

Token Cell Routing: A New Sub-IP Layer Protocol

Stewart Bryant

Institute for Communication Systems, University of Surrey

Guildford, Surrey, UK

s.bryant@surrey.ac.uk

Alexander Clemm

Futurewei

Santa Clara, California/USA

alex@futurewei.com

Abstract—We present Token Cell Routing (TCR), a new sub-

IP layer protocol that provides a powerful yet hardware-friendly

method of constructing data plane packets to meet the needs of

new applications. Token cells are a special kind of lightly

structured token which can be programmed with different

semantics to serve different purposes. A TCR packet consists of a

series of token cells, each associated with a certain functionality.

Using longest prefix matching, code points are invoked that

implement logic specific to the token cell’s type. Packets also define

token cell processing workflows and allow token cells to cross-

reference data. This results in the ability to program very powerful

functionality. At the same time, processing is kept simple, allowing

for straightforward implementations able to operate at line rate.

TCR is currently still in the concept stage while proofs-of-concepts

and venues for standardization are being explored.

Keywords—Networking protocols, network programmability,

sub-IP

I. INTRODUCTION

Advances in data plane protocols are needed to address new
network requirements that stretch existing protocols (including
MPLS, IPv6, and Segment Routing) to their limits. Challenges
arise from many sides [1]: New networking use cases call for
greater service level awareness and adherence to stringent
“high-precision” service level guarantees. Network providers
and application developers demand greater programmability
that provides them with the ability to exert greater control over
packet forwarding behavior. Network optimization requires
greater visibility into flow and packet telemetry.

To address those challenges, we present Token Cell Routing
(TCR), a new sub-IP layer protocol. TCR is based on token cells
which provide a flexible method to describe required packet
actions to the forwarder. Token cells are a special kind of tokens
that are distinguished by the fact that they have a certain
lightweight structure and can be of different types, each
associated with its own semantics and able to carry any
parameters and data necessary to correctly execute the required
action.

 Processing of a packet is not limited to a single token cell;
instead, sets of token cells can be processed, with
interdependencies and processing workflow described as part of
the packet and special token cells. This allows token cells to be
serially chained or, for optimization purposes, be concurrently
processed. It also permits cross-referencing of information
across token cells.

The ability to compose packets from token cells results in a
powerful mechanism that allows for the dynamic construction
of packets with new network processing and forwarding
semantics to meet the needs of new applications. Code
associated with particular types of token cells is invoked through
a match engine that causes the execution of supporting
microcode based on longest prefix matching applied to a portion
of the token cell. The processing of each token cell can by itself
be very simple. Combined with the fact that the processing of
successive or parallel tokens needing to be processed a part of a
packet can be mapped to pipelines with a limited number of
stages, TCR is expected to be reasonably straightforward to
implement at line rate performance. At the same time, TCR itself
is highly extensible, as it is possible to support new token cell
types by registering corresponding codepoints with the match
engine.

In combination, this allows for a “lego-esque” composition
of packet processing behavior while at the same time being
hardware friendly, easy to optimize for performance at line rate,
general in nature, and easy to extend. A key differentiator from
earlier protocols is the ability to process a variable number of
processing actions at each hop, as directed by the token cell
structure. This makes it possible, for example, to define
behavior to meet a defined end-to-end latency objective, along a
certain sequence of path segments with a specific backup, while
collecting specific telemetry along different path segments, all
within the same packet. Furthermore, token cells do not need to
be processed in the order in which they are placed in the packet,
reducing the need to rewrite packets upon processing, and may
be explicitly programmed for a flow. All of these are features
not available through other protocol alternatives today. While
this is the first paper that describes TCR, it is our goal to
eventually submit TCR to standardization in the IETF and an
initial draft has been submitted [2].

The remainder of this paper is structured as follows: Section
II provides an overview of related work. Section III provides an
overview of TCR and constitutes the core of the paper. It
discusses packet and token cell structure, explains how token
cell and packet processing workflows are defined, presents a
general design of a token cell processing engine, provides an
overview of selected token cell types, and discusses other
considerations. Section IV presents some use cases that
illustrate how TCR can be used to achieve interesting packet
behaviors. Section V outlines next steps and open issues.
Section VI concludes the paper.

