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Abstract—We present Token Cell Routing (TCR), a new sub-

IP layer protocol that provides a powerful yet hardware-friendly 

method of constructing data plane packets to meet the needs of 

new applications. Token cells are a special kind of lightly 

structured token which can be programmed with different 

semantics to serve different purposes.  A TCR packet consists of a 

series of token cells, each associated with a certain functionality.  

Using longest prefix matching, code points are invoked that 

implement logic specific to the token cell’s type. Packets also define 

token cell processing workflows and allow token cells to cross-

reference data. This results in the ability to program very powerful 

functionality. At the same time, processing is kept simple, allowing 

for straightforward implementations able to operate at line rate. 

TCR is currently still in the concept stage while proofs-of-concepts 

and venues for standardization are being explored.   

Keywords—Networking protocols, network programmability, 

sub-IP  

I. INTRODUCTION 

Advances in data plane protocols are needed to address new 
network requirements that stretch existing protocols (including 
MPLS, IPv6, and Segment Routing) to their limits.  Challenges 
arise from many sides [1]:  New networking use cases call for 
greater service level awareness and adherence to stringent 
“high-precision” service level guarantees.  Network providers 
and application developers demand greater programmability 
that provides them with the ability to exert greater control over 
packet forwarding behavior. Network optimization requires 
greater visibility into flow and packet telemetry.   

To address those challenges, we present Token Cell Routing 
(TCR), a new sub-IP layer protocol. TCR is based on token cells 
which provide a flexible method to describe required packet 
actions to the forwarder.  Token cells are a special kind of tokens 
that are distinguished by the fact that they have a certain 
lightweight structure and can be of different types, each 
associated with its own semantics and able to carry any 
parameters and data necessary to correctly execute the required 
action. 

 Processing of a packet is not limited to a single token cell; 
instead, sets of token cells can be processed, with 
interdependencies and processing workflow described as part of 
the packet and special token cells. This allows token cells to be 
serially chained or, for optimization purposes, be concurrently 
processed.  It also permits cross-referencing of information 
across token cells.   

The ability to compose packets from token cells results in a 
powerful mechanism that allows for the dynamic construction 
of packets with new network processing and forwarding 
semantics to meet the needs of new applications.  Code 
associated with particular types of token cells is invoked through 
a match engine that causes the execution of supporting 
microcode based on longest prefix matching applied to a portion 
of the token cell.  The processing of each token cell can by itself 
be very simple. Combined with the fact that the processing of 
successive or parallel tokens needing to be processed a part of a 
packet can be mapped to pipelines with a limited number of 
stages, TCR is expected to be reasonably straightforward to 
implement at line rate performance. At the same time, TCR itself 
is highly extensible, as it is possible to support new token cell 
types by registering corresponding codepoints with the match 
engine.     

In combination, this allows for a “lego-esque” composition 
of packet processing behavior while at the same time being 
hardware friendly, easy to optimize for performance at line rate, 
general in nature, and easy to extend.  A key differentiator from 
earlier protocols is the ability to process a variable number of 
processing actions at each hop, as directed by the token cell 
structure.  This makes it possible, for example, to define 
behavior to meet a defined end-to-end latency objective, along a 
certain sequence of path segments with a specific backup, while 
collecting specific telemetry along different path segments, all 
within the same packet. Furthermore, token cells do not need to 
be processed in the order in which they are placed in the packet, 
reducing the need to rewrite packets upon processing, and may 
be explicitly programmed for a flow.  All of these are features 
not available through other protocol alternatives today.  While 
this is the first paper that describes TCR, it is our goal to 
eventually submit TCR to standardization in the IETF and an 
initial draft has been submitted [2].  

The remainder of this paper is structured as follows:  Section 
II provides an overview of related work.  Section III provides an 
overview of TCR and constitutes the core of the paper.  It 
discusses packet and token cell structure, explains how token 
cell and packet processing workflows are defined, presents a 
general design of a token cell processing engine, provides an 
overview of selected token cell types, and discusses other 
considerations.  Section IV presents some use cases that 
illustrate how TCR can be used to achieve interesting packet 
behaviors.  Section V outlines next steps and open issues.  
Section VI concludes the paper.  
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II. RELATED WORK 

