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Abstract—In-Network Computing is a promising field that can
be explored to leverage programmable network devices to offload
computing towards the edge of the network. This has created
great interest in supporting a wide range of network functionality
in the data plane. Considering a networked robotics domain, this
brings new opportunities to tackle the communication latency
challenges. However, this approach opens a room for hardware-
level exploits, with the possibility to add a malicious code to
the network device in a hidden fashion, compromising the entire
communication in the robotic facilities. In this work, we expose
vulnerabilities that are exploitable in the most widely used flexible
framework for writing robot software, Robot Operating System
(ROS). We focus on ROS protocol crossing a programmable
SmartNIC as a use case for In-Network Hijacking and In-
Network Replay attacks, that can be easily implemented using
the P4 language, exposing security vulnerabilities for hackers to
take control of the robots or simply breaking the entire system.

Index Terms—In-network computing, security, P4, ROS

I. INTRODUCTION

Envisioned as a key factor for the upcoming generation of
service robots, cloud-enabled robots will also play important
roles in areas such as eHealth and Industry 4.0 [1]. Given
resource constraints imposed by embedded hardware, the pos-
sibility of offloading processing into a programmable element
closer to the robots (e.g. edge) allows more cost-effective
robots cooperating in unstructured environments [1].

Network-related issues (e.g., latency) may prevent further
advances of cloud robotics, and edge computing techniques
have the potential to alleviate such constraints [2]. Never-
theless, edge computing is an expensive architecture solution
when compared to the cloud and may not suit some latency-
sensitive and critical applications on production environments
(e.g., lower-level controllers). Thus, there is room for exploit-
ing this market using state-of-the-art network programmability.
In-network computing is a promising field that uses the capa-
bilities of programmable network devices (e.g., programmable
switches and NICs) to offload computing to the network [3].

Figure 1 presents the concept of In-Network Edge (INE),
in which a programmable data plane connects robots to edge
and cloud servers, and allows for robotic functionality to
be instantiated within the network. Leveraging in-network
applications based on a consolidated network programming
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Fig. 1: Cloud Robotics and Programmable Data Plane.

language, such as the P4 language, may enhance manage-
ment and control at the edge. Since network devices are in
physical proximity with robots and distributed sensors, the
use of in-network computing for robotics also reduces the
overall latency, which is specially interesting for time-critical
applications. In this context, INE may be enabled by the P4
language and a NFV framework [4], with potential to unleash
real-time functionality in networked robotics.

Nevertheless, routing data from networked robotic systems
via programmable network devices opens another window of
opportunity for attackers trying to get access to the system. In
this sense, in-network computing is a double-edged sword:
vulnerabilities in how data is transmitted and interpreted
can be explored from within the network. Thus, in a threat
model in which malicious applications are running inside pro-
grammable devices, aspects related to data security, integrity
and validity must be taken into further consideration. Multiple
works have advocated for the use of in-network computing for
robotics (e.g., [5]-[7]), but to the best of our knowledge this
is the first work to address security concerns introduced by
programmable network devices to networked robotic systems.

In this paper, we argue that most current robotic systems
are vulnerable to simple attacks in a programmable data
plane. We discuss two threat models in which robotic systems
might be driven to unstable conditions by a compromised
network device. We demonstrate such vulnerabilities using
a networked robotics system based on the Robot Operating
System (ROS), which is currently the most adopted robot
development framework, communicating over a P4-enabled
network device. The main contribution of this work is to cast
a light in how attacks that are well described in the literature
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can be refactored to be launched from the network itself.

The remainder of this paper is as follows. In Section II,
we further describe the technologies involved in the scenario
presented in the introduction, drawing a parallel of our view
with related research works. Then, in Section III we present
two threat models for networked robotics in programmable
data planes, demonstrate possible attacks and discuss related
issues. Finally, in Section IV we present a final discussion and
the future directions of this research.