2021 1st Joint International Workshop on Network Programmability and Automation

978-3-903176-36-2 ©2021 IFIP 153

II. RELATED WORK

Network layer protocols are normally highly optimized and
only extensible through a type-length-value (TLV) approach
where the TLV may be an extension header. TLV extensions
are poorly regarded due to the difficulty of implementation
optimization. Multi-protocol label switching (MPLS) [3] took a
radically different approach in which the protocol is built around
an opaque type that vectors the processor to an operation. New
functionality is added by including a new function in the label
switching router and invoking it by including a label in the
packet that invokes the operation. Whilst TLVs (extension
headers) are able to carry parameters in IPv6 [4], MPLS is
unable to do this in the label stack. MPLS can carry parameters
below the stack in a control word (CW) [5] and IETF
Deterministic Networking [6][7] does this by using MPLS as a
one hop tunnel to build a overlay network. Segment Routing
(SR) [8] is a way of describing a sequence of forwarding
instructions in a network layer header, and network
programming is a method of providing a limited number of
parameters in the suffix of an IPv6 address. None of the older
network layer protocols have a sophisticated policy language.

Big Packet Protocol (BPP) [9] is new data plane protocol and
programmable packet framework that allows to include special
packet metadata that provides guidance to network devices for
how to process the packet. Various applications have been
defined, including latency-based forwarding able to guarantee
packet delivery with high-precision latency objectives, and
operational flow profiling to provide greater visibility and
insights into flow performance. TCR is similar to BPP, and
indeed partially motivated by it, in its ability to let operators
dynamically introduce new custom packet processing
semantics. However, the metadata used in BPP to define the
guidance can be complex and include multiple conditional
directives with varying numbers of operations and parameters.
This makes efficient support by hardware challenging and does
not allow for easy mapping into packet processing pipelines
[10]. In addition, there are some inefficiencies in the realization
of behavior that is differentiated by segment or node type,
requiring the evaluation of additional conditions that can be
avoided with token cells that can be arranged in a stack. These
items have been addressed with TCR, which provides its
semantics using a combination of multiple simple tokens instead
of a single set of more complex protocol fields.

P4 [11] is a technology for the Programming of Protocol-
independent Packet Processors. It is not a protocol, but it shares
TCR’s goal of making it easier to let users define networking
behavior and facilitates the implementation of new protocols. It
is thus potentially complementary to TCR and could possibly be
used for its implementation, subject to further research.

III. TOKEN CELL ROUTING

A. Overview

At the foundation of Token Cell Routing is the composition
of a packet from a set of token cells, special kinds of tokens with
a very lightweight structure and programmable semantics (Fig.
1). Each token cell represents a unit of processing, the precise
semantics of which depend on the token cell type. Examples
include forwarding token cells that contain addressing

information used to guide a node’s forwarding decision, token
cells that contain guidance for QoS treatment of the packet
related to service level guarantees, token cells that instruct the
collection and aggregation of telemetry data, security token cells
that contain authentication material, and even payload token
cells that include the actual payload that is to be delivered.

Fig. 1. A TCR Packet

An important feature of TCR is that it enables the expression
of the interdependencies between token cells. This allows a
packet to specify which token cells should be processed serially
and which token cells can be parallelized at a network node. The
fact that processing flows are not restricted to simple push/pop
semantics, processing whichever token is on top, is an important
differentiator from other token-based protocols. Furthermore,
token cell processing supports pipelining of output results from
the processing of one stage as input to the next stage. These
facilities enable the composition of network behavior by
combining token cells as needed. At the same time, not all token
cells need to be processed in any given node and stacking is
possible, allowing the packet designer to combine behavior that
applies end-to-end with segment- or even node-specific
behaviors. In addition, special metadata and scratchpad token
cells are supported that contain data which can be referenced
from other token cells during processing. (Scratchpad token
cells contain writeable metadata for use by applications such as
flow telemetry collection [12] and aggregation).