Network layer protocols are normally highly optimized and 
only extensible through a type-length-value (TLV) approach 
where the TLV may be an extension header.  TLV extensions 
are poorly regarded due to the difficulty of implementation 
optimization. Multi-protocol label switching (MPLS) [3] took a 
radically different approach in which the protocol is built around 
an opaque type that vectors the processor to an operation. New 
functionality is added by including a new function in the label 
switching router and invoking it by including a label in the 
packet that invokes the operation. Whilst TLVs (extension 
headers) are able to carry parameters in IPv6 [4], MPLS is 
unable to do this in the label stack. MPLS can carry parameters 
below the stack in a control word (CW)  [5] and IETF 
Deterministic Networking [6][7] does this by using MPLS as a 
one hop tunnel to build a overlay network. Segment Routing 
(SR) [8] is a way of describing a sequence of forwarding 
instructions in a network layer header, and network 
programming is a method of providing a limited number of 
parameters in the suffix of an IPv6 address. None of the older 
network layer protocols have a sophisticated policy language. 

Big Packet Protocol (BPP) [9] is new data plane protocol and 
programmable packet framework that allows to include special 
packet metadata that provides guidance to network devices for 
how to process the packet.  Various applications have been 
defined, including latency-based forwarding able to guarantee 
packet delivery with high-precision latency objectives, and 
operational flow profiling to provide greater visibility and 
insights into flow performance.  TCR is similar to BPP, and 
indeed partially motivated by it, in its ability to let operators 
dynamically introduce new custom packet processing 
semantics.  However, the metadata used in BPP to define the 
guidance can be complex and include multiple conditional 
directives with varying numbers of operations and parameters.  
This makes efficient support by hardware challenging and does 
not allow for easy mapping into packet processing pipelines 
[10].  In addition, there are some inefficiencies in the realization 
of behavior that is differentiated by segment or node type, 
requiring the evaluation of additional conditions that can be 
avoided with token cells that can be arranged in a stack. These 
items have been addressed with TCR, which provides its 
semantics using a combination of multiple simple tokens instead 
of a single set of more complex protocol fields.  

P4 [11] is a technology for the Programming of Protocol-
independent Packet Processors.  It is not a protocol, but it shares 
TCR’s goal of making it easier to let users define networking 
behavior and facilitates the implementation of new protocols.  It 
is thus potentially complementary to TCR and could possibly be 
used for its implementation, subject to further research.    

III. TOKEN CELL ROUTING 

A. Overview 

At the foundation of Token Cell Routing is the composition 
of a packet from a set of token cells, special kinds of tokens with 
a very lightweight structure and programmable semantics (Fig. 
1). Each token cell represents a unit of processing, the precise 
semantics of which depend on the token cell type.  Examples 
include forwarding token cells that contain addressing 

information used to guide a node’s forwarding decision, token 
cells that contain guidance for QoS treatment of the packet 
related to service level guarantees, token cells that instruct the 
collection and aggregation of telemetry data, security token cells 
that contain authentication material, and even payload token 
cells that include the actual payload that is to be delivered.   

 

Fig. 1. A TCR Packet 

An important feature of TCR is that it enables the expression 
of the interdependencies between token cells.  This allows a 
packet to specify which token cells should be processed serially 
and which token cells can be parallelized at a network node.  The 
fact that processing flows are not restricted to simple push/pop 
semantics, processing whichever token is on top, is an important 
differentiator from other token-based protocols. Furthermore, 
token cell processing supports pipelining of output results from 
the processing of one stage as input to the next stage.  These 
facilities enable the composition of network behavior by 
combining token cells as needed. At the same time, not all token 
cells need to be processed in any given node and stacking is 
possible, allowing the packet designer to combine behavior that 
applies end-to-end with segment- or even node-specific 
behaviors.  In addition, special metadata and scratchpad token 
cells are supported that contain data which can be referenced 
from other token cells during processing. (Scratchpad token 
cells contain writeable metadata for use by applications such as 
flow telemetry collection  [12] and aggregation).  

Token cells themselves are processed by a processing engine 
that is based on a longest match engine.  This engine operates 
much like an IP address lookup engine but is able to operate on 
arbitrary constructs rather than being confined to address lookup.  
Token cell processing can have generalizable packet processing 
semantics: forwarding is a common semantic, but other 
semantics can be applied, in a similar manner to the way in 
which an MPLS label has generalized semantics. The processing 
of a token is: Input – Match – Effect, where “effect” is one of 
forwarding, token disposition, or something else (such as, 
conditional directives or QoS treatment). 

