2021 3rd International Workshop on High-Precision, Predictable, and Low-Latency Networking

Assessing the Threats Targeting Low Latency
Traffic: the Case of L4S

Marius Letourneau®, Kouame Boris N’Djore*, Guillaume DoyenT, Bertrand Mathieu?, Rémi Cogranne*
Huu Nghia Nguyen®
*LIST3N, University of Technology of Troyes, Troyes, France, {first.last} @utt.fr
fOCIF - IRISA (UMR CNRS 6074), IMT Atlantique, Rennes, France, guillaume.doyen@imt-atlantique.fr
iOramge Innovation, Lannion, France, bertrand2.mathieu@orange.com
$Montimage, Paris, France, huunghia.nguyen@montimage.com

Abstract—New types of services with low-latency requirements
have become a major challenge for the future Internet. Many
optimizations, all targeting the latency reduction have been
proposed. Among them, jointly re-architecting congestion control
and active queue management has been particularly considered.
In this effort, the L4S (Low Latency, Low Loss and Scalable
Throughput) proposal aims at allowing both classic and low-
latency traffic to cohabit within a single node architecture.
Although this architecture sounds promising for latency improve-
ment, it can be exploited by an attacker to perform malicious
actions whose purposes are to defeat its low-latency feature and
consequently make their supported applications unusable. In
this paper, we analyze a set of weaknesses of L4S architecture
and show that application-layer protocols such as QUIC can
easily be hacked in order to exploit the over-sensitivity of those
new services to network variations. By implementing undesirable
flows in a real testbed and evaluating how they impact the proper
delivery of low-latency flows, we demonstrate their reality and
relevance for future deployments.

I. INTRODUCTION

Years after years, network evolutions (e.g., fiber for wired
networks, 5G for wireless) enable higher throughput and
lower latency delivery, leading to the emergence of new
services. The last ones are those belonging to the so-called
Low-Latency (LL) applications, such as cloud gaming, cloud
robotics and tele-robotics, tactile internet, among others. These
applications require the delivery of contents in the order of
few milliseconds. As future networks will allow the delivery
of such latency constrained applications, they should not
penalize other type of services. The Low Latency, Low Loss
and Scalable Throughput (L4S) architecture is currently being
discussed in the IETF [1] and acts as a promising candidate
solution to ensure these low network latency requirements.

However, if such novel architectures exhibit satisfying per-
formance under normal traffic conditions, the question of their
capability to deal with abnormal traffic is still an open issue.
For instance, the ability of L4S to satisfy LL requirements
while maintaining a well balance with classic traffic makes
it highly sensitive to non-regular traffic, as illustrated in [10]
who studied the impact of traffic bursts on the L4S forwarding
performance. Besides, malicious users could easily exploit
such weaknesses to pollute the network traffic and degrade the
Quality of Experience (QoE) of consumers of LL applications.

978-3-903176-36-2 ©2021 IFIP

This is already the case of cloud gaming attacks which, by
leveraging booters [17], are able to target a set of users playing
a common match, so as to provide a poor QoE making the
game eventually unplayable.

In this paper, we identify the main attacks a malicious
user can implement against L4S and present their impacts.
To that aim, we have implemented a testbed hosting L4S, in
which we have generated some LL and classic flows exhibiting
a legitimate or undesirable behavior. The latter is achieved
by hacking the behavior of QUIC which implements its
congestion control within the application layer, thus making it
easily accessible to any malicious user. Our evaluation proved
that these attacks can induce several issues for the legitimate
traffic such as unfair bandwidth sharing, increased queuing
delay or highly unstable throughput. This largely degrades
quality and eventually makes the LL applications not reaching
their low-latency constraints.

The rest of the paper is structured as follows. Section II
presents the background, mainly the L4S architecture and
the work related to undesirable flow generation for malicious
usage. Section III presents the experimental setup implemented
to perform our measurements. Section IV details and explains
the results collected with three different attack patterns, before
we conclude this paper in Section V.

II. BACKGROUND AND RELATED WORK
A. The LA4S Architecture

The LA4S architecture is currently under standardization
at the IETF [I] and focuses on reducing queuing delay
for flows with a low-latency requirement. Coexistence and
fairness between low-latency flows and classic flows are strong
prerequisites in the design of L4S. This is achieved leveraging
a scalable congestion control such as Prague [16], Explicit
Congestion Notification (ECN) [2] and a Dual Queue Coupled
Active Queue Management (DQC AQM) [3] [13].