Token cells themselves are processed by a processing engine
that is based on a longest match engine. This engine operates
much like an IP address lookup engine but is able to operate on
arbitrary constructs rather than being confined to address lookup.
Token cell processing can have generalizable packet processing
semantics: forwarding is a common semantic, but other
semantics can be applied, in a similar manner to the way in
which an MPLS label has generalized semantics. The processing
of a token is: Input – Match – Effect, where “effect” is one of
forwarding, token disposition, or something else (such as,
conditional directives or QoS treatment).

In addition, the processing engine allows for the registration
of code points for different token cell types, providing a
hardware equivalent to corresponding software architectures
that allow for the registration of callback functions. This
facilitates the ability to easily extend TCR with new token cell
types. By keeping token cell semantics simple, the processing
of each token can be limited to a very small number of CPU
cycles with a fixed upper bound. This, combined with the
composition of packets into token cells, allows their mapping
into packet processing pipelines that allow for the processing of
packets at line rate.

Similar to MPLS, TCR provides a light-weight method of
pushing and popping token cells. Unlike MPLS the preamble
needs to be retained with each push/pop action, but the preamble
itself will be quite small and thus the operation is expected to
consume much less forwarding resource than for example,
pushing an IPv6 header.

2021 1st Joint International Workshop on Network Programmability and Automation

154

Collectively, these facilities result in a powerful and highly-

performant network programming framework that make TCR
quite unique. The following subsections describe different
aspects of TCR in further detail.

B. TCR Packet Structure

 A TCR packet starts with a preamble which contains a small
number of housekeeping items, such as version (to allow for
subsequent iterations of the design) and hop-count (as a network
safety feature). The remainder of the packet consists of a
sequence of token cells. There is no separate payload portion of
the packet. Instead, payload is carried as part of just another
token cell, generally located at the tail of the packet. This allows
for different payload delivery semantics at the destination,
including simply stripping the payload off or applying a special
type of codec. It also allows for the possibility of payload-less
packets that can be used for signaling and control purposes.

The first token cell after the preamble is the first token cell
to be processed by the forwarder. This may be the only token
cell to be processed at this layer of the network, or the token cell
may instruct the forwarder to also process one or more
additional token cells before sending the packet to the next hop.
When a TCR packet exits the network layer, the set of token
cells associated with that layer are popped. If required, the
preamble is reconstructed and processing continues with the
next token cell.

Token cells allow the expression of interdependencies
between token cells. This allows a packet to specify which token
cells should be processed as a serial sequence, and which tokens
can be parallelized at a network node. Furthermore, token cell
processing supports pipelining of output results from the
processing of one stage as input to the next stage, similar to the
way commands can be pipelined in Linux. For example, the
processing of one token cell might result in determining the
output interface as part of the forwarding decision, which might
then be fed into a subsequent token tell specifying that certain
telemetry data for that interface should be collected. Contrary to
other protocols in which some such behavior is implied and part
of built-in fixed semantics, TCR allows this pipelining behavior
to be explicitly programmed and hence provides much greater
flexibility. In addition, special metadata and scratchpad tokens
are supported that contain data which can be referenced from
other tokens during processing.

Which token cells to process, and whether to process token
cells in serial order or whether to allow for parallelization, is
indicated by the token cells themselves. Processing can be
serialized using the “next token cell” indicator, processing can
be parallelized using “manifest token cell” that refers to parallel
token cells which allow for optimization.

C. Token Cell Structure

The structure of a token cell is shown in Fig. 2 .

The first field of a token cell indicates its length. Token cells
will vary in length depending on the token cell type and the
contents of the token cell blob, although in practice a given token
cell type may be a fixed size.

The next field, Next Token cell (NT), is a relative pointer
(offset) to the next token cell to be processed as part of the group

of token cells that are to be sequentially processed as a part of
the packet action at the node. If no next token cell is indicated,
processing of the packet at that layer finishes. In cases where the
token cell is one of several that are being processed concurrently
in separate “threads”, the processing of that packet processing
thread concludes, as will be discussed further below.

