
Charon: Load-Aware Load-Balancing in P4
Carmine Rizzi, Zhiyuan Yao, Yoann Desmouceaux, Mark Townsley, Thomas Clausen

Abstract—Load-Balancers play an important role in data
centers as they distribute network flows across application servers
and guarantee per-connection consistency. It is hard however to
make fair load balancing decisions so that all resources are effi-
ciently occupied yet not overloaded. Tracking connection states
allows to infer server load states and make informed decisions,
but at the cost of additional memory space consumption. This
makes it hard to implement on programmable hardware, which
has constrained memory but offers line-rate performance. This
paper presents Charon, a stateless load-aware load balancer
that has line-rate performance implemented in P4-NetFPGA.
Charon passively collects load states from application servers
and employs the power-of-2-choices scheme to make data-driven
load balancing decisions and improve resource utilization. Per-
connection consistency is preserved statelessly by encoding server
ID in a covert channel. The prototype design and implementation
details are described in this paper. Simulation results show
performance gains in terms of load distribution fairness, quality
of service, throughput and processing latency.

Index Terms—load-balancing, cloud and distributed computing

I. INTRODUCTION

Data centers (DCs) have seen a rising amount of connections
to manage [1], [2] and users expect an elevated server
responsiveness [3]. Due to these conditions, applications are
virtualized in replicated instances in data centers to provide
scalable services [4], [5]. A given service provided in a
data center is identified by virtual IP (VIP). Each application
instance behind the VIP is identified by direct IP (DIP). In this
architecture, load balancers (LBs) play an important role. They
distribute requests from clients among application servers and
maintains per-connection consistency (PCC) [1], [6].

This paper exemplifies the challenges that LBs should tackle
by way of a simple heuristic load balancing mechanism, i.e.
Equal Cost Multi Path (ECMP). As is depicted in figure 1,
on receipt of a new request (step 1©), ECMP LBs randomly
select a server among the server pool to which the request
is forwarded (step 2©), based on the hash over the 5-tuple
of the connection1. The replies are sent back directly to
the client instead of traversing the LBs (step 3©) in direct
source return (DSR) mode. DSR mode is first proposed in [1]
so that LBs avoid handling 2-way traffic and becoming a
throughput bottleneck between servers and clients. Though
easy to implement, ECMP is agnostic to the server load states.

C. Rizzi, Z. Yao and T. Clausen are with
École Polytechnique, 91128 Palaiseau, France; emails
{carmine.rizzi,zhiyuan.yao,thomas.clausen}@polytechnique.edu.

C. Rizzi, Z. Yao, Y. Desmouceaux and M. Townsley are with Cisco Systems
Paris Innovation and Research Laboratory (PIRL), 92782 Issy-les-Moulineaux,
France; emails {crizzi, yzhiyuan, ydesmouc,townsley}@cisco.com.

1The 5-tuple corresponds to IP source, IP destination, protocol number,
TCP source port and TCP destination port.

Application ServersClient Load Balancer

1

3

2

Figure 1. Network load balancer in data centers.

As ECMP randomly distribute workloads, new requests may
be forwarded to overloaded servers, reducing load balancing
fairness. ECMP is also not able to guarantee PCC since
server pool updates change the DIP entries in the hash table,
which potentially forwards subsequent packets of established
connections to different servers and breaks connections.

A. Related Work

To guarantee PCC, stateful LBs keep tracking the state of
the connections [1], [6]–[8]. Using advanced hashing mech-
anism (e.g. consistent hashing [6], [7]), server pool updates
have little impact on the hashing table therefore the amount
of disrupted connections is decreased. However, stateful LBs
require additional memory space for flow tables to store
connection states. When encountering DoS attacks, flow tables
risk of being filled by malicious flows and no longer track
benigh flows. In case of LB failures, the tracked connection
states are lost and all connections via the failed LBs need to
be re-established, which degrades quality of service (QoS).
Stateless LBs [9]–[11] use alternative techniques to recover
the right server destinations, without keeping the flows’ states.
They daisy-chain two possible server candidates, to retrieve
a potentially changed flow-server mappings. Charon adopts
stateless load balancing scheme [9], [10], [12] and encapsu-
lates the server id inside the packet. In particular, the TCP
timestamp option [13] is used to transport this information.

To improve load balancing fairness, different mechanisms
are proposed to evaluate server load states before making load
balancing decisions. Segment Routing (SR) [14] and power-
of-2-choice [15] are used in [7], [9] to daisy chain 2 servers
and let them decide, based on their actual load states, to
which server a new flow is assigned. Another approach is
to periodically poll servers’ instant “available capacities” [8].
Ridge Regression is used in [16] to predict server load states
and compute the relative “weights”. In [17], the servers are
clustered based on their load states, where clusters with less
workload are prioritized. The servers notify the LBs about
load state changes if their resource consumption surpasses
pre-defined thresholds. LVS [18] presents a heuristic that
combines the queue lengths of active flows and provisioned
server capacity to determine server load states. Unlike prior
arts, Charon passively polls and retrieves the server load when