From the endpoint side, congestion control and the network
stack is adapted to improve scalability and RTT-independance.
Prague is known as such a congestion control (a.k.a. scalable
congestion control) and is available with TCP [16] or with
some QUIC implementations. The main idea is to adapt the
reduction of the congestion windows to the actual level of

544

2021 3rd International Workshop on High-Precision, Predictable, and Low-Latency Networking

congestion instead of drastically reducing the emission rate.
This requires an accurate feedback from the network about
the congestion level, and this is accomplished with a modified
version of ECN called Accurate ECN [12].

From the network side, a Dual Queue Coupled AQM,
composed of three main elements, is proposed. The first
component is a packet classifier that differentiates classic flows
and L4S flows by checking the ECN flags of the IP header.
The second component is a coupling mechanism (e.g., [13])
and the last one is a scheduler that may absorb small packet
bursts. The coupling mechanism, which is the core of the L4S
proposal, works as follow. For the classic queue, a PI2 AQM is
proposed [14] and is easy to implement [15]. A PI' controller
generates a packet marking probability based on a target 7,
which can be an amount of queuing delay or an amount of
packets in the queue. This marking probability p(t), ak.a the
base probability, is governed by the equation:

p(t) =p(t —=T) + a(r(t) = 70) + B(r(t) =7t =T) (1)

where 7 is the target value, 7' is the period used to recompute
the probability, set by default to 16ms, « is a weight associated
with the error regarding the target and [is a weight associ-
ated with the variation compared to the precedent computed
probability. « is set to 0.16 Hz and 8 to 3.2 Hz by default,
which means that the AQM is more sensitive to variation than
to error.

For the LL queue, marking is controlled either with a
simple threshold that helps to compute the related mark/drop
probability without introducing additional delay or with the
base probability explained previously multiplied by a coupling
factor k (by default set to 2). To ensure the fair bandwidth
sharing between the two types of traffic, the probabilities are
coupled before the final decision for marking/dropping. Thus,
depending on the classic AQM, LL packets can be marked in
order not to penalize classic flows but never dropped, whereas
classic packets can be marked (for classic flows supporting
ECN) or dropped. This coupling mechanism between both
queues is a key concept of L4S which ensures that low-latency
flows do not starve classic flows due to over-marking from the
router and over-reaction from the classic flow.

B. Related work

Given the L4S architecture described above, we subse-
quently review the set of works which focus on undesirable
flow generation which may impact the good operation of
L4S. We use the term undesirable flows when referring to
unresponsive flows, malformed flows and misbehaving flows,
which includes both legitimate and attack flows.

1) Misbehaving Flows: Misbehaving flows can be clas-
sified in two categories: protocol manipulation and low-rate
DoS.

A protocol manipulation is the ability of some of the
participants to subvert the protocol without the knowledge
of the others [4]. Most of these attacks are TCP-centered.

IProportional Integral

We can first mention acknowledgement manipulation attacks,
also called hacked ACK which manipulate a TCP endpoint
to make the victim saturates the network (more specifically
an edge router shared by the targeted victim). The optimistic
acknowledgment (opt-ack) attack [4], [5], [8] is a well-studied
example which consists in misleading a sender to send more
packets. The receiver sends acknowledgements before it actu-
ally receives packets, leading the sender to behave as if the
network was in good enough condition to send even more
packets. A more discrete variant of this attack is the lazy opt-
ack attack, which basically works similarly but the receiver
conceals any packet loss by acknowledging all packets when
only one may be actually received. Besides, congestion can
be created in intermediate nodes by several manners. When
it comes to manipulate ECN, we call it hacked ECN. One
can conceal the congestion notification by not informing the
remote entity of the communication [6], [4], [7]. An attacker
can also generate false congestion notification in order to
steal more bandwidth. Another hacked ECN situation is the
case where a malicious user acts in a protocol-compliant
way but, when a congestion occurs, he/she sends the correct
signalling to inform that he/she has reduced his rate while not
doing so. This attack generates an unresponsive ECN-capable
traffic and subsequently, we term it Unresponsive ECN. Some
research for mitigating protocol manipulation has been made
recently in [8] by designing an Extended Finite State Machine
(EFSM) in the data plane using P4 to monitor and detect
protocol misuses related to optimistic ACK and ECN abuse.
The authors focused on detecting flows that are not protocol-
compliant. However the case of a misbehaving but protocol-
compliant flow has not be covered yet to our knowledge and
might be more subtle to differentiate from a legitimate flow.