Fig. 2. The structure of a token cell

The token cell type is divided into two components in order
to provide some structure to the token cell type identifier space.
The first component serves to identify the category, or purpose,
of the token cell. This may prove useful for various purposes
(e.g. the articulation of packet grammars and best packet
practices, such as mandating that a packet contain at least one
token cell of the forwarding category, or that the first token cell
must not be a token cell of categories metadata, scratchpad, or
security). The second component identifies the sub-type (ID)
within that class. For example, one sub-type within the
forwarding category might indicate forwarding to an IPv6
address. Other categories are described in subsection III.E.

The set of IDs consists of a set of well-known IDs and a set
of user-specified IDs. In conjunction with an extensible token
cell processing engine as described further below, this provides
both an extensible and a programmable mechanism for
enhancing the protocol over time and within deployments.

Following the token cell type, the token cell blob carries the
information needed to process the explicit packet that carries it,
and/or is a place to record information about the packet for later
use. Within a blob, there is a prefix and a suffix which may
themselves each be structured. The structure of the blob
depends on the token cell type, some of which may themselves
be well known structures. The blob prefix, which is neither fixed
nor a fixed length field, is used to qualify the type in the lookup.
For example, if the sub-type was IPv6 destination address, the
blob prefix would be an IPv6 address.

The match zone is the portion of the token cell that is subject
to look up (see section III.F). The model is that the lookup will
be a longest match across the whole match zone, including the
token cell type and the blob prefix. The token cell design does
not specify the length of the match zone or the length of either
the ID or the prefix. It is a property of longest match lookup that
it will either consume all the bits it needs or will reject the lookup.
If a result is found, the result implies the token cell type and its
length. The token cell type also specifies the structure of the
token cell blob, i.e., of the remaining portion of the token cell.

Note that this is a model, and there is much scope for
implementor optimization without sacrificing the generality of
the design. The number of bytes sent to the lookup engine is
implementation specific. If the attempted match is longer than
needed, the longest match will ignore the overspill. If more bytes
are needed, it is a property of longest match that the lookup can
be restarted from where it left off.

2021 1st Joint International Workshop on Network Programmability and Automation

155

D. Composing Token Cells and Token Cell Processing

Workflow

It is entirely possible to require several token cells to be
processed. For example, one token cell will contain a
forwarding directive, whereas another token cell might contain
a directive related to QoS treatment of the packet in order to
meet a Service Level Objective (SLO), whereas a third one
indicates that certain telemetry data from traversed nodes should
be collected.

In the simple case that token cells can or should be serially
processed, the processing of token cells will simply be chained,
as directed by the token cells’ respective NT fields. In that case,
the processing of a packet will require n stages, n being the
number of chained token cells. A packet processing pipeline
needs to support a depth that is equivalent to the maximum
number of token cells that should be able to be chained.

The processing of each token cell will likewise require a few
CPU cycles. While the Token Processing Engine (described in
more detail in section III.F) may be highly efficient and able to
conduct a longest prefix match on the match zone in a single
cycle, processing at the codepoint that is invoked will require
additional cycles in order to process blob suffix, parameters, and
any associated logic. The processing needs to be bounded to be
able to complete within a bounded number of CPU cycles. The
precise number will be dependent on implementation, as the
number of CPU cycles required to process a packet determines
the amount of buffering and CPU “real estate” that is needed in
order to be able to support processing at line rate. Eventually, it
may be subjected to standardization or to the definition of
capabilities.

In many cases, optimization is possible by exploiting
parallelization. In the earlier example, it may be possible to
perform some tasks in parallel, such as the application of QoS
treatment and collection of telemetry data, while other tasks may
still need to be serialized, such as determining which outgoing
interface to use as a forwarding decision before performing the
QoS actions against that interface. The fact that certain token
cells may be performed concurrently can be indicated through a
special manifest token cell that references the token cells that
follow. Each of those token cells can in turn have their own
successors, in effect resulting in separate packet processing
threads. While the processing of the manifest adds an additional
cycle, depending on the complexity of the workflow this may be
more than offset by the parallelization that ensues. While full
exploitation of the optimization potential may require advances
in hardware pipeline design, it should be emphasized any such
optimization is optional and not required.