2021 1st Joint International Workshop on Network Programmability and Automation

978-3-903176-36-2 ©2021 IFIP 91

Index Thresh. Alias
0 3 2
1 12 3
2 9 1
ŏ … …

C
OLHQW

Index g v
0 1 2
1 3 1
2 2 1
ŏ … …

t
5
7
6
…

Index Server
0 B
1 A
2 C
ŏ …

Alias Table Score Table IP Table

1

 idx0 = Hash0(p) = 0
 x0 = Random() < 3
 idx1 = Hash1(p) = 2
 x1 = Random() > 9

&RPSDUH�DQG�FKRRVH
<latexit sha1_base64="HajN/FqtqIqK8dxFLlBafrMss2o=">AAACH3icbVBNS8NAEN3U7/pV9ehlsRVa0ZL0oF4EwYtHBatCU8pmO0mX7iZhdyKW0H/ixb/ixYMi4s1/47b2oNUHA4/3ZpiZF6RSGHTdT6cwMzs3v7C4VFxeWV1bL21sXpsk0xyaPJGJvg2YASliaKJACbepBqYCCTdB/2zk39yBNiKJr3CQQluxKBah4Ayt1CkdViI/1UIBPaG+Yve+hBCr7j6NDu6qPsI9IuZX1q/WhgdY87WIelirdEplt+6OQf8Sb0LKZIKLTunD7yY8UxAjl8yYluem2M6ZRsElDIt+ZiBlvM8iaFkaMwWmnY//G9Jdq3RpmGhbMdKx+nMiZ8qYgQpsp2LYM9PeSPzPa2UYHrdzEacZQsy/F4WZpJjQUVi0KzRwlANLGNfC3kp5j2nG0UZatCF40y//JdeNundY9y4b5dO9SRyLZJvskCrxyBE5JefkgjQJJw/kibyQV+fReXbenPfv1oIzmdkiv+B8fgE0daEl</latexit>

g0 = max (0, g � v(Time()� t))

<latexit sha1_base64="OmGuBumnJgf7GVmSX50dnb2I0gs=">AAACBnicbVDLSsNAFJ3UV62vqEsRBltBRErShbosuHFZwT6gCWEynaRDZyZhZiKU0JUbf8WNC0Xc+g3u/BunbRbaeuDC4Zx7ufeeMGVUacf5tkorq2vrG+XNytb2zu6evX/QUUkmMWnjhCWyFyJFGBWkralmpJdKgnjISDcc3Uz97gORiibiXo9T4nMUCxpRjLSRAvu45iEZe5yKIPdy5wK63mQCYy+VlJNaYFedujMDXCZuQaqgQCuwv7xBgjNOhMYMKdV3nVT7OZKaYkYmFS9TJEV4hGLSN1QgTpSfz96YwFOjDGCUSFNCw5n6eyJHXKkxD00nR3qoFr2p+J/Xz3R07edUpJkmAs8XRRmDOoHTTOCASoI1GxuCsKTmVoiHSCKsTXIVE4K7+PIy6TTq7mXdvWtUm+dFHGVwBE7AGXDBFWiCW9ACbYDBI3gGr+DNerJerHfrY95asoqZQ/AH1ucPtCCX6w==</latexit>

arg min{0,1} g0

2

2a 2b

3

VIP

LB

clt

A

B

C

p

SYN
clt->VIP

p

SYN
LB->B

NetFPGA/P4

gB vB 0p

SYNACK
B -> LB

Feedbacks encoded
in the packet header

4

(a)

Index Thresh. Alias
0 3 2
1 12 3
2 9 1
ŏ … …

C
OLHQW

Index g v
0 gB vB

1 3 1
2 2 1
ŏ … …

t

7
6
…

Index Server
0 B
1 A
2 C
ŏ …

Alias Table Score Table IP Table

6 9

VIP

LB

clt

A

B

C

NetFPGA/P4
p

SYNACK
VIP->clt

0

Update the score table with
feedback from the server, and
current timestamp

<latexit sha1_base64="Xa8/leQtip3Nu8Nz+im4XtlaDc8=">AAACBHicbVC7SgNBFJ2Nrxhfq5ZpBhMhWoTdFGojBGwsI+QFSQizk5tkyOyDmbtiWFLY+Cs2ForY+hF2/o2TR6GJBy6cOede5t7jRVJodJxvK7W2vrG5ld7O7Ozu7R/Yh0d1HcaKQ42HMlRNj2mQIoAaCpTQjBQw35PQ8EY3U79xD0qLMKjiOIKOzwaB6AvO0EhdO5vHdqSED/SathEeEDGpmmfhbJLv2jmn6MxAV4m7IDmyQKVrf7V7IY99CJBLpnXLdSLsJEyh4BImmXasIWJ8xAbQMjRgPuhOMjtiQk+N0qP9UJkKkM7U3xMJ87Ue+57p9BkO9bI3Ff/zWjH2rzqJCKIYIeDzj/qxpBjSaSK0JxRwlGNDGFfC7Er5kCnG0eSWMSG4yyevknqp6F4U3btSrny+iCNNsuSEFIhLLkmZ3JIKqRFOHskzeSVv1pP1Yr1bH/PWlLWYOSZ/YH3+AGdNlzg=</latexit>

t0 = Time()