The other category of misbehaving flows concerns low-
rate DoS attacks (LDoS) whose general model is described
in [9]. Its principle is to send periodic bursts of packets that
are synchronized with the victim’s Retransmission Timeout
(RTO) in order to overflow the router’s queue and eventually
increase latency. LDoS attacks are more difficult to detect
in comparison with regular DoS or DDoS attacks and can
be sustained as long as the periodic generation of burst is
appropriately synchronized, but they are consequently difficult
to implement.

2) Unresponsive flows: An unresponsive flow is a flow that
does not respond to congestion signaling (ECN marks, dropped
packets or additional delay). It can be legitimate UDP or VoIP
traffic or any protocol that does not implement a congestion
control. It can be introduced in any of the classic or L4S
queue and can lead to overloading queues or to congestion
signal saturation. As mentioned by the IETF in [3], L4S
can natively handle some unresponsive traffic, less-responsive
and/or temporarily unresponsive to congestion as long as its
proportion is reasonable. However it becomes an issue when
it leads the DQC AQM into a queue-building behavior.

3) Malformed flows: Malformed flows are usually legiti-
mate but undesirable from a L4S perspective. For instance, a
bursty behavior may occur when the network stack of regular

545

2021 3rd International Workshop on High-Precision, Predictable, and Low-Latency Networking

operating systems within endpoints waits for the sending
buffer to be filled before sending data over the network. This
results in an on/off pattern that injures the L4S performance.
DualPI? overloading has been studied in [| 1]. This study shows
that under overloading traffic, the response time of the PI
controller depends on the buffer size of the router. A large
buffer can reduce on/off emitting patterns generated by a
sender while a small buffer can better restrict the queuing delay
at the price of tail dropped packets. However these experiments
were made with DCTCP and UDP overloading traffic without
the Prague congestion control nor with a malicious user.

In [10], the performance of L4S architecture has been
proven to be sensitive to the flow burstiness induced by the
Linux kernel (e.g. segmentation offloading or pacing setting)
and to the burstiness of the L4S architecture itself. The
authors tested TCP Prague on DualPI? and showed that it
performs a better sharing-behavior than DCTCP. However, the
L4S performance has not been studied in a context where
a malicious user is willing to exploit the effect of sender
burstiness sensitivity to increase its impact on other legitimate
flows.

4) Countermeasures: The IETF has identified the above
mentioned undesirable flows as an issue [], [3] and it proposes
some basic countermeasures to handle unresponsive flows by
sacrificing some performances (L4S delay, L4S throughput
or introducing L4S drop). Traffic shaping and traffic polic-
ing (or queue protection) are also considered for malformed
flows. However, classical techniques for traffic shaping are
not straightly applicable in a LL context, as they may lead to
the bufferbloat problem. TCP Pacing is a solution that can
be required for endpoints to respect before sending traffic
on the network. When combined with fair-queuing within
the endpoints’s network scheduler, it can drastically reduce
traffic (micro-)burstiness. Besides, a solution has also been
proposed by the IETF to some protocol manipulation, and
more specifically for the case of ECN concealing. The sender
might set the IP-ECN flag itself instead of the router when
a flow seems suspect. This way, a malicious receiver would
have no idea whether the flag comes from the network or its
remote peer. However, if all these issues related to undesirable
flows have been identified by the IETF, to the best of our
knowledge, there is neither any comprehensive study of their
impact on LL traffic, which is the purpose of this paper,
nor any implementation of dedicated detection and mitigation
components such as those cited above, which is the purpose
of our research project.

III. EXPERIMENTAL SETUP

In order to understand and comprehensively evaluate how
the L4S architecture behaves when some of the identified
undesirable flows happen and what the possible impacts on a
legitimate LL flow are, we set up a testbed and implemented
the three aforementioned categories of undesirable flows.

