a linearity between the number of cores and the
throughput. So, the solution scales with the number of the
cores, achieving almost 10 Mpps for downlink and greater than
11 Mpps for uplink. The numbers reflect the packet forwarding
performance with packet loss less than 0.7%. Besides, almost
40% of the CPU is idle, which could be used by other tasks.

Figures 12a and 12c show a higher packet loss. The main
reason for that is due to load balancing. As we can see, the
core #1 load is 100% for both. So, the core was not handle all
received packets and some them were overwritten from its rx
queue. Basically, four factors contribute to the load balancing:
NIC hash algorithm, NIC hash key (tuple), NIC indirection
table, and the traffic. So, the load balancing could be optimized

Fig. 10: The JSON message representing the PFCP Session
Establishment Request used in the tests.

(a) Downlink (b) Uplink

Fig. 11: Scalability of the proposed solution. The solution
achieves almost 10 Mpps for downlink and 11 Mpps for uplink
with packet loss less than 0.7%.

if we created a flow-based indirection table. This analysis is
not the scope of this paper. It is important to highlight that
our results are similar to [20], although their work has not
presented a CPU usage for the scalability test.

VI. RELATED WORK

Since the introduction of concepts such as NFV [2], several
works have been carried out addressing the issue of fast packet
processing [21] in general and tailored to 5G [22].

The authors in [23] present a prototype for packet process-
ing based on hardware using the programmable platform NetF-
PGA with the programmable data plane in the P4 language.

2021 1st Joint International Workshop on Network Programmability and Automation

150



(a) Downlink 4 cores (b) Uplink 4 cores

(c) Downlink 5 cores (d) Uplink 5 cores

(e) Downlink 6 cores (f) Uplink 6 cores

Fig. 12: Workload distribution for varying number of cores.

The work consists of developing a firewall located between the
core and the edge of 5G networks. The firewall is responsible
for analyzing the internal IP headers of each packet, unlike the
traditional firewall, which only analyzes the external header.
In parallel, [24] also proposes a similar solution, but with a
focus on multi-tenancy scenarios to ensure quality of service
for applications with strict latency requirements, with tests
performed with OpenAirInterface (OAI) [25]. Although FPGA
based solutions perform well, they are considered expensive
compared to general purpose CPU as well as complex to
develop due to their low-level hardware description languages
(low-level hardware description languages - HDLs), such as
the VHDL language [21]. It is important to point out that these
presented solutions do not seem to be ideal to be implemented
in datacenters infrastructures located at the edge, which have
restrictions regarding the implementation cost [4].

Regarding software-based packet processing solutions, [26]
presents a prototype using the modular router, Click [27],
integrated with the framework Netmap [28] for transferring
session context between base stations. In addition, [29] evalu-
ates a DPDK-based [30] prototype for media gateway located
in the IP multimedia subsystem (Multimedia Subsystem -
IMS). DPDK-based solution can increase performance 10
times for packet processing [5], however it is surpassed by
XDP technology in scenarios when packet forwarding happens
through the same interface [6].

Finally, to the best of our knowledge, the only work found
in the literature that comes closest to our proposal is [20],

which presents a prototype of a gateway based in eBPF
using TC and XDP technology for fast packet processing. It
focuses on developing a component that can be deployed on
the edge. The main features presented are packet forwarding,
classification and QoS policies. It was developed inside the
Polycube Framework [31]. The main advantages of our work
comparing with [20] are (i) it is decoupled to a specific
frameworks, (ii) it is aligned with 3GPP specifications and
(iii) it is based on libbpf instead of BCC [32], which does
not belong to Linux source tree and depends on the clang
run-time compiler. So, we argue that our solution can be
easily integrated with different software-based 5G uses plane
solutions.

The approach presented in this paper may leverage open
source projects for telecommunication networks core, such as
srsLTE [33], OAI [25], Open5GS [34], UPF-EPC [35], Magma
Facebook [36], and Free5Gc [37]. Only srsLTE [33] does not
provide support for NCG functionalities. The OAI, srsLTE,
and Open5GS solutions do not have specific technologies for
fast processing in the UP, which has been developed in the
operating system’s user space. Already UPF-EPC, Magma
Facebook, and Free5Gc present kernel-level UP implementa-
tions using the kernel module gtp5g [38], BESS (Berkeley Ex-
tensible Software Switch) [39] and OvS (Open vSwitch) [40],
respectively. With regard to CUPS support, we can highlight
OAI, UPF-EPC, Open5GS, Free5Gc, and Magma Facebook.
Although the Magma Facebook is based on an older version
of the OAI without CUPS support, the solution was built using
the SDN Ryu controller [41] and OvS. We believe all these
projects could benefits from our proposed solution, especially
those that do not support fast packet processing, like OAI,
srsLTE, and Open5GS.