<latexit sha1_base64="XzP2sbu4ALpGPW64m4wA2suiV8I=">AAAB8HicdVDLSgMxFM3UV62vqks3wVZwNSQVa90V3LisYB/SDiWTZtrQZGZIMkIZ+hVuXCji1s9x59+YTkdQ0QMXDufcy733+LHg2iD04RRWVtfWN4qbpa3tnd298v5BR0eJoqxNIxGpnk80EzxkbcONYL1YMSJ9wbr+9Grhd++Z0jwKb80sZp4k45AHnBJjpbuqGcSKS1YdlivIPUf4so4gclGGjDTwGYY4VyogR2tYfh+MIppIFhoqiNZ9jGLjpUQZTgWblwaJZjGhUzJmfUtDIpn20uzgOTyxyggGkbIVGpip3ydSIrWeSd92SmIm+re3EP/y+okJGl7KwzgxLKTLRUEioIng4ns44opRI2aWEKq4vRXSCVGEGptRyYbw9Sn8n3RqLq67+KZWabp5HEVwBI7BKcDgAjTBNWiBNqBAggfwBJ4d5Tw6L87rsrXg5DOH4Aect09uEpAb</latexit>

t0

p

�6<1
clt->VIP

0 7

Look up IP table directly
with the encoded index

8

p

!SYN
VIP->clt

0

DSR

p

!SYN
LB->B

0

5

10

(b)

Figure 2. Charon overview.

a new flow is assigned to it. The feedback is used to predict
the future server load states and make informed and fair load
balancing decisions, which improves resource utilization and
QoS.

To optimize performance in terms of throughput and latency,
hardware solutions are proposed. SilkRoad implements LB
functions on dedicated hardware device [19], while other
designs implement a hybrid solution combining software and
hardware LBs [3], [20]. As a hardware solution, Charon
is realized on a NetFPGA board using P4-NetFPGA tool-
chain [21] and achieves low jitter and delay.

B. Statement of Purpose

This paper proposes Charon, a stateless, load-aware, hard-
ware load balancer. This paper targets the fore-mentioned 3
aspects of LB performance:
• Availability: encapsulates the chosen server id in the

covert channel of packet headers. Different covert chan-
nels are available (e.g. connection-id of QUIC
connections and the least significant bits of IPv6 ad-
dresses) [12]. This paper uses the higher-bits of TCP
timestamp options.

• Fairness: Charon makes load balancing decisions on pre-
dicted server load states based on passive feedback from
the application servers with actual load states encoded in
SYNACK packets. Two factors are integrated at the same
time, i.e. queue lengths and processing speed.

• Performance: Charon implement all functionalities on
programmable hardware to boost performance and
achieve low latency and high throughput.

Virtual simulations show promising results and performance
gain using Charon. Physical testing also demonstrates the high
throughput of the board.

C. Paper Outline

The rest of this paper is organized as follows. In section II
the overview of Charon is described. Section III presents the
design choices of Charon. Section IV presents the implemen-
tation of Charon and section V shows the results obtained.
Section VI concludes the paper.

II. OVERVIEW

Charon relies on 3 tables and 1 server agent to achieve
stateless load-aware load balancing on NetFPGA. 2 tables are
constructed and managed by the control plane. The Alias Table
allows to select servers based on various weights with low
computational complexity and low memory space consump-
tion. The IP Table is used to map server id to actual IP address.
1 table, namely the Score Table, is updated in the data plane
on per-flow basis.

The workflow is exemplified in figure 2. When a SYN packet
reaches the LB (step 1©), Charon employs power-of-2-choices
and applies 2 hash functions to the 5-tuple of the packet. The
2 hashes are then used as indexes in the “Alias Method” [22]
(step 2a) to generate 2 random server candidates based on their
relative weights, which is explained in section III. Referring
to the Score Table, Charon calculates and compares the load
states of the 2 candidate servers (step 2b). The server with
lower score is assigned to the new flow. In the example of Fig.
2a, the IP of the selected server is retrieved from the IP Table
as server B (step 3©). At step 4©, along with the reply to the
connection request, the agent on server B encapsulates its load
state information and its server id in the packet header. In this
paper the server load state is encoded inside the key option
field of the GRE header [23], which encapsulates the original
IP packet2. This “passive feedback” design differs from other
LBs and reduces communication overhead with respect to
periodic polling mechanisms yet keeps LBs informed before
application servers reach a critical load level. On reception
of the SYNACK packet from the server (DSR is disabled for
step 4©), Charon updates the load state information in the
Score Table. The packet is decapsulated and the response is
forwarded back to the client (step 6©). The server id (0 in the
example) is preserved in the higher bits of the TCP timestamp
option. In this way, the subsequent packets from the same
flow (step 7©) contains the server id, which helps Charon
retrieve the server’s IP address (step 8©) from the IP Table
and redirect immediately to the right server (step 9©). The

2IPv6’s flow id field can also be exploited to store server load information.
Charon chooses the key option field of GRE header to achieve better
compatibility between IPv4 and IPv6.

2021 1st Joint International Workshop on Network Programmability and Automation

92

FIFO
RMW_START WAIT_BRAM

[rmw_state == WAIT_BRAM]

[rmw_state == RMW_START]

STATE M
ACHINE

index_fifo_0
index_fifo_1

data_fifo
opCode_fifo

BRAM

d_data_out_bram
d_addr_in_bram
d_data_in_bram

d_we_bram
3

!

!

wr_en_pfifo
rd_en_pfifo

2

result_valid_r

result_r

!

OUTPUT_VALID

OUTPUT

data_in_valid

data_in

clk_lookup

DIP_REG_SCORE

Figure 3. Schematic of dip_reg_score module.

server can directly answer to the client using DSR mode (step
10©) till the end of the flow.

III. DESIGN

The first building block of the design of Charon is the Alias
Method. It is a probabilistic algorithm which, given initial
weights, generates a table of probabilities and “aliases”. The
role of the Alias Method is to distribute with higher chance the
flows to servers with higher weights. The weights are derived
from servers’ instant load states and are updated periodically.
The update time interval is 1s and the choice is explained in
section V.