A. Testbed

As depicted in Figure 1, we use the following topology.
A baremetal server act as a router and is equipped with an
Intel(R) Xeon(R) CPU E5-2430 v2 @ 2.50GHz, and two Intel
Corporation Ethernet 10G 2P X520 Adapter runs DualPI2. One
Virtual Machine for each endpoint is hosted in an OpenStack
cloud platform. L4S nodes are using the Linux image from the
L4STeam? and are configured to use ECN with the convenient
codepoint to be classified in the low latency queue. Receivers
are connected to the same router interface (enol in the figure),
classic senders and low latency senders are connected to
different interfaces. On the egress direction of enol (receivers
side), DualPI? is configured with a 10 Mbps rate, all other
parameters left to default, i.e. 10000 packets limit, the coupling
factor k is set to 2, drop_on_overload is the strategy to adopt
when high congestion occurs, the target queue delay is 15ms
for the classic queue, aggregated packets are split with the
split_gso option and the step threshold, in other words, the
sojourn time threshold from which DualPI? will always mark
exceeding packets within the low latency queue, is set to 1ms.

Classic Receiver Classic Sender

(Legit)
L45 Receiver
L45 Router L45 Sender
eno2 (Legit)

qdisc: DualP?

L45 Receiver

Malicious Sender

Fig. 1: Network topology of our testbed

The legitimate flows are generated with iper f3 and con-
trolled by TCP Prague while the malicious node is using
QUIC, a protocol based on UDP which is enhanced in the
userspace with congestion control algorithms and other fea-
tures that are present in TCP. This lets a malicious user to
easily modify the sending behavior without having to deal
with the Linux kernel networking stack. We especially chose
to use picoquic®, a minimalist implementation of QUIC which
has been forked by the L4S creators to support the Prague
congestion control. We can adjust maxrate and enable or
disable pacing with the system program traffic control (tc).

The base RTT is set to 15ms with wondershaper in server’s
interface. Metrics are collected from the endpoints with calls
to socket statistics (ss) 4 times per base RTT. This provides
the tcp_info data structure of the kernel, which contains
reported RTT and its mean deviation, the congestion window
(cwnd), maximum potential sending rate based on the formula:

Zhttps://github.com/L4S Team/linux
3https://github.com/private-octopus/picoquic

546

2021 3rd International Workshop on High-Precision, Predictable, and Low-Latency Networking

% and last bytes acked. For the router, metrics are

collected at the same frequency using tc, which provides
metrics from DualPI? such as classic and low latency queue
occupation and queuing delay, marking probability from the
PI controller (base probability), the amount of ECN marks and
the amount of dropped packets. Finally, each experiment lasts
60 seconds.

B. Reference Traffic

In order to highlight and quantify the impact of undesir-
able flows, we need to have a control sample to compare
with our different scenarii. To that aim, we consider that
the measurements depicted in Figure 2 act as the baseline
of our experiments. The reader can refer to it to identify
the traffic alterations due to the different undesirable flows
we consider subsequently. Figure 2 shows regular network
conditions when there is one classic flow and one low latency
flow. In that situation, the router sends 9.54 Mbps, shared,
in accordance with Figure 2.b, which represents the sending
rate. The maximum potential sending rates are depicted in
blue and yellow and the red line indicates the actual data rate,
based on received acked bytes. Given the behavior of TCP
Prague, it tries to takes all the available bandwidth. For the
classic flow, the data rate is limited to 5 Mbps to make sure
that the observed effects are not due to natural saturation of
the router. Figure 2.c shows the differentiated queue delay
in the LL and the classic one and the corresponding RTT is
represented in Figure 2.a. We can observe that the RTT of
the classic flow is much more variable than for the LL flow
which is close to the base RTT set to 15ms in our case. As
we can see, flow congestion is well handled by ECN marking
and even though the LL traffic wants to take all the possible
bandwidth, Figure 2.e shows that no packet drop is necessary
to guarantee the flows respective requirements. The number of
marked packets is measured in Figure 2.f. For Low-Latency
packets, the decision is based on the maximum between the
probability of LL. AQM (which corresponds eventually to the
number of step marks also showed in Figure 2.f) and the
base probability of the classic AQM, showed in Figure 2.d,
multiplied by the coupling factor k.