II. BACKGROUND AND RELATED WORK

As with other embedded systems, robotics manufacturers
place a high priority on safety, development cost, speed to
market, and providing customer features. Cybersecurity is
a lower, and sometimes, forgotten priority in part because
security is not a primary consideration for customers [8]. The
end-user demands more concerns on cost, usability, features,
and functionality [9]. However, due to their direct interaction
with human beings, robotics applications must be required
to be more secure and safe than other embedded systems.
Overall, various security concerns, issues, vulnerabilities, and
threats are constantly arising, including the malicious misuse
of these robots via cyberattacks, which may result in serious
injuries and even death [10], [11].

A. Programmable Data Planes

Data plane programmability means that the data plane with
its algorithms can be defined by the end users, algorithms
which are responsible for processing all the packets that cross
through a network device. Thus, they ultimately define the
functionality, performance, and the scalability of such systems.
When data plane programming is provided to end users, it
qualitatively changes their power, for both good and evil [12].

The rise of data plane programmability has been leveraged
by domain specific languages like P4 [13] for programming
high-speed packet processing. In that sense, a new set of in-
network applications has emerged such as heavy-hitter detec-
tion [14], machine learning classification [15] and caching for
distributed services [16]. More recently, cloud robotics related
applications [17], [S], [6], [7] aiming to achieve low latency
by programmable network devices positioned nearest to the
robotic fleet.

From an architectural point of view, a new RMT architecture
[18], which evolved to PISA architecture, proposes a flexible
parser and a customisable match-action engine. To process
packets at high speed, this architecture has a multi-stage
pipeline where packets flow at line rate. Each stage has a fixed
amount of time to process every packet, allowing fast lookups
table operations (e.g. TCAM), manipulating packet metadata
and stateful registers. Such technology, which employs the P4
language as basis for programming, led to the creation of new
efficient programmable network devices, overriding the past
limitation.

B. Placement of Embedded Network Function and its Security

In NFV, the VNF placement is normally defined by where
and how many instances of each network function should be
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Fig. 2: PIaFFE and multi-level chaining concept.

placed and allocated. When using this paradigm in conjunction
with programmable data planes, we have to define the most
desirable place to execute a specific network function, in order
to optimise both hardware and software resources.

A couple of works has used the P4 programming language
targeting the deployment and placement of micro-applications
in different data planes. T4P4S [19] is a software P4 target
that relies on interfaces for accelerated packet processing,
providing a compiler that translates P4 programs into target-
independent C code that interfaces a network hardware ab-
straction library. Flightplan [20] is a target-agnostic, program-
ming tool-chain that helps with splitting a P4 program into a
set of cooperating P4 programs and maps them to run as a
distributed system formed of several data planes.

PIaFFE [4] is a framework that uses P4-language for de-
composing and deploying Virtual Network Functions (VNFs)
into small embedded Network Functions (eNFs) on in-network
processors, allowing the correct placement and balance be-
tween hardware capabilities from a programmable NIC, using
the flexibility of traditional VNFs running on virtual hosts.
As depicted by Figure 2, PIaFFE framework can be used to
deploy micro-services into programmable data planes, creating
small applications that can cope with network-related services
(i.e. firewall, routing) and/or high-level network applications
(i.e. data encryption, telemetry), enabling the inference on the
upper application stack into the network packets. As long as
the network traffic arrives at the SmartNIC, PIaFFE employs
a P4 Data Structure (P4 DS) — which can be a hash table, a
bloom filter, for instance — to steer traffic through the eNF or
send it up to the VNF at the virtualisation layer, using SR-IOV
as an efficient communication channel.

In this work, we propose the use of PIaFFE for creating ROS
micro-applications that are able to interact with the network
packets in a transparent fashion, processing network packets
when forwarding them, exposing the potential disruption that
can be achieved using a programmable data plane with a
malicious embedded code.