As shown in figure 2a, each entry of the Alias Table has a
threshold and an alias. The former determines which value is
chosen, while the latter is the alternative index with respect
to the entry initially selected. Generating a server candidate
requires 2 input values, i.e. , an entry index and a random
number. If the random number is bigger than the threshold,
the output of the Alias Method is the alias, otherwise the
entry index. In the given example, four values are taken
into considerations when generating 2 server candidates. The
idx0=0 and idx1=2 are the two initial entry indexes of the
table. Given that the random value is smaller than the threshold
x0 < 3, the first output is the entry index 0. Similarly, since
x1 ≥ 9, the second output is the alias 1.

The 2 values obtained from the Alias Method are then
used as the ids of the 2 server candidates. Their associated
scores are computed with the function g′ = max(0, g − v ∗
(Time() − t)), where g′ is the new score, g is the previous
score of the server, v is the “velocity” or the server processing
speed, Time() is a function that returns current timestamp
and t is the previous timestamp. The 3 variables, g, v and
t, are saved in the Score Table. The score g is the amount
of work remaining or the number of active flows on the
server to execute. The processing speed v is derived from the
average flow completion time (FCT) on the server side. The
timestamp t corresponds to the last time the score was updated.
The time difference Time() − t measures the elapsed time
since last update. The intuition of this function is to predict
the remaining amount of tasks or queue length that a server
needs to accomplish. A higher score translates into a busier
server. The max() function guarantees that the score stays
non-negative. Once the scores of the servers are computed, the
server with lower score is assigned to the flow. In the example
in figure 2a, supposing that Time() = 8 then the scores of
index 0 and 1 are g′0 = max(0, 1 − 2 ∗ (8 − 5)) = 0 and
g′1 = max(0, 3 − 1 ∗ (8 − 7)) = 2 respectively. The selected

Note
MASK = 0xffffffff
get_score(x): ((x>>40)&MASK)-((x&0xff)*(ts_now-((x>>8)&MASK)))
d_stack(a,b,c): ((a<<40)|(b<<8)|(c&0xff))
next cycle: @VAR@ <= @VAR@_next

READ_FIFO
rd_en_pfifo = 1
index0 = index_fifo_0
index1 = index_fifo_1
opCode = opCode_fifo
data = data_fifo
ind_op_next = 1
able_read_next = 0

COPY_OP
result_r_next = data
result_valid_r_next = rd_en_pfifo
able_read_next = 1
ind_op_next = 0

UPDATE_OP
d_we_bram = 1
d_addr_in_bram = index0
d_data_in_bram = data
result_r_next = data
result_valid_r_next = rd_en_pfifo
able_read_next = 1
ind_op_next = 0

GET_IND_OP_1
rd_en_pfifo = 0
d_addr_in_bram = index0
d_addr_in_bram_r_next = index0
ind_op_next = 2

GET_IND_OP_2
rd_en_pfifo = 0
ind_op_next = 3

GET_IND_OP_3
rd_en_pfifo = 0
blob0 = d_data_out_bram
d_addr_in_bram = index1
d_addr_in_bram_r_next = index1
ts_now = data
ind_op_next = 4

GET_IND_OP_4
rd_en_pfifo = 0
opCode_r_next = opCode
rmw_state_next = WAIT_BRAM
ind_op_next = 0

DEOHBUHDG �
ind_op �

RS&RGH 83'$7(B23
RS&RGH *(7B,1'B23
LQGBRS �

RS&RGH &23<B23

LQGBRS �

LQGBRS �

LQGBRS �

RMW_START

UPZBVWDWH :$,7B%5$0
RS&RGH *(7B,1'B23

GET_IND_OP_0
score0 = get_score(blob0)
score1 = get_score(d_data_out_bram)
blob_1 = d_data_out_bram
ind_op_next = 1

GET_IND_OP_1
if (score0 < score1) begin
 score0 = score0+(1<<20)
 index_chosen = index0
end
else begin
 score1 = score1+(1<<20)
 index_chosen = index1
end
ind_op_next = 2

GET_IND_OP_2
d_we_bram = 1
d_addr_in_bram = index0
d_addr_in_bram_r_next = index0
d_data_in_bram = d_stack(score0, ts_now, blob0)
ind_op_next = 3 WAIT_BRAM

GET_IND_OP_3
d_we_bram = 1
d_addr_in_bram = index1
d_addr_in_bram_r_next = index1
d_data_in_bram = d_stack(score1, ts_now, blob1)
result_r_next = index_chosen
result_valid_r_next = 1
rmw_state_next = RMW_START
ind_op_next = 0

LQGBRS �

LQGBRS �

LQGBRS �

UP
Z
BVWDWH 5

0
:
B67$

5
7

Figure 4. State machine in the dip_reg_score module.

server is the server with index 0, which is then mapped to
server B in the IP Table. The power-of-2-choices is applied
as it has lower computational complexity than calculating the
minimum yet if offers recognizable performance gains [7]. For
this reason, Charon better handles large-scale DCs.