IV. RESULTS ANALYSIS

This section explores to what extent L4S is affected by an
unexpected behavior in the presence of undesirable flows.

A. Misbehaving flow: Unresponsive ECN

As a misbehaving flow, we first propose to implement an
ECN abuse attack targeting the increasing of a legitimate flow
latency. The protocol manipulation we implemented consists
in being unresponsive to congestion notification while respect-
ing ECN signaling. This was implemented by removing the
congestion windows reduction when updating the coefficient
of reduction in Prague. As such, it expects to saturate the LL
queue to increase the marking probability (leading eventually
to some packet drops) and thus generate an extra delay,
sufficient enough, to make the LL application unusable. A

side effect of this attack relies in bandwidth stealing: such a
behavior will indeed take advantage of the reduction of other
participants when a congestion event occurs, resulting in the
robbery of all the available bandwidth from legitimate users.

Figure 3 shows time series for the different metrics we
consider in the context where the malicious user is generating
such an unresponsive ECN-capable flow. We can see that it
brings a higher queue delay which in return increases the
average RTT. The RTT is twice bigger than that of Figure 2.
Unresponsive ECN puts DualPI? to saturation and triggers the
drop_on_overload reaction. The amount of ECN ma rks is
twice bigger than step marks (i.e. amount of ECN marks due to
exceeding the threshold). We can also notice that the marking
probability is around 50% yet rather stable. The sending rate
is also stable yet very low. This is due to the fact that the
legitimate flow responds correctly to congestion notification
while the attacker steals all the available bandwidth pretending
reducing the sending rate.

B. Unresponsive flow: Bursts

For the unresponsive behavior, we generate traffic bursts
from a classic sender to disturb a legitimate flow in the low
latency queue. To that aim, we configure the ECN flags of the
attack traffic to be classified in the classic queue. We saturate
the low latency queue with traffic from the classic one. The
attack consists here in playing with the coupling mechanism.
The bursty behavior will trigger a high queue variation which
is more likely to increase the marking probability due to the PI
proportional gain 5 in comparison with a constant saturation.

Figure 4 shows the results we collected with such a mali-
cious user generating a bursty flow within the classic queue.
The marking probability is erratic but is around 20% in
average. Both ECN marks and step marks have a step pattern
and occur ten times less often than in case of Unresponsive
ECN. As anticipated previously, the marking probability is
very sensitive to high variation due to the weighting factor 3
of the PI controller. Thus, when a burst occurs, DualPI? reacts
very quickly to punctual events, resulting in a sending rate
reduction from the legitimate user which in the end induces
heavy fluctuation and wide dispersion of sending rate possible
values. RTT and low latency queue delay are also affected by
4ms when a burst occurs, even though the burst takes place
in the classic queue. This is due to the coupling mechanism
in DualPI? which is designed not to hurt classic flows since
it is rather preferred to sacrifice L4S delay on saturation to
ensure a fair flow coexistence. More precisely, when the LL
queue delay is under 1ms, the marking probability of the LL
queue is governed by the base probability multiplied by the
coupling factor. This is why, in the end, the sending rate of
the legitimate low latency flow is affected.

C. Malformed flow: No pacing

A solution to avoid bursty emitting pattern to be sent from
an endpoint is to pace packet emission over a RTT instead of
sending a bulk. This operation is accomplished by the TCP
stack of the Linux kernel and also as a queuing discipline

547

2021 3rd International Workshop on High-Precision, Predictable, and Low-Latency Networking

Classic Server
— LL Server

(a) RTT evolution (ms)
s @ -3
5 =} 8

w
=}
(b) sending rate (egress Mbps)

T N Aw " Gk

N
S

(<) Queue delay (ms)

Classic delay
— L4s delay

"
s 04
0

10000 20000 30000 40000 50000 60000 0 10000 20000

50000

30000 40000 50000 60000 0 20000 30000 40000 60000

30

25

20

7000 step marks

agm marks (PF + K
5000 q « P)
5000

4000

0.00

(e) Dropped Packets

—0.02 4

(d) Marking probability (%)

—0.04

o

3000

(f) ECN Marked packets

2000

1000

o 10000 20000 30000 40000 50000 60000 0 10000 20000

30000

40000 50000 60000 o 10000 20000 30000 40000 50000 60000

Fig. 2: Standard behavior of the L4S architecture with one LL and one classic flows. (a) RTT evolution (ms). (b) Sending rate
(egress Mbps). (c) Queue delay (ms). (d) Marking probability (%). (e) Dropped packets. (f) ECN Marked packets. Horizontal

axis is the time in ms.