The mapping of a workflow with multiple concurrent token
cell processing threads is also depicted in Fig. 3. In the workflow,
token cell 1 is succeeded by token cells 2, 3, and 4 which have
no dependencies on each other and be processed concurrently. 2
has a successor in 5, whereas 4 has successors 6, 7, 8, and so on.
The corresponding packet can arrange the token cells in multiple
ways, two variants of which are depicted. Red (dashed) arrows
indicate serial “next token cell” dependencies, whereas “M”
token cells MA and MB refer to manifests with concurrent
successors, indicated by grey (solid) arrows).

It should be noted that this is a somewhat extreme example,
and that we do not expect many applications that require the
processing of more than a small number of token cells. Likewise
(not depicted), it is possible to remerge threads using a special
rendezvous token cell that waits for each predecessor to be
completed before resuming processing. While we expect this
capability only to be rarely needed, the TCR framework does
allow for it.

Fig. 3. TCR Parallel Processing Workflow and Use of Manifest

E. Selected Token Cell Type Categories

In this section we discuss some of the token cell type
categories that we anticipate are needed in the design.

Forwarding: A forwarding token cell specifies the
destination address and method of delivery of the packet. It may
also include the source address as a parameter, but this could
also be specified in a separate token. Different types within this
category may differentiate between address types such as IPv6,
IPv4, even E.164, and so on.

SLO: A Service Level Objective (SLO) token cell specifies
the target quality of delivery, such as latency, delivery time,
required discard properties etc, each differentiated by
corresponding IDs as separate types.

Metadata: These token cells carry metadata that can be
referenced and accessed as other token cells are being processed.
Metadata can thus be decoupled from token cells that access it,
allowing for their independent disposal, not interfering with
pushing and popping of other tokens.

Scratchpad: Scratchpad token cells are in effect writeable
metadata token cells, a category of token cells in which the
network takes notes during the packet transit. Example of this
include recording the route, proof of transit of particular nodes
that were traversed, telemetry data, or packet transit time.

Security: A security token cell signs parts of the packet with
an agreed cryptographic signature. It includes a signature mask
that specifies which token cells and/or portions thereof are
covered by the signature. This allows for the possibility of not

2021 1st Joint International Workshop on Network Programmability and Automation

156

only the sender, but also nodes in transit being able to sign
portions of the packet. One example use would be for telemetry
data that is added to a scratchpad by a node being traversed while
leaving other parts of the scratchpad open to modification by
other nodes.

Manifest: A manifest token cell provides a method of
specifying which token cells may be processed in parallel.
Parallel processing is optional, and the token cells can also be
correctly processed serially. It is up to the entity that specifies
the manifest to ensure that the parallelism is safe.

Disposition: A disposition token cell describes what is to be
done when the packet leaves the TCR domain. Such a token cell
might, for example specify a pseudowire [13] action (strip the
TCR header and send the payload to interface X), or a VPN
action (lookup the payload IP address in VRF Y). However, the
mechanism introduces the opportunity to attach a more
sophisticated disposition action, for example “if the packet
arrives before time T, forward using VRF V, otherwise drop”.

Rendezvous: A rendezvous token cell is a token cell used to
ensure that all parallel operations have completed and that it is
hence safe to resume serial operation of the forwarder. A
rendezvous token cell may specify the first serial operation to
execute after the rendezvous, or it may simply hand off to a new
token cell.

Conditional: A conditional token cell is able to test one of
more conditions and invoke processing of successive actions
accordingly. Depending on token cell type, these actions may be
included in the token cell itself or may be executed via other
tokens. This allows to define more complex behavior, such as
the invocation of a particular function depending on a dynamic
condition encountered at a node.

Other: This is a catch-all category to allow for token cell
types that do not fit any of the other categories.

F. Token Cell Processing Engine

The TCR processing model is shown in Fig. 4. This operates
as follows. First the token cell match zone is fed into the lookup
engine. The lookup engine performs a longest match and returns
a parameter block which includes the address of the code to be
executed on the token cell by the forwarder. That code knows
how to interpret the token cell. In addition, it can read and write
to a register that can be used to pass output from the processing
of one token cell to the next, thus providing for the previously
mentioned token cell pipelining option.