C. Vulnerabilities in Programmable Network Devices

As desirable properties for securing network communi-
cations, we can list confidentiality, message integrity, end-
point authentication and operational security [21]. Together,
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Fig. 3: ROS operation: the master registers and provide infor-
mation for publishers and subscribers to establish connections
and allow nodes to exchange information directly via topics.

these terms define a desirable secure environment for devices
to ensure that the messages exchanged between them are
authentic and to increase the network’s confidence.

Programmable devices are extremely effective in improving
performance and giving flexibility to the data plane, by the
use of high-level programming languages and compilers which
could exploit that emerging programmable data planes devices.
However, they bring novel security concerns, such as targeted
denial of service and state exhaustion attacks, data plane
attacks [22], which need to be exposed both to programmers
and the end-user.

A compromised device can disrupt the overall network’s
confidence, since all packets need to be routed through this
type of device, and giving the location in the premises, which
is generally considered safe, even a small malicious exploit
inserted on it may result in disastrous problems. Notwithstand-
ing, non-programmable network devices are also susceptible
to these problems [23], [24], and now with the possibility
to customise the data plane using high-level programming
languages, these constraints can escalate to a new level,
leaving a room for new types of exploits that can be pre-
inserted and programmed to catch information or simply to
disrupt all network traffic passing through these devices.

D. Security in ROS Systems

ROS [25] is the de facto standard middleware for robotics.
It separates application management issues and the communi-
cation of data, which is abstracted by the middleware. This
decentralisation of components pairs well with networked
robotic systems and ROS can be used as a base to connect
multiple components, even when parts of the system are
in the cloud. Given its widespread use, ROS is ideal to
demonstrate how programmable data planes can be used to
explore vulnerabilities in robotic systems.

To briefly explain how ROS works, the pieces of software
that compose the system (i.e., nodes) are executed on top
of an operating system (OS) and use the underlying ROS
infrastructure to communicate with other nodes. Communi-
cation is carried by transmitting well-defined data structures
(i.e., messages) via topics in a pub/sub architecture. A ROS

master is implemented using XMLRPC, a stateless HTTP-
based protocol, and provides naming and registration services
to the nodes in the system. The master is used to connect
nodes and, once a publishing node locates a subscriber they
can communicate peer-to-peer. This process is illustrated in
Fig. 3: upon startup, nodes NodeA and NodeB advertise to the
master that they will publish messages to topics named /topicl
and /topic2, respectively; to subscribe to those topics, NodeC
communicates with the master to register two subscribers, each
associated with one topic. Then, as there are both publishers
and subscribers registered to each topic, the master sends
instructions to the nodes to establish a connection and start
communicating with one another.

Traditionally, custom protocols based on TCP/IP or UDP/IP
are used in ROS (TCPROS and UDPROS, respectively) [25].
Upon initialisation, a publisher node provides the ROS master
with the topic name and associated data structure (i.e., ROS
message type). The master then informs the node about all of
the other publishers and subscribers. When a node becomes
a publisher on a topic, it will connect to subscribers to that
specific topic and there is no access control for topics beyond
the data type MDS5 hash [26].

In general, no security mechanisms regarding confidential-
ity, integrity or authenticity are implemented out of the box.
Data is transmitted unencrypted and the only information
needed to decode intercepted ROS packets is the type of the
message being transmitted, which describes the associated data
structure and is usually standardised in the ROS framework.
Thus, ROS messages can be intercepted and decoded either by
direct inspection of the payload. Notwithstanding, the stateless
API does not take account of what is happening in the network.

The Secure ROS (SROS) was introduced to add cryptog-
raphy and security measures to ROS, thus addressing some
its vulnerabilities [27]. The SROS enables TLS support for
encrypted communication within ROS, access control policies
and user-space tooling to generate node key-pairs. Neverthe-
less, the use of the SROS hampers performance and such
a trade-off must be taken into account. Alternatives to the
SROS have been presented but none seem to have gained
traction. Dieber et al. [28] identified that compromised user
space libraries can break communication’s confidence in ROS.
We argue that a compromised programmable data plane can
be exploited to the same end.