65 12 — egress rate (mean: 0.52 Mbps)
—— data rate (mean: 0.49 Mbps)
60 1.0 10!
3 2 K]
Ess 2 o0s E
H s Sl
E ® ol
250 5 06 H
@ s]
k=1 o -1
Eas 5 04 E 10
v -
E 3 3
40 0.2 10-2
35 0.0
[10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
time (in ms) time (in ms) time (in ms)
50 %0 step marks
agm marks (PI* + kp)
_ 1500 80000 -
= w
£ B
= £ 1250 g
5 ° & 60000 -
3 2 g
8 £ 1000 =
8 30 ° g
s I H
2 g 70 = 40000
i 5 z
H S
s & 500 o
B £ 20000 4
250
10
0 0
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000

Fig. 3: Unresponsive ECN impacts on a legitimate low latency flow. The vertical axes of the subfigures are the measured
metrics (two first ones show metrics from the legitimate flow, the others show metrics from the router) and the horizontal axis

is the time in ms.

with Fair Queuing (FQ). Consequently, in this experiment, we
used FQ as a queuing discipline at the sender endpoint, which
lets us control the pacing on the egress traffic as well as the
maximum rate limitation in order to control the sending rate
of the application layer. When pacing is disabled, it generates
undesirable flows. This kind of undesirable flow is meant to
generates micro-saturation with sub-RTT bursts (also termed
micro-bursts). We aim at seeing the impact of pacing and at
generating micro-bursts when disabled.

Figure 5 shows the results we collected in the context
where the malicious user is generating such micro-bursts. The
marking probability is less erratic compared to the previous
experiment, but still not stable and is in average around 50%
and sometime even more, which is similar to the Unresponsive

ECN case. This leads to a large number of ECN marks and by
far to the highest number of dropped packets among the three
experiments. RTT is very erratic, averages around 40ms, and
has the widest dispersion among other measured undesirable
flows of our study. We can see that it is mostly due to LL
queue delay which has the widest dispersion. The sending
rate is higher than for the Unresponsive ECN scenario because
the legitimate flow is able to increase his congestion window
between two micro-bursts.

D. Discussion

In order to clearly assess to what extent undesirable flows
induce changes on the different metrics we observe as com-
pared to our reference experiment, Figure 6 summarizes the
results in boxplots.

548

2021 3rd International Workshop on High-Precision, Predictable, and Low-Latency Networking

12
% — earess rate (mean: 5.94 Mbps)
— data rate (mean: 5.78 Mops)
10
24 7 | 100
H g | ! g
; oo U | ;
5 U ®
£ 22 = | . ‘) I ' I T 1
i]
2 5 ¢ M‘ I\‘ \ , | i (e s
: | H 05 O i :
20 | 2
E Il R il N g ‘ n i £
cl = } J < 1072
18 | 2 |
0 -3
. 10
0 10000 20000 30000 40000 50000 60000 [10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
time (in ms) time (in ms) time (in ms)
50 1000 step marks
5000 - agm marks (PF* + kp)
g% , 800 |
2 g S 6000 -
3 40] g
= £ 600 -
S 5 2
530 I g K
o [g & 4000
2 g
£ g 40 z
£ g S
2 c 2
Sw 200 < 2000 4
0 0 04
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000 [10000 20000 30000 40000 50000 60000

Fig. 4: Bursts within the classic queue impacts on a legitimate low latency flow. The vertical axes of the subfigures are the
measured metrics (two first ones show metrics from the legitimate flow, the others show metrics from the router) and the

horizontal axis is the time in ms.