The main function of Charon is implemented in a single
Verilog module called dip_reg_score. This design choice
depends mainly from the read and write actions that should
be executed on multiple indexes. Figure 3 shows the archi-
tecture of this module. It takes as input data_in_valid,
data_in and clk_lookup and as output OUTPUT_VALID
and OUTPUT. The core logic of dip_reg_score locates
in the STATE_MACHINE block. It interacts with FIFO and
BRAM (Block RAM). The former receives and stores the inputs
of the block, while the latter is used to save the server load
states information. Figure 4 depicts in detail the workflow of
STATE_MACHINE. It consists of two states RMW_START and
WAIT_BRAM. Each state can be further decomposed into sev-
eral states. The initial state in RMW_START is READ_FIFO. In
this state the input saved in the FIFO are extracted. Depending
on the opCode value, different operations can be executed.
Three operations are available: UPDATE_OP, COPY_OP and
GET_INDEX_OP. The code UPDATE_OP is used to update
the server load states in the Score Table given the feedback
extracted from the SYNACK packets sent by the application
servers. The code COPY_OP is a buffering operation. It copies
the data received from the input into the output. The code
GET_INDEX_OP is executed when a SYN packet reaches the
LB. It extracts the server load states with the 2 given server
indexes. The reading operations require 2 clocks for each

2021 1st Joint International Workshop on Network Programmability and Automation

93

value, which yields 4 clocks in total for reading 2 blobs from
BRAM. In the WAIT_BRAM state, with the fetched blobs, the
two scores are then computed. and stored in the Score Table.
The server with lower score is selected and its corresponding
score is increased by 1 unit task so that the new flow can
be taken into account immediately. The two scores are then
stored back in the Score Table before Charon forward the flow
to the chosen server.

IV. IMPLEMENTATION

This paper implements Charon using P4-NetFPGA. P4 is
a programming language in the family of Software-Defined
Networking (SDN) technologies [24]. It is used to program
network devices’ data plane and has been applied in other
LBs [11], [16], [19]. P4 has high flexibility. It can be translated
into Verilog and the created module can be compiled into
bitstream files using Vivado toolkit [25].

Figure 5 shows the workflow of Charon in P4’s PISA model.
It can be split into 3 parts: Parser, Match-Action Pipeline
(MAP) and Deparser. The Parser separates different packet
headers depending on the values of different fields. Packets
with unexpected packet headers are dropped while the others
will be forwarded to the MAP. In MAP, the main logic of
P4 takes place using tables, which are a collection of keys
and values. A possible input could be an IP address. Using
longest-prefix match, one key is matched, associated to which
an action can be executed as, for instance, setting the egress
port value. Multiple tables can be applied during one packet
processing. Charon uses 2 tables for the two server indexes
obtained from the Alias Method. The last step is the Deparser,
which recollects all the header information and sends a new
packet out of the egress port.

Despite the flexibility of P4, it presents several limitations.
For instance, an external function is necessary to create
memory cells and store additional information. Depending
on the hardware targets, different languages can be used
to describe these external modules. Verilog is adopted for
NetFPGA, which is the reason why the external module
dip_reg_score is implemented in Verilog. Its complexity
cannot be expressed by P4 language. This block is mainly
accessed for SYN and SYNACK packets. For other types of
packets, it is used as a buffer. The other external modules
of Charon implemented in Verilog are the IP table, current
timestamp calculation and server id extraction from the TCP
timestamp option. The IP table is a fundamental component
used to redirect packets coming from the client. Timestamp
calculation takes place when a score computation or update
happens. Server id extraction is used for any packet traversing
the LB with the presence of TCP timestamp option, except for
SYN packets because in this case the LB has not yet assigned
any server to the flow.

In this paper some design choices are configured for these
external blocks as follows. The target number of servers
is defined as 16, which yields O(16) memory space com-
plexity with the 3 tables3. The FIFO memory inside the

316 is small yet can be updated at ease.

dip_reg_score module has a queue length of 64. As a
small-scale prototype implementation, the Vivado simulations
have been applied only to 1 of the 4 possible Ethernet
interfaces. Another assumption of this paper regards the server
id encapsulation in the TCP timestamp option. To be able to
encode up to 16 servers, the the server id takes 4 higher-bit
length among the total 32 bits timestamp value4. To simplify
the P4 code, the only option considered in the TCP header is
the timestamp option.

The server agent is implemented as a VPP plugin [26]
on each AS, which uses an Apache HTTP. This VPP node
corresponds to a modified version of GRE, which encodes
the instant server load state in the key option field and
encapsulates the original IP packet. The number of Apache
busy threads, which can be retrieved from Apache scoreboard
is used in this paper as server load state and the score of
the server. Other metrics for the score could be applied for
different applications.

V. EVALUATION

This section evaluates Charon from 3 perspectives, (i) ac-
ceptance rate of covert channel modification in packet headers,
(ii) performance gain in terms of load balancing fairness
and quality of service, and (iii) throughput and additional
processing latency using P4-NetFPGA implementation.

A. Covert Channel Acceptance

To understand how the Internet would react to the presence
of timestamp option in the TCP header, requests are sent from
Paris to random sets of over 60k distinct IP addresses. The
results obtained are the following:

• NO CONNECTION = 45019
• SUCCESS = 12876
• FAILURE = 5787
• TOTAL = 63682

The code NO CONNECTION is the number of connections
which have not received any response regardless of the pres-
ence of the timestamp option. The code SUCCESS is the
number of connections that have answered to a packet with
the timestamp option. The code FAILURE is the number
of connections that have not answered to a packet with the
timestamp option but answered to packets without timestamp
option. Pruning the first case where the IP addresses can not
associated to any device or service is not available and analyz-
ing only SUCCESS and FAILURE cases gives an acceptance
rate of 68.99%. This experiment does not study the different
geographic locations of the clients and servers or other factors
yet it validates that the stateless design of Charon works
for most end hosts. It is also in accordance with the high
acceptance rate (over 86%) obtained by experimenting on a
larger scale of testbed in [27].