Readers will recognize the genesis of this is a hybrid
between an IP address lookup which performs a longest match
lookup and returns a parameter block to the IP forwarding code,
and an MPLS label lookup which performs a fixed size look-up
logically returns a pointer to the executable code (MPLS
forward packet, pseudowire, VPN etc.) and a parameter block.

Fig. 4. TCR Token Cell Processing Engine

Where it is not clear from the lookup results what the length
of the blob prefix should be, for example when the address is an
E164 address, that length needs to be encoded in the prefix in
some convenient way, such as a prefix to the prefix. From this,
it should be clear that there is no constraint on the type and
structure of the prefix and thus any address type or other
construct may be submitted to the lookup engine.

Token cell types and prefix sets may be added to the
forwarder by adding appropriate data to the database queried by
the lookup engine and providing the corresponding callback
code to the network processor, in a manner similar to that used
in MPLS and in Network Programming. In this regard the
approach is compatible with proven hardware forwarding
models. The callback code has access to any other element of
the token cell that it needs, and indeed to other elements of the
packet as required.

IV. EXAMPLE USE CASES

This section contains use cases, showing how composing
packets from combinations of token cells leads to interesting
behavior. In particular, we show how small modifications or
additions of token cells can be used to compose fairly
sophisticated behavior in a straightforward way.

A. Latency Based Forwarding

In Latency Based Forwarding [14], the requirement is to
forward a packet such that it arrives according to some latency
criteria such as arriving at a specific time. Doing so involves
special actions at traversed nodes that involve determining a
time budget (with both a lower and upper bound) within which
to forward the packet, then performing special QoS operations
that match queue and packet scheduling against budget. For LBF
to be applied, a packet needs to carry the SLO as well as an
indicator of latency incurred. This can be accomplished using a
corresponding token cell type (for sake of simplicity, carrying
all parameters in the token cell itself, not in a separate metadata
token cell). A resulting TCR LBF packet is shown in Fig. 5. In
this and the following figures, the blue square at the bottom of a
token cell points to the disposition token cell. The red square

2021 1st Joint International Workshop on Network Programmability and Automation

157

points to the next token cell. A grey square indicates there is no
next token cell.

Token cell T1 is of forwarding type and responsible for
specifying the delivery target address in the TCR domain. It
specifies T2 as the next token cell to be processed every time T1
is processed. T2 specifies that the packet is to be delivered at a
particular time (on time) using LBF, otherwise it is to be dropped.
Token cells T1 and T2 are processed at every hop. When the
packet arrives at its destination, T1 and T2 are discarded and T3,
the disposition token cell, is processed which specifies any
further instructions to be executed on the packet at delivery. The
payload is carried in T4. If the implementations support it, T1
may be penultimate hop popped (PHP), in which case the first
token cell at the destination node will be T2. T2 cannot be
PHPed if the LBF policy applies to the last hop.

Fig. 5. TCR LBF Packet

B. Fast ReRoute with Latency Based Forwarding

Fast re-route (FRR) [15] is a technology that allows
productive forwarding of packets to continue following a failure,
but before the network has re-converged. For simplicity, FRR is
often executed without regard for the pre and post convergence
quality of service level requirements. What is much harder to
achieve is FRR in which service level objectives are being
adhered to whether or not a fast reroute needs to take place.
However, it is straightforward to accomplish using TCR. For
this purpose, a token cell specifying the SLO (and, for example,
LBF action) is combined with token cells specifying the FRR.

As an example, Fig. 6 shows a TCR packet in which both
FRR and LBF are supported, very similar to the earlier packet
from Fig. 5 but with an additional token cell, T0, that is applied
by FRR to indicate the reroute target. Both reroute target (T0)
and forwarding destination (T1) point to the SLO token cell as
next token cell, which is processed with either route target.