5
=

=
3
o

o
=

ES

2
£
(b) sending rate (Mbps)

{a) RTT evolution (ms)

w
&
~

| MK "L‘l‘l‘ll,ﬂ‘l

AT

1y

— egress
—— data rate (mean

rate (mean: 1.34 Mbps)
1.00 Mbps)

(<) lqueue delay (ms)
g

30000 40000 50000 60000 0 10000 20000

time (in ms)

0 10000 20000

time (in ms)

30000 40000 50000 60000

time (in ms)

30000 40000 50000 60000 0 10000 20000

5000 +

4000 1
50 4

3000
40 4

304 2000

(d) Marking probability (%)
(e) Dropped Packets

1000 1

10 1

step marks
agm marks (PF* + kp)

70000

60000

50000

40000

30000

20000

(f) ECN Marked packets

10000

0 10000 20000 30000 40000 50000 60000 0 10000 20000

30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000

Fig. 5: Malformed flow impacts on a legitimate low latency flow. The vertical axes of the subfigures are the measured metrics
(two first ones show metrics from the legitimate flow, the others show metrics from the router) and the horizontal axis is the

time in ms.

Generally speaking, we can see that bursty traffic has a
limited impact on the RTT when it lodge itself within the
classic queue but it can bring a lot of variation in the sending
rate when it passes through either queues (Figure 6.a and 6.b).
Micro-bursts from malformed flows are on the other hand
clearly responsible for packet drops, as we can observe in
Figure 6.e. We can conclude that pacing is essential within
endpoints to support the data plane performance. Unresponsive
ECN impacts the marking probability, the number of marked
packets and the low latency queuing delay (Figures 6.d, 6.f and
6.c). Contrasting unresponsive ECN with malformed flows, we
can see that pacing results in less packet drop, thus a higher
number of marked packets, a stable sending rate and RTT
and limits effects on LL queue delay from the Unresponsive

ECN attack. However, regardless the undesirable flow we
consider, they all clearly exhibit an impact that defeats the
expected property of the L4S architecture and eventually the
LL applications running in endpoints.

V. CONCLUSION

The L4S architecture is a promising approach to deliver
low-latency contents under a few milliseconds. But, to be
deployed in operational networks, such a solution should be
robust to attacks and to legitimate undesirable flows. In this
paper, we have studied to what extent the L4S architecture
can be threaten by several types of undesirable flows. By
implementing and evaluating three type of abnormal flow
behaviors, we have quantified their impact and proved that
the current L4S architecture cannot efficiently deal with them

549

2021 3rd International Workshop on High-Precisi

on, Predictable, and Low-Latency Networking

b]
601 g 10.0 S
n 5 5 LE
o i e 27 757 Se 40
E. | T 22 504 £%
— 204 == o= @ o 204
c 2 254 [T a- L]f
0 = — — ——) J J—
T T T T 0.0 - T T T T ‘B 0 T T
Aoty B“'c‘a‘c—‘ acin9 e st a0 r,\\i uf‘a‘c-‘ acin9
a? o B a? B o?
"a_é U“{e,";v o By U“{E'SQCN B _':“{E'S C,N)
g 0
2 6o T &
=] —_ Y anpo A < 75000 -
S T o A 3
=4 B T 50000 -
o - o
£ 204 g 200 i & 25000 -
= a — =
E 0 1 &I T T T @ 0 1 - =I T I__!__I T u; 0 1 T
cl We s ; \! We =) ; S {
- N X 9 2 N X 9 WE_ el 9
res o‘f oo We 9" nor™ res O{f o We 0" ‘m ces? {\f\ B\“s Wo 0o
Niaee unfe e unfe e

Fig. 6: Multi-criteria comparison of the impact of undesirable flows on a legitimate LL flow. Vertical axes are measured metrics
represented as a boxplot with the median value and first and third quartile and the first and ninth decile. Horizontal axis is the

type of undesirable flow.

since eventually the low-latency requirement is defeated as
well as the jitter and the sending rate.

The three main threats have been evaluated independently
to isolate their effect on L4S, but further studies need to be
made to see what happen when these undesirable flows are
combined. Consequently, our ongoing work concerns undesir-
able flows combined altogether and preliminary results seems
to show that pacing at senders can drastically reduce most of
the impacts. Besides, we also plan to study the impacts of each
presented attacks when we vary their parameters to determine
where each attack is the most powerful and by contrast how
an attack can dissimulate its behavior to be undetected.