4The assumed maximum number of bits used for encoding server id is 8,
i.e. 256 servers in total, which is sufficient for modern DCs [2]. Any change
in the timestamp value that modifies more than 24 bits is ignored.

2021 1st Joint International Workshop on Network Programmability and Automation

94

start

parse_eth

reject

parse_ip46_ext

parse_gre
parse_tcp

parse_ip46_int

parse_tcp_opt

accept

TCP Flag

alias_idx0 <- alias_table0.apply() w/ 5-tuple hash
alias_idx1 <- alias_table1.apply() w/ 5-tuple hash
ts_now <- get_timestamp()>>11
dip <- server ID in TCP ts option
blob <- gre.key.g++ts_now++gre.key.v

SYN
�FOLHQW�!/%

�

alias_idx0
alias_idx1
ts_now
GET_IND_OP

index0
index1

data
opCode

->
->
->
->

SYN
AC

K
(server->LB)

dip
0
blob
UPDATE_OP

index0
index1

data
opCode

->
->
->
->

~SYN
(client->LB)

0
0
dip
COPY_OP

index0
index1

data
opCode

->
->
->
->

dip_reg_score module

In client->LB case, setValid() gre/ip46_int headers
In server->LB case, setInvalid() gre/ip46_ext headers

output

->

ip46_daddr

IP TABLE
Update IP address
Configure IP/GRE header fields
Set headers Valid()/Invalid()
Update Layer 2 header

ethernet

ip46_ext

gre

ip46_int

tcp

tcp_opt

payload

Parser Match-Action Pipeline De-Parser

Figure 5. P4 workflow.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
FCT (s)

0.00

0.25

0.50

0.75

1.00

CD
F

GSQ
GSQ-PO2

W-SAPP
SAPP

WCMP
ECMP

(a) 64.5% expected resource utilization.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
FCT (s)

0.00

0.25

0.50

0.75

1.00

CD
F

GSQ
GSQ-PO2

W-SAPP
SAPP

WCMP
ECMP

(b) 84.5% expected resource utilization.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
FCT (s)

0.00

0.25

0.50

0.75

1.00

CD
F

GSQ
GSQ-PO2

W-SAPP
SAPP

WCMP
ECMP

(c) 92.5% expected resource utilization.

0 1 2 3 4 5 6
FCT (s)

0.00

0.25

0.50

0.75

1.00
CD

F

GSQ
GSQ-PO2

W-SAPP
SAPP

WCMP
ECMP

(d) 100% expected resource utilization.

Figure 6. CDF of FCT of different LB designs at various traffic rate.

B. Load Balancing Fairness

A virtual simulator is built with 2 LBs and 64 application
servers with different processing capacities5 to study the
load balancing performance in terms of workload distribution
fairness. 3 episodes of 50k clients’ requests for flows that
last 500ms on average are simulated with Poisson traffic at
different variances. The traffic rates are normalized by the
total server cluster processing capacities. Figure 6 depicts the
cumulative distribution function (CDF) of FCT, which is the
time necessary to complete a flow. Different LB designs are
compared. Global shortest queue (GSQ), as the name suggests,
chooses the application server with the shortest queue. It is an
oracle solution that can be achieved assuming that the LBs
are aware of the actual queue lengths on each server and
no computational overhead is incurred when computing the
minimum queue length. It represents the best performance a
LB can achieve. GSQ-PO2 applies power-of-2-choices over
GSQ. Similar to GSQ, the LBs are assumed to be aware of
the exact instant queue lengths on each server. Unlike GSQ,
GSQ-PO2 selects 2 random server candidates and then picks

5Half of the application servers have 2 times higher processing capacities
than the other half.

the one with a shorter queue. It represents the theoretical best
performance Charon can achieve. ECMP randomly selects the
application servers and is the most widely employed load
balancing mechanism. Weighted Cost Multi-Path (WCMP)
selects the application servers according to its statically config-
ured weights which are proportional to the server processing
capacities. W-SAPP denotes the implementation of Charon.
SAPP corresponds to a simplified version of Charon, where
the 2 server candidates are chosen using a uniform distribution
instead of using weighted sampling with the Alias method.
The main difference between SAPP and W-SAPP is the
probabilistic method that W-SAPP applies to obtain the 2
choices. The weights, which are used later as probabilities, are
defined using the relative processing capacities of application
servers. As depicted in figure 6, the performances of both
SAPP and W-SAPP are similar to GSQ, which is considered
as the method that takes the perfect choice. Improvements
can be observed for W-SAPP over SAPP, which is the reason
why the Alias Method is used in Charon. Despite its limited
additional complexity, W-SAPP would be able to catch the
different capacities of servers.