In addition, the processing engine allows for the registration 
of code points for different token cell types, providing a 
hardware equivalent to corresponding software architectures 
that allow for the registration of callback functions.  This 
facilitates the ability to easily extend TCR with new token cell 
types.  By keeping token cell semantics simple, the processing 
of each token can be limited to a very small number of CPU 
cycles with a fixed upper bound.  This, combined with the 
composition of packets into token cells, allows their mapping 
into packet processing pipelines that allow for the processing of 
packets at line rate.   

Similar to MPLS, TCR provides a light-weight method of 
pushing and popping token cells.  Unlike MPLS the preamble 
needs to be retained with each push/pop action, but the preamble 
itself will be quite small and thus the operation is expected to 
consume much less forwarding resource than for example, 
pushing an IPv6 header. 
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Collectively, these facilities result in a powerful and highly-

performant network programming framework that make TCR 
quite unique.  The following subsections describe different 
aspects of TCR in further detail.   

B. TCR Packet Structure 

 A TCR packet starts with a preamble which contains a small 
number of housekeeping items, such as version (to allow for 
subsequent iterations of the design) and hop-count (as a network 
safety feature). The remainder of the packet consists of a 
sequence of token cells.  There is no separate payload portion of 
the packet.  Instead, payload is carried as part of just another 
token cell, generally located at the tail of the packet. This allows 
for different payload delivery semantics at the destination, 
including simply stripping the payload off or applying a special 
type of codec.  It also allows for the possibility of payload-less 
packets that can be used for signaling and control purposes.  

The first token cell after the preamble is the first token cell 
to be processed by the forwarder. This may be the only token 
cell to be processed at this layer of the network, or the token cell 
may instruct the forwarder to also process one or more 
additional token cells before sending the packet to the next hop. 
When a TCR packet exits the network layer, the set of token 
cells associated with that layer are popped. If required, the 
preamble is reconstructed and processing continues with the 
next token cell. 

Token cells allow the expression of interdependencies 
between token cells.  This allows a packet to specify which token 
cells should be processed as a serial sequence, and which tokens 
can be parallelized at a network node. Furthermore, token cell 
processing supports pipelining of output results from the 
processing of one stage as input to the next stage, similar to the 
way commands can be pipelined in Linux.  For example, the 
processing of one token cell might result in determining the 
output interface as part of the forwarding decision, which might 
then be fed into a subsequent token tell specifying that certain 
telemetry data for that interface should be collected. Contrary to 
other protocols in which some such behavior is implied and part 
of built-in fixed semantics, TCR allows this pipelining behavior 
to be explicitly programmed and hence provides much greater 
flexibility. In addition, special metadata and scratchpad tokens 
are supported that contain data which can be referenced from 
other tokens during processing.  

Which token cells to process, and whether to process token 
cells in serial order or whether to allow for parallelization, is 
indicated by the token cells themselves.  Processing can be 
serialized using the “next token cell” indicator, processing can 
be parallelized using “manifest token cell” that refers to parallel 
token cells which allow for optimization.   

C. Token Cell Structure 

The structure of a token cell is shown in Fig. 2 .  

The first field of a token cell indicates its length. Token cells 
will vary in length depending on the token cell type and the 
contents of the token cell blob, although in practice a given token 
cell type may be a fixed size.  

The next field, Next Token cell (NT), is a relative pointer 
(offset) to the next token cell to be processed as part of the group 

of token cells that are to be sequentially processed as a part of 
the packet action at the node. If no next token cell is indicated, 
processing of the packet at that layer finishes. In cases where the 
token cell is one of several that are being processed concurrently 
in separate “threads”, the processing of that packet processing 
thread concludes, as will be discussed further below.   

 

Fig. 2. The structure of a token cell 

The token cell type is divided into two components in order 
to provide some structure to the token cell type identifier space.  
The first component serves to identify the category, or purpose, 
of the token cell. This may prove useful for various purposes 
(e.g. the articulation of packet grammars and best packet 
practices, such as mandating that a packet contain at least one 
token cell of the forwarding category, or that the first token cell 
must not be a token cell of categories metadata, scratchpad, or 
security). The second component identifies the sub-type (ID) 
within that class.  For example, one sub-type within the 
forwarding category might indicate forwarding to an IPv6 
address. Other categories are described in subsection III.E.    