VII. CONCLUSION

This work addressed an alternative solution for 5G UPF
to be deployed in a restrictive environment like MEC, where
MEC host and UPF are collocated with the Base Station,
sharing the same computational and network resources.

We have presented an open source C++ library, which
implements the routing and forwarding user plane features
based on 3GPP Release 16. Our evaluation has shown that the
solution achieves 10Mpps with only 85% of CPU usage and 6
cores. Because it is an in-kernel solution based on eBPF/XDP,
we believe it could be easily integrated with other solutions
which run on Linux.

As future work, we intend to include QER in order to
demonstrate user plan flexibility when new rules are created or
removed and evaluate the behavior when varying the number
of PFCP sessions and packet size. Furthermore, we plan to
use real data traffic for tests and conduct a proof of concept
to demonstrate an integration with an open-source 5G UPF.

ACKNOWLEDGMENTS

This work was supported by grants 2018/23101-0 and
2020/05182-3 from the São Paulo Research Foundation
(FAPESP). This study was financed in part by the Coordenação

2021 1st Joint International Workshop on Network Programmability and Automation

151



de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001.

REFERENCES

[1] D. Kreutz, F. M. V. Ramos, P. E. Verı́ssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
2015.

[2] N. W. Paper, “Network functions virtualisation: An introduction, bene-
fits, enablers, challenges & call for action. issue 1,” Oct. 2012.

[3] “Mec in 5g networks.” [Online]. Available: http://www.etsi.org/images/
files/ETSIWhitePapers/etsi wp28 mec in 5G FINAL.pdf

[4] “Cloud edge computing: Beyond the data center -
openstack open source cloud computing software.” [On-
line]. Available: https://www.openstack.org/use-cases/edge-computing/
cloud-edge-computing-beyond-the-data-center

[5] “Building enterprise-level cloud solutions with
outscale.” [Online]. Available: https://www.intel.
com/content/dam/www/public/us/en/documents/case-studies/
xeon-e5-2660-family-ssd-s3700-series-dpdk-case-study.pdf

[6] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend,
T. Herbert, D. Ahern, and D. Miller, “The express data path: Fast
programmable packet processing in the operating system kernel,”
in Proceedings of the 14th International Conference on Emerging
Networking EXperiments and Technologies, ser. CoNEXT ’18. New
York, NY, USA: Association for Computing Machinery, 2018, p.
54–66. [Online]. Available: https://doi.org/10.1145/3281411.3281443

[7] “Suse - introduction to ebpf and xdp.” [Online]. Available: https:
//www2.slideshare.net/lcplcp1/introduction-to-ebpf-and-xdp

[8] “A thorough introduction to ebpf.” [Online]. Available: https:
//lwn.net/Articles/740157

[9] “Bpf co-re (compile once - run everywhere.” [Online]. Available:
https://nakryiko.com/posts/bpf-portability-and-co-re/

[10] M. Vieira, M. Castanho, R. Pacı́fico, E. Santos, E. Pinto, and L. Vieira,
“Fast packet processing with ebpf and xdp: Concepts, code, challenges,
and applications,” ACM Computing Surveys (CSUR), vol. 53, pp. 1–36,
02 2020.

[11] “5g; system architecture for the 5g system (5gs) (3gpp
ts 23.501 version 16.6.0 release 16),” 10 2020. [Online].
Available: https://www.etsi.org/deliver/etsi ts/123500 123599/123501/
16.06.00 60/ts 123501v160600p.pdf

[12] “Lte; 5g; interface between the control plane and the user plane
nodes (3gpp ts 29.244 version 16.5.0 release 16),” 11 2020. [Online].
Available: https://www.etsi.org/deliver/etsi ts/123500 123599/123501/
16.06.00 60/ts 123501v160600p.pdf

[13] “Universal mobile telecommunications system (umts); lte; architecture
enhancements for control and user plane separation of epc nodes
(3gpp ts 23.214 version 16.2.0 release 16),” 2020. [Online].
Available: https://www.etsi.org/deliver/etsi ts/123500 123599/123501/
16.06.00 60/ts 123501v160600p.pdf

[14] “Digital cellular telecommunications system (phase 2+) (gsm);
universal mobile telecommunications system (umts); general packet
radio service (gprs); gprs tunnelling protocol (gtp) across the gn and
gp interface gprs tunnelling protocol (gtp) across the gn and gp
interface (3gpp ts 29.060 version 16.0.0 release),” 10 2020. [Online].
Available: https://www.etsi.org/deliver/etsi ts/123500 123599/123501/
16.06.00 60/ts 123501v160600p.pdf

[15] “Libbpf linux kernel library.” [Online]. Available: https://github.com/
libbpf/libbpf

[16] “Trex traffic generator stateless api documentation.” [Online]. Available:
https://trex-tgn.cisco.com/trex/doc/cp stl docs/api/index.html

[17] S. Miano, M. Bertrone, F. Risso, M. Tumolo, and M. V. Bernal,
“Creating complex network services with ebpf: Experience and lessons
learned,” in 2018 IEEE 19th International Conference on High Perfor-
mance Switching and Routing (HPSR), 2018, pp. 1–8.