It is worth noting that ROS’ evolution, the ROS2 tackles
some of the security concerns with ROS. It uses DDS as the
messaging layer, which supports a security standard for pro-
tecting messages between parties with access control enforce-
ment. The SROS2 is the current initiative to integrate DDS
security and the ROS2 and has been found to significantly
affect system performance [29]. ROS’ user base is much larger
than ROS2’, making it more relevant to the security concerns
we raise, some of which also apply to ROS2 and will be
addressed in our future work.
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Fig. 4: Threat models: a) hijacking; b) replay attack.

III. THREAT MODELS EXPOSED

In this section, we explore two vulnerabilities in the use of
ROS within the paradigm of programmable data planes. Given
the projects described in the literature and in the open-source
community, the majority of ROS systems would be vulnerable
to such attacks.

A. In-Network Hijacking: Man-in-the-middle Attack

Despite ROS’ distributed nature, security aspects in com-
munication are not implemented. Common message types
encapsulate raw data and it’s safe to assume that most ROS’
users take no further steps into securing it. Thus, if one can
isolate a packet flow and identify the associated data structure
interpreting the data is straightforward. More than that, it
becomes easy to tamper with the flow by directly modifying
the data being transmitted; this can be done in a coherent
manner, replacing the actual data for feasible — but incorrect
— data, thus making it harder for any automated function to
detect that the system has been compromised.

We consider that programmable network devices have trans-
parent access to data exchanged in a ROS system. Such devices
may be used to identify a given flow and alter the data being
transmitted. There are three assumptions: (i) ROS’ standard
libraries and messages are used; (i) ROS’ nodes are distributed
among different machines, and; (iii) transmitted data is not
encrypted. All of these assumptions are compatible with the
standard ROS operation and are present in most systems.

To demonstrate how to explore such vulnerabilities using
programmable network devices, we implement a ROS system
composed of two VMs communicating over a P4-enabled
SmartNIC. One VM simulates a robot and the other VM
instantiates a navigation controller. In this feedback loop,
the robot sends its current position to the controller, which
generates velocity commands to the robot. In the SmartNIC,
we implement a P4 library relating packet size and part of
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Fig. 5: TurtleSim simulator: (1) Normal robot behaviour; (2)
Setting a trigger via P4 table; (3) Abnormal robot behaviour
(red track)

the payload to standard message types. The SmartNIC parses
its traffic to single out packets identified as messages coming
from the simulated robot’s controller, as exemplified in Figure
4a. Once the target flow is identified, its payload is altered to
a given valid instruction, thus hijacking the robot’s motion.

We use the TurtleSim package to simulate a robot being
controlled to follow an eight-shaped trajectory. Given an
external trigger, the hijacking takes place and the messages
sent from the controller to the robot are modified to trick the
robot into following a spurious trajectory. Figure 5 illustrates
the outcomes of our demonstration. The controller tracks an
eight-shaped trajectory and, once the attack begins, the robot
receives tampered instructions to make it follow a circular
path. By changing the payload directly, it is possible to inject
any instruction to pose as legitimate control output. A similar
approach could be used to modify sensor data, introducing
artificial noise to hamper system performance without leaving
clear signs of an attack.

In our demonstration, we rely on live per-packet detection
of a given ROS flow. A more sophisticated approach would
be to identify ROS’ control packets exchanged among nodes
and the ROS master to identify publish/subscriber pairs and
the type of message exchanged among them. Thus, to identify
the flow associated with a given pair of nodes, one only needs
to parse the TCP header in such packets.