The set of IDs consists of a set of well-known IDs and a set 
of user-specified IDs. In conjunction with an extensible token 
cell processing engine as described further below, this provides 
both an extensible and a programmable mechanism for 
enhancing the protocol over time and within deployments.  

Following the token cell type, the token cell blob carries the 
information needed to process the explicit packet that carries it, 
and/or is a place to record information about the packet for later 
use. Within a blob, there is a prefix and a suffix which may 
themselves each be structured.  The structure of the blob 
depends on the token cell type, some of which may themselves 
be well known structures. The blob prefix, which is neither fixed 
nor a fixed length field, is used to qualify the type in the lookup. 
For example, if the sub-type was IPv6 destination address, the 
blob prefix would be an IPv6 address.  

The match zone is the portion of the token cell that is subject 
to look up (see section III.F). The model is that the lookup will 
be a longest match across the whole match zone, including the 
token cell type and the blob prefix. The token cell design does 
not specify the length of the match zone or the length of either 
the ID or the prefix. It is a property of longest match lookup that 
it will either consume all the bits it needs or will reject the lookup. 
If a result is found, the result implies the token cell type and its 
length. The token cell type also specifies the structure of the 
token cell blob, i.e., of the remaining portion of the token cell.   

Note that this is a model, and there is much scope for 
implementor optimization without sacrificing the generality of 
the design. The number of bytes sent to the lookup engine is 
implementation specific. If the attempted match is longer than 
needed, the longest match will ignore the overspill. If more bytes 
are needed, it is a property of longest match that the lookup can 
be restarted from where it left off. 
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D. Composing Token Cells and Token Cell Processing 

Workflow 

It is entirely possible to require several token cells to be 
processed.  For example, one token cell will contain a 
forwarding directive, whereas another token cell might contain 
a directive related to QoS treatment of the packet in order to 
meet a Service Level Objective (SLO), whereas a third one 
indicates that certain telemetry data from traversed nodes should 
be collected.   

In the simple case that token cells can or should be serially 
processed, the processing of token cells will simply be chained, 
as directed by the token cells’ respective NT fields. In that case, 
the processing of a packet will require n stages, n being the 
number of chained token cells. A packet processing pipeline 
needs to support a depth that is equivalent to the maximum 
number of token cells that should be able to be chained.   

The processing of each token cell will likewise require a few 
CPU cycles.  While the Token Processing Engine (described in 
more detail in section III.F) may be highly efficient and able to 
conduct a longest prefix match on the match zone in a single 
cycle, processing at the codepoint that is invoked will require 
additional cycles in order to process blob suffix, parameters, and 
any associated logic.  The processing needs to be bounded to be 
able to complete within a bounded number of CPU cycles. The 
precise number will be dependent on implementation, as the 
number of CPU cycles required to process a packet determines 
the amount of buffering and CPU “real estate” that is needed in 
order to be able to support processing at line rate. Eventually, it 
may be subjected to standardization or to the definition of 
capabilities.   

In many cases, optimization is possible by exploiting 
parallelization.  In the earlier example, it may be possible to 
perform some tasks in parallel, such as the application of QoS 
treatment and collection of telemetry data, while other tasks may 
still need to be serialized, such as determining which outgoing 
interface to use as a forwarding decision before performing the 
QoS actions against that interface. The fact that certain token 
cells may be performed concurrently can be indicated through a 
special manifest token cell that references the token cells that 
follow.  Each of those token cells can in turn have their own 
successors, in effect resulting in separate packet processing 
threads.  While the processing of the manifest adds an additional 
cycle, depending on the complexity of the workflow this may be 
more than offset by the parallelization that ensues.  While full 
exploitation of the optimization potential may require advances 
in hardware pipeline design, it should be emphasized any such 
optimization is optional and not required.   

The mapping of a workflow with multiple concurrent token 
cell processing threads is also depicted in Fig. 3. In the workflow, 
token cell 1 is succeeded by token cells 2, 3, and 4 which have 
no dependencies on each other and be processed concurrently. 2 
has a successor in 5, whereas 4 has successors 6, 7, 8, and so on.  
The corresponding packet can arrange the token cells in multiple 
ways, two variants of which are depicted. Red (dashed) arrows 
indicate serial “next token cell” dependencies, whereas “M” 
token cells MA and MB refer to manifests with concurrent 
successors, indicated by grey (solid) arrows). 