Another interesting metric to evaluate load balancing fair-
ness is the Jain’s fairness index [28], which computes the

2021 1st Joint International Workshop on Network Programmability and Automation

95

Utilization GSQ GSQ2 W-SAPP SAPP WCMP ECMP

64.5% 0.59 0.54 0.52 0.51 0.43 0.34
76.5% 0.64 0.59 0.56 0.57 0.47 0.47
84.5% 0.68 0.63 0.61 0.60 0.49 0.49
92.5% 0.69 0.67 0.66 0.66 0.54 0.51
100% 0.75 0.74 0.76 0.74 0.63 0.52

TABLE I
JAIN’S FAIRNESS INDEXES OF DIFFERENT LBS AT DIFFERENT TRAFFIC

RATES.

fairness of workload distribution. Considering n servers each
one with a particular amount of flows xi, the fairness index is

computed as
(∑n

i=1 xi

n

)2

·
(∑n

i=1 x2
i

n2

)−1
. The maximum and

minimum values that the index can reach are respectively 1
and 1

n with n is the number of servers. If the index reaches
value 1, it means that the load has been fairly distributed. The
worst case is when the index is equal to 1

n which proves that
only one server has taken all the flows.

Using the same configuration as in previous simulations,
the fairness indexes of different LB designs are computed.
These values have been obtained periodically computing the
fairness over the remaining workload of each one of the ASes
during the simulation execution. These results take also in
consideration the different capacities of the servers. As shown
in table I, ECMP and WCMP have the worst performance.
Random choices do not guarantee a fair distribution of flows.
On the other hand, GSQ and GSQ-PO2 get the best fairness.
They have perfect knowledge of the flows and they always
choose the server with the shortest queue length. W-SAPP
and SAPP achieve similar performance to GSQ and GSQ-PO2.
Although the fairness indexes of SAPP and W-SAPP are not so
different, W-SAPP takes into account the processing capacities
of the servers which can be useful when their capacities are
different inside the same server cluster. The Alias Method in
Charon however, uses dynamic weights to select a subset of
candidates.

Another important parameter to analyze is the update time
intervals of the Alias Table. If the update time interval is too
high, the LB choice would not reflect the real-time load states
of the application servers. For this reason, different update
time intervals are simulated.

The results of the simulations are depicted in figure 7.
4 values have been taken into consideration: percentile 90,
percentile 99, median and average of FCT at 2 different
rates. Five different time intervals of Alias Table updates have
been used: 0.2 ms, 0.5 ms, 1 ms, 1 s and 2 s. The plots
show a slight improvement of FCT when the update time
interval is lower (higher update frequency). This difference
is too small to justify shorter time interval update. The LB
are not significantly influenced by a real-time update of the
weights. However, it has to be taken in consideration that these
simulations are virtual. Physical experiments are necessary to
further justify this assumption.

C. P4-NetFPGA Implementation Performance

The performance of NetFPGA is compared with respect to
software solutions. On the NetFPGA, the reference_NIC

0.2 0.5 1 1000 2000
Alias Table update frequency (ms)

0

1

2

3

FC
T

(s
)

percentile 90
percentile 99

median
average

(a) 64.5% expected resource utilization.

0.2 0.5 1 1000 2000
Alias Table update frequency (ms)

0

1

2

3

FC
T

(s
)

percentile 90
percentile 99

median
average

(b) 92.5% expected resource utilization.

Figure 7. FCT of different Alias Table update interval LB designs at various
traffic rate.

0 100 200 300 400 500 600 700 800
Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

NetFPGA
Container (local)
Container (remote)
VM (local)
VM (remote)

Figure 8. Latency CDF of different implementation.

bitstream file is loaded. This program returns on the PCI the
packets that the NetFPGA receives from the Ethernet interface.
At the same way a packet sent to the PCI is then sent from the
Ethernet interface. The NetFPGA behaves as a NIC. In this
way, it is possible to find at which time the packet sent through
the PCI traverses one of the four Ethernet interfaces and it
reaches the host machine. Figure 8 shows the Cumulative
Distribution Function (CDF) of the latency. The Round-Trip
Time (RTT) of ping packets of other software solutions are
also depicted. In particular, four cases are considered: when
there are two containers (dockers) or two VMs on the same
machine or on different machines. The performance of the
NetFPGA largely outperforms the software solutions, which
makes NetFPGA a preferred solution in terms of performance.

To demonstrate the performance of the Verilog module
dip_reg_score, Vivado behavioural simulations have been
executed. A burst of 600 packets is sent to the NetFPGA board.
The delay between packet arrival and departure is shown in
figure 9.

The difference between the first 16 packets and the remain-
ing packets is due to the nature of the packets sent. The first

2021 1st Joint International Workshop on Network Programmability and Automation

96

0 100 200 300 400 500 600
Packet Number

2.70

2.75

2.80

2.85
La

te
nc

y
(

s)

Figure 9. Delay in packet departure with respect to the number of packets
sent.

batch of 16 packets traverse a shorter path as they upload
the IP addresses in the IP table. The remaining packets are
TCP SYN packets. They traverse the longest path in which
the destination application server of the flow is chosen. The
delay is almost linear to the number of cycles required for
packet processing and stays constant. The sinusoidal shape
is because of the jitter, which is low. This plot shows the
high performance of the designed module and its efficiency in
executing the proposed LB algorithm.

VI. CONCLUSION

This paper proposes Charon a stateless, load-aware, hard-
ware load balancer in DCs, which (i) fairly distributes connec-
tions’ requests, (ii) avoids connections breaks, and (iii) avoids
additional latency due to its presence. The design choices of
Charon makes it suitable for implementation on programmable
hardware. Simulation results show Charon improves load
balancing fairness and helps achieve better quality of service
than other LB mechanisms. Evaluations of throughput and
processing latency demonstrate the advantage of hardware
implementations.