Fig. 6. TCR FRR with LBF Packet

 We assume a packet that is using an IPv6 delivery address
(T1). Following a failure of a link in the network, the packet is
subjected to FRR, in this case, to illustrate address independence,
using an IPv4 intermediate node to indicate the FRR target,
resulting in T0 (highlighted in dark blue) being added to the
packet. Note how the FRR token cell (T0) still uses T2 to specify
the LBF behavior. When the packet completes its repair, T0 is
popped and the packet is again forwarded based on T1, which
continues to use the T2 LBF information, now reflecting any
latency updates incurred as a result of the FRR diversion.

C. Parallel Processing with OAM collection

In this example (Fig. 7), we consider the case of a packet that
is to be forwarded with the collection of OAM telemetry data at

each hop. Forwarding lookups take time, and so in this example
we parallelize the forwarding lookup and the OAM data
collection.

Fig. 7. TCR Parallel Processing: Forwarding and OAM

To cause the parallelization, the first token cell (T1) is a
manifest token cell that points to the forwarding token cell (T2)
and the OAM token cell (T3), enabling their parallel execution
if this is supported by the hardware. The OAM information
collected is recorded in the scratchpad token cell, T5. T5 is
placed after the disposition token cell T4 to make the
information available to the disposition token cell in the event
that earlier token cells have been popped before arrival at the
disposition node.

D. Segment Routing with Differentiated LBF

In this example (Fig. 8) we consider the case of a segment
routed (SR) packet that is to be forwarded with LBF QoS, and
then develop the design to show how multiple LBF
considerations may be implemented.

Fig. 8. TCR of Segment-Routed Packets with LBF

In the first example (a) we show an SR packet, which
consists of a series of token cells each directing the packet along
a segment and then being popped on arrival at the segment
endpoint. Upon arrival at the final segment end point,
disposition processing takes place. In the second SR example (b),
we show the construction of an SR packet with a common LBF
policy by including an LBF token cell and setting next token cell
for all SR tokens to point to the same LBF token cell for latency
policy information. Note that this only requires the addition of a
single token cell. Finally, in the third example (c), we include a
second LBF token cell and have the next token pointer of the
first SR token point to it instead of the other one, thus showing
how to introduce differentiated per-segment forwarding policy
where different SLOs might apply for different segments. This
is fairly sophisticated behavior that would be very difficult to
achieve with traditional SR, yet all it takes is the addition of a
single additional token cell.

V. OPEN ISSUES AND NEXT STEPS

TCR is still early work that is at the conceptual stage. The
design has not yet been built, although the authors have
considerable experience in the design of fast forwarding and

2021 1st Joint International Workshop on Network Programmability and Automation

158

believe that it has significant potential. Up until this point, we
have been able to address any new requirement that we have
come across within this framework, whether that included the
need to optimize token cell processing workflows, to introduce
layered security mechanisms able to secure tokens, metadata,
and scratchpad data independently, or the support of fast reroute
(FRR). We believe that this attests to the flexibility and
generality of its design. At the same time, we do expect the
design to be easily implementable in hardware, leveraging
existing longest prefix matching engines.

Clearly there is a lot of work that remains to be done,
beginning with the development of a Proof-of-Concept.
Secondly, while we have defined a number of token cell types,
to be truly useful and provide users with a rich toolkit to define
networking behavior, many more need to be introduced. A third
aspect concerns conducting a detailed assessment and analysis
of performance aspects, including gains that can be made due to
parallelization and processing workflow automation. This will
help guide exploration of a fourth aspect, the investigation of
new hardware designs that will be capable of supporting such
optimizations beyond providing the mere functionality in itself.
Other aspects concern possibilities for optimization, such as the
combination of manifest and rendezvous token cell types or the
support of implementation profiles to account for different
device capabilities.

VI. CONCLUSIONS

TCR provides a powerful new way to allow users to define
sophisticated network service behavior. The definition of
behavior can happen, to significant extent, by simply combining
token cells of different functions, and by parametrizing those
functions. Extensions of behavior are possible by introducing
new token cell types, although that requires additional
provisioning steps by a network operator.