It should be noted that this is a somewhat extreme example, 
and that we do not expect many applications that require the 
processing of more than a small number of token cells.  Likewise 
(not depicted), it is possible to remerge threads using a special 
rendezvous token cell that waits for each predecessor to be 
completed before resuming processing.  While we expect this 
capability only to be rarely needed, the TCR framework does 
allow for it.   

 

 

Fig. 3. TCR Parallel Processing Workflow and Use of Manifest 

E. Selected Token Cell Type Categories  

In this section we discuss some of the token cell type 
categories that we anticipate are needed in the design. 

Forwarding: A forwarding token cell specifies the 
destination address and method of delivery of the packet. It may 
also include the source address as a parameter, but this could 
also be specified in a separate token. Different types within this 
category may differentiate between address types such as IPv6, 
IPv4, even E.164, and so on.   

SLO: A Service Level Objective (SLO) token cell specifies 
the target quality of delivery, such as latency, delivery time, 
required discard properties etc, each differentiated by 
corresponding IDs as separate types.  

Metadata: These token cells carry metadata that can be 
referenced and accessed as other token cells are being processed. 
Metadata can thus be decoupled from token cells that access it, 
allowing for their independent disposal, not interfering with 
pushing and popping of other tokens.     

Scratchpad: Scratchpad token cells are in effect writeable 
metadata token cells, a category of token cells in which the 
network takes notes during the packet transit. Example of this 
include recording the route, proof of transit of particular nodes 
that were traversed, telemetry data, or packet transit time. 

Security: A security token cell signs parts of the packet with 
an agreed cryptographic signature. It includes a signature mask 
that specifies which token cells and/or portions thereof are 
covered by the signature.  This allows for the possibility of not 

2021 1st Joint International Workshop on Network Programmability and Automation

156



 

 
only the sender, but also nodes in transit being able to sign 
portions of the packet. One example use would be for telemetry 
data that is added to a scratchpad by a node being traversed while 
leaving other parts of the scratchpad open to modification by 
other nodes.  

Manifest: A manifest token cell provides a method of 
specifying which token cells may be processed in parallel. 
Parallel processing is optional, and the token cells can also be 
correctly processed serially. It is up to the entity that specifies 
the manifest to ensure that the parallelism is safe. 

Disposition: A disposition token cell describes what is to be 
done when the packet leaves the TCR domain. Such a token cell 
might, for example specify a pseudowire [13] action (strip the 
TCR header and send the payload to interface X), or a VPN 
action (lookup the payload IP address in VRF Y). However, the 
mechanism introduces the opportunity to attach a more 
sophisticated disposition action, for example “if the packet 
arrives before time T, forward using VRF V, otherwise drop”. 

Rendezvous: A rendezvous token cell is a token cell used to 
ensure that all parallel operations have completed and that it is 
hence safe to resume serial operation of the forwarder. A 
rendezvous token cell may specify the first serial operation to 
execute after the rendezvous, or it may simply hand off to a new 
token cell. 

Conditional: A conditional token cell is able to test one of 
more conditions and invoke processing of successive actions 
accordingly. Depending on token cell type, these actions may be 
included in the token cell itself or may be executed via other 
tokens. This allows to define more complex behavior, such as 
the invocation of a particular function depending on a dynamic 
condition encountered at a node.  

Other: This is a catch-all category to allow for token cell 
types that do not fit any of the other categories.   

F. Token Cell Processing Engine 

The TCR processing model is shown in Fig. 4. This operates 
as follows. First the token cell match zone is fed into the lookup 
engine. The lookup engine performs a longest match and returns 
a parameter block which includes the address of the code to be 
executed on the token cell by the forwarder. That code knows 
how to interpret the token cell. In addition, it can read and write 
to a register that can be used to pass output from the processing 
of one token cell to the next, thus providing for the previously 
mentioned token cell pipelining option.  

Readers will recognize the genesis of this is a hybrid 
between an IP address lookup which performs a longest match 
lookup and returns a parameter block to the IP forwarding code, 
and an MPLS label lookup which performs a fixed size look-up 
logically returns a pointer to the executable code (MPLS 
forward packet, pseudowire, VPN etc.) and a parameter block. 