REFERENCES

[1] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A. Maltz,
R. Kern, H. Kumar, M. Zikos, H. Wu et al., “Ananta: Cloud scale load
balancing,” ACM SIGCOMM Computer Communication Review, vol. 43,
no. 4, pp. 207–218, 2013.

[2] Facebook Engineering, “Reinventing Facebook’s data center network,”
Mar 2019. [Online]. Available: https://engineering.fb.com/2019/03/14/
data-center-engineering/f16-minipack/

[3] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and
M. Zhang, “Duet: Cloud scale load balancing with hardware and
software,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 4, pp. 27–38, 2015.

[4] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: yesterday, today, and tomor-
row,” in Present and Ulterior Software Engineering. Springer, 2017,
pp. 195–216.

[5] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”
IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, 2014.

[6] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-
Hielscher, A. Cilingiroglu, B. Cheyney, W. Shang, and J. D. Hosein,
“Maglev: A fast and reliable software network load balancer.” in NSDI,
2016, pp. 523–535.

[7] Y. Desmouceaux, P. Pfister, J. Tollet, M. Townsley, and T. Clausen, “6lb:
Scalable and application-aware load balancing with segment routing,”
IEEE/ACM Transactions on Networking, vol. 26, no. 2, pp. 819–834,
2018.

[8] A. Aghdai, C.-Y. Chu, Y. Xu, D. H. Dai, J. Xu, and H. J. Chao,
“Spotlight: Scalable transport layer load balancing for data center
networks,” arXiv preprint arXiv:1806.08455, 2018.

[9] B. Pit-Claudel, Y. Desmouceaux, P. Pfister, M. Townsley, and T. Clausen,
“Stateless load-aware load balancing in p4,” in 2018 IEEE 26th Interna-
tional Conference on Network Protocols (ICNP), Sep 2018, p. 418–423.

[10] J. T. Araújo, L. Saino, L. Buytenhek, and R. Landa, “Balancing on the
edge: Transport affinity without network state,” 2018, p. 111–124.

[11] V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu, “Stateless data-
center load-balancing with beamer,” in 15th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 18), 2018, pp.
125–139.

[12] T. Barbette, C. Tang, H. Yao, D. Kostić, G. Q. M. Jr., P. Papadimitratos,
and M. Chiesa, “A high-speed load-balancer design with guaranteed
per-connection-consistency,” in 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). Santa Clara, CA:
USENIX Association, Feb. 2020, pp. 667–683. [Online]. Available:
https://www.usenix.org/conference/nsdi20/presentation/barbette

[13] D. Borman, R. T. Braden, V. Jacobson, and R. Scheffenegger, “TCP
Extensions for High Performance,” RFC 7323, Sep. 2014. [Online].
Available: https://rfc-editor.org/rfc/rfc7323.txt

[14] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and
R. Shakir, “Segment Routing Architecture,” RFC 8402, Jul. 2018.
[Online]. Available: https://rfc-editor.org/rfc/rfc8402.txt

[15] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 12, no. 10, pp. 1094–1104, 2001.

[16] J. Zhang, S. Wen, J. Zhang, H. Chai, T. Pan, T. Huang, L. Zhang, Y. Liu,
and F. R. Yu, “Fast switch-based load balancer considering application
server states,” IEEE/ACM Transactions on Networking, p. 1–14, 2020.

[17] A. Aghdai, M. I.-C. Wang, Y. Xu, C. H.-P. Wen, and H. J. Chao,
“In-network congestion-aware load balancing at transport layer,” arXiv
preprint arXiv:1811.09731, 2018.

[18] W. Zhang, “Linux virtual server for scalable network services,” 2000.
[19] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making

stateful layer-4 load balancing fast and cheap using switching asics,”
in Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, ser. SIGCOMM ’17. ACM, 2017, p. 15–28,
event-place: Los Angeles, CA, USA.

[20] R. Gandhi, Y. C. Hu, C.-K. Koh, H. H. Liu, and M. Zhang, “Rubik:
Unlocking the power of locality and end-point flexibility in cloud scale
load balancing.” in USENIX Annual Technical Conference, 2015, pp.
473–485.

[21] S. Ibanez, G. Brebner, N. McKeown, and N. Zilberman, “The p4-
netfpga workflow for line-rate packet processing,” in Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 1–9. [Online]. Available:
https://doi.org/10.1145/3289602.3293924

[22] J. Smith and S. Jacobson, “An analysis of the alias method for discrete
random-variate generation,” INFORMS J. Comput., vol. 17, pp. 321–327,
2005.

[23] T. Li, D. Farinacci, S. P. Hanks, D. Meyer, and P. S. Traina, “Generic
Routing Encapsulation (GRE),” RFC 2784, Mar. 2000. [Online].
Available: https://rfc-editor.org/rfc/rfc2784.txt

[24] R. Masoudi and A. Ghaffari, “Software defined networks: A survey,”
Journal of Network and Computer Applications, vol. 67, pp. 1–
25, 2016. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1084804516300297

[25] “Vivado.” [Online]. Available: https://www.xilinx.com/support/
university/vivado.html

[26] “Vpp.” [Online]. Available: https://wiki.fd.io/view/VPP
[27] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and

H. Tokuda, “Is it still possible to extend tcp?” in Proceedings of the
2011 ACM SIGCOMM conference on Internet measurement conference,
2011, pp. 181–194.

[28] R. Jain, D. M. Chiu, and H. WR, “A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems,”
CoRR, vol. cs.NI/9809099, 01 1998.

2021 1st Joint International Workshop on Network Programmability and Automation

97