Encryption could be used in all communications within
a ROS system to overcome such a threat, especially in
production environments. Nevertheless, encryption algorithms
introduce processing and bandwidth overheads that must be
considered since they can degrade the overall performance.
In case the internal network is considered to be secure and
encryption is only used when communicating with the cloud,
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a compromised programmable network device within the local
network might also be exploited to a similar result.

B. In-Network Replay Attack

A replay attack occurs when an individual eavesdrops on a
secure network communication, intercept the packets, and then
delays or re-sends it to misdirect the receiver into doing what
the attacker wants, or simply messing with the final proposes
of the overall communication. Thereafter, programmable net-
work devices are not only capable of modifying packet data
but can also cloning or creating packets, inserting them into
a given flow. Thus, it becomes possible to clone valid ROS
messages to mislead subscribers, whether data is encrypted or
not. Since ROS’ subscribers rely on a middleware-level buffer
for relaying incoming messages, overflowing the buffer may
lead to undefined behaviour in the ROS system. This could be
achieved by inserting considerably lower levels of throughput
than it would be necessary to disrupt the robot network. By
being done transparently, from the inside of the network, such
an attack could be hard to be detected and could demand for
direct inspection of incoming packets in the robot.

By default, neither ROS or ROS2 implement mechanisms
to verify if the arriving data is duplicated. A sequence field
is present in the header of some messages in ROS, but it
was deprecated in earlier versions. This means that, unless
the developer explicitly implements methods to avoid message
repetition, every message extracted from the overflowed buffer
would be considered valid. One way to mitigate such a threat
without directly addressing it is to discard messages with old
timestamps but, even if a short time-to-live mechanism is
present, the buffer size would have to be tuned accordingly
to limit the amount of accepted duplicate data.

For this threat model, we consider that a programmable
network device may insert packets in publisher/subscriber
flows in ROS systems, as illustrated in Figure 4b. A given
flow can be targeted and have its packets cloned to overflow

subscribers’ buffers. There are two assumptions: (i) ROS’
nodes are distributed among different machines, and; (ii)
subscriber nodes do not implement any mechanisms to discard
duplicate messages. These assumptions are compatible with
the standard ROS operation and are present in most users’
ROS systems.

We use the same setup described in the Subsection III-A
to demonstrate how to generate unstable behaviours in robot
systems by flooding a ROS subscriber. In the SmartNIC, we
implement a P4 library relating packet size and part of the
payload to common standard ROS message types. The Smart-
NIC is now programmed with P4 code that parses its traffic to
single-out a given flow and replicate its packets. In separate
experiments, we target the subscriber in the controller node,
which receives the current robot position, and the subscriber
in the robot’s motion node.

As we can see in Figure 6a, the desired robot trajectory
(blue) was disturbed by the in-network replay attack, forming
a different pattern (red) due to the overload generated by the
eNF on the network device. Following the Figure 6b and 6c,
we also have the angular and linear velocities of the TurtleSim,
captured before and during the attack, showing the erratic
behaviour of the system as a result of the disruption caused
by the attack. in a real scenario of robotics, this could lead to
a catastrophic outcome, since the robot would supposedly be
receiving orders from the controller, which in turn would not
be aware of what the robot was doing.

IV. CONCLUSION AND FUTURE WORKS

In this paper, we discuss concerns about the effects of
jeopardised programmable devices upon networked robotic
systems. We show that micro-services can be inserted into
the data plane to intercept and modify network packets. In
particular, we implement such micro-services to interact with
packets of ROS’ systems, causing problems for both controller
and the robot fleet. We also discuss the main threat models,
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pointing at some aspects in the current implementations of
networked robotics, showing the results using P4-enabled
network hardware. Our results confirm the possibility of
exploiting programmable network devices as attack vectors
towards robotics systems.

As future works, we plan to ensure the confidentiality and
reliability of the data, adding and checking the information
via hash algorithms and/or cryptography using an embedded
Network Function. We also intend to explore complex robotic
systems based on ROS 2, making use of the DDS machine-
to-machine communication protocols.
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