[18] “Trex - realistic traffic generator.” [Online]. Available: https://trex-tgn.
cisco.com/

[19] “Linux kernel network - receive side scaling.” [Online].
Available: https://github.com/torvalds/linux/blob/master/Documentation/
networking/scaling.rst#rss-receive-side-scaling

[20] F. Parola, S. Miano, and F. Risso, “A proof-of-concept 5g mobile
gateway with ebpf,” in Proceedings of the ACM SIGCOMM 2020
Conference on Posters and Demos, ser. SIGCOMM ’20. Association
for Computing Machinery, 2020.

[21] X. Fei, F. Liu, Q. Zhang, H. Jin, and H. Hu, “Paving the way for
nfv acceleration: A taxonomy, survey and future directions,” vol. 53,
no. 4. New York, NY, USA: Association for Computing Machinery,
Aug. 2020. [Online]. Available: https://doi.org/10.1145/3397022

[22] L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia,
“Open, programmable, and virtualized 5g networks: State-of-the-art
and the road ahead,” Computer Networks, vol. 182, p. 107516,
2020. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1389128620311786

[23] R. Ricart-Sanchez, P. Malagon, J. M. Alcaraz-Calero, and Q. Wang,
“Hardware-accelerated firewall for 5g mobile networks,” in 2018 IEEE
26th International Conference on Network Protocols (ICNP), 2018, pp.
446–447.

[24] R. Ricart-Sanchez, P. Malagon, P. Salva-Garcia, E. C. Perez,
Q. Wang, and J. M. Alcaraz Calero, “Towards an fpga-accelerated
programmable data path for edge-to-core communications in 5g
networks,” vol. 124, 2018, pp. 80 – 93. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1084804518302923

[25] “Openair-cn: Evolved core network implementation of openairinter-
face.” [Online]. Available: https://github.com/OPENAIRINTERFACE/
openair-cn

[26] B. Pinczel, D. Géhberger, Z. Turányi, and B. Formanek, “Towards high
performance packet processing for 5g,” in 2015 IEEE Conference on
Network Function Virtualization and Software Defined Network (NFV-
SDN), 2015, pp. 67–73.

[27] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3,
p. 263–297, Aug. 2000. [Online]. Available: https://doi.org/10.1145/
354871.354874

[28] L. Rizzo, “Netmap: A novel framework for fast packet i/o,” in Proceed-
ings of the 2012 USENIX Conference on Annual Technical Conference,
ser. USENIX ATC’12. USA: USENIX Association, 2012, p. 9.

[29] W. Chen and C. H. Liu, “Performance enhancement of virtualized
media gateway with dpdk for 5g multimedia communications,” in 2019
International Conference on Intelligent Computing and its Emerging
Applications (ICEA), 2019, pp. 156–161.

[30] “Data plane development kit (dpdk).” [Online]. Available: https:
//dpdk.org

[31] “About ebpf/xdp-based software framework for fast network services
running in the linux kernel.” [Online]. Available: https://github.com/
polycube-network/polycube

[32] “bpf compiler collection (bcc).” [Online]. Available: https://github.com/
iovisor/bcc

[33] “srslte - open-source 4g and 5g software radio suite developed by
software radio systems (srs).” [Online]. Available: https://github.com/
srsLTE/srsLTE

[34] “Open5gs - open source project of 5gc and epc (release-16).” [Online].
Available: https://github.com/open5gs/open5gs

[35] “Upf epc - 4g/5g mobile core user plane.” [Online]. Available:
https://github.com/omec-project/upf-epc

[36] “Magma - facebook connectivity,” c2020. [Online]. Available: https:
//connectivity.fb.com/magma/

[37] “free5gc - open-source project for 5th generation (5g) mobile core
networks.” [Online]. Available: https://www.free5gc.org/

[38] “Kernel module for gtp protocol.” [Online]. Available: https://github.
com/PrinzOwO/gtp5g

[39] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy,
“Softnic: A software nic to augment hardware,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2015-155,
May 2015. [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2015/EECS-2015-155.html

[40] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The design and implementation of open vswitch,” in Proceedings
of the 12th USENIX Conference on Networked Systems Design and
Implementation, ser. NSDI’15. USA: USENIX Association, 2015, p.
117–130.

[41] “Ryu - sdn framework.” [Online]. Available: https://ryu-sdn.org/

2021 1st Joint International Workshop on Network Programmability and Automation

152