At the same time, longest prefix match engines can be used
as a basis for implementations able to perform at line rate. A
rich set of capabilities are supported that are not found in other
token or label protocols, such as support for metadata and
scratchpads with a lifecycle independent of token cells that
access it, support for processing involving workflows beyond
what can be expressed by simple pushing to and popping from a
label stack, and layered security signatures that allow for
differentiated securing of contents as packets traverse nodes
along a path.

 While lots of work remains to be done, we do believe that
TCR has significant potential. As mentioned in the introduction,
it is our goal to subject TCR to standardization in the IETF as it
matures. We hope to identify partners and collaborators who are

interested in exploring TCR jointly further and encourage
readers to reach out to us.

REFERENCES

[1] ITU-T FG-NET2030: New services and capabilities for network 2030:
description, technical gap and performance target analysis. FG-NET2030
document NET2030-O-027, 2019.

[2] Bryant, S., and A. Clemm, “Token Cell Routing Data Plane Concepts”,
IETF draft-bcx-rtgwg-tcr-00, April 2021.

[3] Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol Label
Switching Architecture", RFC 3031, DOI 10.17487/RFC3031, January
2001, <https://www.rfc-editor.org/info/rfc3031>.

[4] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)
Specification", STD 86, RFC 8200, DOI 10.17487/RFC8200, July 2017,
<https://www.rfc-editor.org/info/rfc8200>.

[5] Bryant, S., Swallow, G., Martini, L., and D. McPherson, "Pseudowire
Emulation Edge-to-Edge (PWE3) Control Word for Use over an MPLS
PSN", RFC 4385, DOI 10.17487/RFC4385, February 2006,
<https://www.rfc-editor.org/info/rfc4385>.

[6] Finn, N., Thubert, P., Varga, B., and J. Farkas, "Deterministic Networking
Architecture", RFC 8655, DOI 10.17487/RFC8655, October 2019,
<https://www.rfc-editor.org/info/rfc8655>.

[7] Varga, B., Ed., Farkas, J., Berger, L., Malis, A., Bryant, S., and J.
Korhonen, "Deterministic Networking (DetNet) Data Plane: MPLS",
RFC 8964, DOI 10.17487/RFC8964, January 2021, <https://www.rfc-
editor.org/info/rfc8964>.

[8] Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L., Decraene, B., Litkowski,
S., and R. Shakir, "Segment Routing Architecture", RFC 8402, DOI
10.17487/RFC8402, July 2018, <https://www.rfc-
editor.org/info/rfc8402>.

[9] Li, R., A. Clemm, U. Chunduri, L. Dong, K. Makhijani: “A New
Framework and Protocol for Future Networking Applications.” ACM
SIGCOMM Workshop on Networking for Emerging Applications and
Technologies (NEAT), Budapest, Hungary, August 2018.

[10] Francois, J., A. Clemm, V. Maintenant, S. Tabor: “BPP over P4:
Exploring Frontiers and Limits in Programmable Packet Processing.”
IEEE Global Communications Conference, December 2020.

[11] Bosshart, P., D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C.
Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and et al., “P4:
Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, p. 87–95, July 2014.

[12] Brockners, F., S. Bhandari, C. Pignataro, H. Gredler, J. Leddy, S. Youell,
T. Mizrahi, D. Mozes, P. Lapukhov, R. Chang, D. Bernier, J. Lemon:
“Data Fields for In-situ OAM.” Internet Draft draft-ietf-ippm-ioam-data-
12, IETF, February 2021.

[13] Bryant, S., Ed. and P. Pate, Ed., "Pseudo Wire Emulation Edge-to-Edge
(PWE3) Architecture", RFC 3985, DOI 10.17487/RFC3985, March 2005,
<https://www.rfc-editor.org/info/rfc3985>.

[14] Clemm, A., T. Eckert: High-Precision Latency Forwarding over Packet-
Programmable Networks. IEEE/IFIP Network Operations and
Management Symposium (NOMS 2020), Budapest, Hungary / virtual,
April 2020.

[15] Shand, M. and S. Bryant, "IP Fast Reroute Framework", RFC 5714, DOI
10.17487/RFC5714, January 2010, <https://www.rfc-
editor.org/info/rfc5714>.

2021 1st Joint International Workshop on Network Programmability and Automation

159