 

Fig. 4. TCR Token Cell Processing Engine 

Where it is not clear from the lookup results what the length 
of the blob prefix should be, for example when the address is an 
E164 address, that length needs to be encoded in the prefix in 
some convenient way, such as a prefix to the prefix. From this, 
it should be clear that there is no constraint on the type and 
structure of the prefix and thus any address type or other 
construct may be submitted to the lookup engine. 

Token cell types and prefix sets may be added to the 
forwarder by adding appropriate data to the database queried by 
the lookup engine and providing the corresponding callback 
code to the network processor, in a manner similar to that used 
in MPLS and in Network Programming. In this regard the 
approach is compatible with proven hardware forwarding 
models. The callback code has access to any other element of 
the token cell that it needs, and indeed to other elements of the 
packet as required. 

IV. EXAMPLE USE CASES  

This section contains use cases, showing how composing 
packets from combinations of token cells leads to interesting 
behavior. In particular, we show how small modifications or 
additions of token cells can be used to compose fairly 
sophisticated behavior in a straightforward way.   

A. Latency Based Forwarding 

In Latency Based Forwarding [14], the requirement is to 
forward a packet such that it arrives according to some latency 
criteria such as arriving at a specific time.  Doing so involves 
special actions at traversed nodes that involve determining a 
time budget (with both a lower and upper bound) within which 
to forward the packet, then performing special QoS operations 
that match queue and packet scheduling against budget. For LBF 
to be applied, a packet needs to carry the SLO as well as an 
indicator of latency incurred. This can be accomplished using a 
corresponding token cell type (for sake of simplicity, carrying 
all parameters in the token cell itself, not in a separate metadata 
token cell). A resulting TCR LBF packet is shown in Fig. 5.  In 
this and the following figures, the blue square at the bottom of a 
token cell points to the disposition token cell.  The red square 
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points to the next token cell.  A grey square indicates there is no 
next token cell.  

Token cell T1 is of forwarding type and responsible for 
specifying the delivery target address in the TCR domain. It 
specifies T2 as the next token cell to be processed every time T1 
is processed. T2 specifies that the packet is to be delivered at a 
particular time (on time) using LBF, otherwise it is to be dropped. 
Token cells T1 and T2 are processed at every hop. When the 
packet arrives at its destination, T1 and T2 are discarded and T3, 
the disposition token cell, is processed which specifies any 
further instructions to be executed on the packet at delivery. The 
payload is carried in T4. If the implementations support it, T1 
may be penultimate hop popped (PHP), in which case the first 
token cell at the destination node will be T2. T2 cannot be 
PHPed if the LBF policy applies to the last hop. 

 
Fig. 5. TCR LBF Packet 

B. Fast ReRoute with Latency Based Forwarding 

Fast re-route (FRR) [15] is a technology that allows 
productive forwarding of packets to continue following a failure, 
but before the network has re-converged. For simplicity, FRR is 
often executed without regard for the pre and post convergence 
quality of service level requirements. What is much harder to 
achieve is FRR in which service level objectives are being 
adhered to whether or not a fast reroute needs to take place.  
However, it is straightforward to accomplish using TCR.  For 
this purpose, a token cell specifying the SLO (and, for example, 
LBF action) is combined with token cells specifying the FRR.  

As an example, Fig. 6 shows a TCR packet in which both 
FRR and LBF are supported, very similar to the earlier packet 
from Fig. 5 but with an additional token cell, T0, that is applied 
by FRR to indicate the reroute target.  Both reroute target (T0) 
and forwarding destination (T1) point to the SLO token cell as 
next token cell, which is processed with either route target.   

 

Fig. 6. TCR FRR with LBF Packet 

 We assume a packet that is using an IPv6 delivery address 
(T1). Following a failure of a link in the network, the packet is 
subjected to FRR, in this case, to illustrate address independence, 
using an IPv4 intermediate node to indicate the FRR target, 
resulting in T0 (highlighted in dark blue) being added to the 
packet. Note how the FRR token cell (T0) still uses T2 to specify 
the LBF behavior. When the packet completes its repair, T0 is 
popped and the packet is again forwarded based on T1, which 
continues to use the T2 LBF information, now reflecting any 
latency updates incurred as a result of the FRR diversion. 