In our mid-term future work, we will investigate detection
modules, which can detect such attacks, via for example traffic
pattern analysis (e.g. inter-arrival time or packet size) or via
machine learning techniques. Finally, our ultimate objective
consists in defining countermeasures, which can help to mit-
igate such attacks, and consequently enable a safe and stable
operation of low latency forwarding in the Future Internet.

ACKNOWLEDGMENT

This work is partially funded by the French ANR MO-
SAICO project, No ANR-19-CE25-0012.

REFERENCES

[1] B. Briscoe and K. De Schepper and M. Bagnulo and G. White,
Low Latency, Low Loss, Scalable Throughput (L4S) Internet Service:
Architecture. draft-ietf-tsvwg-14s-arch-10, 2021.

[2] S. Floyd and K. K. Ramakrishnan and D. L. .Black, The Addition of
Explicit Congestion Notification (ECN) to IP. RFC3168, 2001.

[3] K. De Schepper and B. Briscoe and G. White, DualQ Coupled AQMs
for Low Latency, Low Loss and Scalable Throughput (L4S). Internet
Engineering Task Force, 2021.

[4] N. Kothari and R. Mahajan and T. Millstein and R. Govindan and
M. Musuvathi, Finding Protocol Manipulation Attacks. SIGCOMM
Comput. Commun. Rev. 41(4):26-37, 2011.

[5] R. Sherwood and B. Bhattacharjee and R. Braud, Misbehaving TCP Re-
ceivers Can Cause Internet-Wide Congestion Collapse. ACM Conference
on Computer and Communications Security, pp.383-392, 2005.

[6] D. Ely and N. Spring and D. Wetherall and S. Savage and T. Anderson,
Robust congestion signaling. International Conference on Network
Protocols. ICNP 2001, pp.332-341, 2001.

[7] A. Laraba and J. Francois and I. Chrisment and S. R. Chowdhury and

R. Boutaba, Defeating Protocol Abuse with P4: Application to Explicit

Congestion Notification. ~ IFIP Networking Conference, pp.431-439,

2020.

A. Laraba and J. Francois and S. R. Chowdhury and I. Chrisment and

R. Boutaba, Mitigating TCP Protocol Misuse With Programmable Data

Planes. 1EEE Transactions on Network and Service Management, vol.

18, no. 1, pp.760-774, 2021.

[9] W. Zhijun and L. Wenjing and L. Liang and Y. Meng, Low-Rate DoS
Attacks, Detection, Defense, and Challenges: A Survey. 1EEE Access,
vol. 8, pp.43920-43943, 2020.

[10] D. B. Oljira and K. J. Grinnemo and A. Brunstrom and J. Taheri,
Validating the Sharing Behavior and Latency Characteristics of the L4S
Architecture. SIGCOMM Comput. Commun. Rev., vol. 50, pp.37-44,
2020.

[11] Henrik Steen, Destruction Testing: Ultra-Low Delay using Dual Queue
Coupled Active Queue Management. Masters Thesis, Dept of Informat-
ics, Uni Oslo, 2017

[12] Bob Briscoe, Mirja Kiihlewind, Richard Scheffenegger, More Accurate
ECN Feedback in TCP. draft-ietf-tcpm-accurate-ecn-15, 2021

[13] Albisser, O. and De Schepper, K. and Briscoe, B. and Tilmans, O. and
H. Steen, DUALPI2 - Low Latency, Low Loss and Scalable (L4S) AQM,
March 2019, NetDev 0x13, Prague, Czech Republic, EU

[14] Koen De Schepper, Olga Bondarenko, Ing Jyh Tsang and Bob Briscoe,
PIQ: A Linearized AQM for both Classic and Scalable TCP, CoNEXT,
pp 105-119, 2016

[15] Rohit P. Tahiliani and Hitesh Tewari, Implementation of P12 queuing
discipline for classic TCP traffic in ns-3, Networking, pp 1-6, IEEE
Computer Society, 2017

[16] B. Briscoe, K. De Schepper, O. Tilmans, M. Kiihlewind, J. Misund, O.
Albisser and A. Sajjad Ahmed, Implementing the *Prague Requirements’
for Low Latency Low Loss Scalable Throughput (L4S), Netdev 0x13,
2019

[17] A. Hutchings and R. Clayton, Exploring the Provision of Online Booter
Services, Deviant Behavior 37 (10), pp 1163-1178, Routledge 2016

[8

—_

550