C. Parallel Processing with OAM collection 

In this example (Fig. 7), we consider the case of a packet that 
is to be forwarded with the collection of OAM telemetry data at 

each hop. Forwarding lookups take time, and so in this example 
we parallelize the forwarding lookup and the OAM data 
collection. 

 

Fig. 7. TCR Parallel Processing: Forwarding and OAM 

To cause the parallelization, the first token cell (T1) is a 
manifest token cell that points to the forwarding token cell (T2) 
and the OAM token cell (T3), enabling their parallel execution 
if this is supported by the hardware. The OAM information 
collected is recorded in the scratchpad token cell, T5. T5 is 
placed after the disposition token cell T4 to make the 
information available to the disposition token cell in the event 
that earlier token cells have been popped before arrival at the 
disposition node. 

D. Segment Routing with Differentiated LBF 

In this example (Fig. 8) we consider the case of a segment 
routed (SR) packet that is to be forwarded with LBF QoS, and 
then develop the design to show how multiple LBF 
considerations may be implemented. 

 
Fig. 8. TCR of Segment-Routed Packets with LBF  

In the first example (a) we show an SR packet, which 
consists of a series of token cells each directing the packet along 
a segment and then being popped on arrival at the segment 
endpoint. Upon arrival at the final segment end point, 
disposition processing takes place. In the second SR example (b), 
we show the construction of an SR packet with a common LBF 
policy by including an LBF token cell and setting next token cell 
for all SR tokens to point to the same LBF token cell for latency 
policy information. Note that this only requires the addition of a 
single token cell. Finally, in the third example (c), we include a 
second LBF token cell and have the next token pointer of the 
first SR token point to it instead of the other one, thus showing 
how to introduce differentiated per-segment forwarding policy 
where different SLOs might apply for different segments. This 
is fairly sophisticated behavior that would be very difficult to 
achieve with traditional SR, yet all it takes is the addition of a 
single additional token cell.   

V. OPEN ISSUES AND NEXT STEPS 

TCR is still early work that is at the conceptual stage.  The 
design has not yet been built, although the authors have 
considerable experience in the design of fast forwarding and 
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believe that it has significant potential. Up until this point, we 
have been able to address any new requirement that we have 
come across within this framework, whether that included the 
need to optimize token cell processing workflows, to introduce 
layered security mechanisms able to secure tokens, metadata, 
and scratchpad data independently, or the support of fast reroute 
(FRR).  We believe that this attests to the flexibility and 
generality of its design.  At the same time, we do expect the 
design to be easily implementable in hardware, leveraging 
existing longest prefix matching engines.  

Clearly there is a lot of work that remains to be done, 
beginning with the development of a Proof-of-Concept. 
Secondly, while we have defined a number of token cell types, 
to be truly useful and provide users with a rich toolkit to define 
networking behavior, many more need to be introduced.  A third 
aspect concerns conducting a detailed assessment and analysis 
of performance aspects, including gains that can be made due to 
parallelization and processing workflow automation. This will 
help guide exploration of a fourth aspect, the investigation of 
new hardware designs that will be capable of supporting such 
optimizations beyond providing the mere functionality in itself. 
Other aspects concern possibilities for optimization, such as the 
combination of manifest and rendezvous token cell types or the 
support of implementation profiles to account for different 
device capabilities.   

VI. CONCLUSIONS 

TCR provides a powerful new way to allow users to define 
sophisticated network service behavior.  The definition of 
behavior can happen, to significant extent, by simply combining 
token cells of different functions, and by parametrizing those 
functions.  Extensions of behavior are possible by introducing 
new token cell types, although that requires additional 
provisioning steps by a network operator.   

At the same time, longest prefix match engines can be used 
as a basis for implementations able to perform at line rate.  A 
rich set of capabilities are supported that are not found in other 
token or label protocols, such as support for metadata and 
scratchpads with a lifecycle independent of token cells that 
access it, support for processing involving workflows beyond 
what can be expressed by simple pushing to and popping from a 
label stack, and layered security signatures that allow for 
differentiated securing of contents as packets traverse nodes 
along a path.   

 While lots of work remains to be done, we do believe that 
TCR has significant potential.  As mentioned in the introduction, 
it is our goal to subject TCR to standardization in the IETF as it 
matures. We hope to identify partners and collaborators who are 

interested in exploring TCR jointly further and encourage 
readers to reach out to us.  
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