2021 17th International Conference on Network and Service Management (CNSM)

Cloud Native Data Platform for
Network Telemetry and Analytics

Daniel Tovarnak

Masaryk University
Brno, Czech Republic
tovarnak @ics.muni.cz

Abstract—In this manuscript, we present a prototype of a
modular data platform that is able to continuously ingest, process,
retain, and analyse large amounts of network telemetry data
in a scalable and straightforward manner. It follows a recently
proposed Data Lakehouse architectural pattern, which is an
evolution of two well-known approaches used in this area —
data warehouses and data lakes. The platform is based on open
standards and open-source components, and it follows cloud
native principles in order to be able to run in modern computing
environments such as public, private, and hybrid clouds. The
primary focus of the prototype is network telemetry and analytics
over traffic flows and infrastructure logs for the purposes of
cyber-security digital forensics and incident response. During the
demonstration part, we will further describe internal workings
of the presented data platform and showcase its capabilities and
possible applications on a public dataset.

Index Terms—Data Lakehouse, Network Flows, Log Data

I. INTRODUCTION

Modern networks and computing environments produce vast
amount of telemetry data that are used for multitude of purposes
in organizations of all sizes. Having visibility of the managed
network is essential for a wide spectrum of mission-critical jobs,
e.g. accounting, capacity planning, performance monitoring,
incident handling, maintenance, or fault-detection. The ability
to continuously ingest, process, retain and analyse network
telemetry data is also a prerequisite for effective automation
of IT operations processes. We recognize two large classes of
network telemetry data that are very different in their nature.

The foundational concept of network traffic flows was
proposed in 1991 to facilitate accounting of network usage.
Cisco’s NetFlow soon became a de-facto standard for acquiring
traffic telemetry data, and after millennium, it started to be
used for anomaly detection and traffic analysis [1]. Nowadays,
the most common tools for flow processing (e.g. nfdump) are
no longer sufficient for the vast amounts of data exported from
modern networks. The user requirements have also changed,
and data science approaches are desirable. Even though network
flows are essentially incorruptible and they are very accurate,
they can lack application-level information, due to encryption.

Infrastructure logs, on the other hand, are considered to
be one of the few mechanisms available for gaining visibility
into the respective elements of the network and the computing
environment itself [2]. Regardless if it is a hardware appliance,
router, switch, firewall, IDS/IPS, operating system, web server,

978-3-903176-36-2 ©2021 IFIP

Matas Racek
Masaryk University
Brno, Czech Republic
racek@ics.muni.cz

Petr Velan
Masaryk University
Brno, Czech Republic
velan@ics.muni.cz

or DNS server, the generated developer logs, audit logs,
instrumentation data, and other metrics are all an invaluable
and unique source of information. When combined, they too
represent a high-velocity, high-volume flood of data.

For over a decade, the application domain of network
telemetry and analytics has been one of the research and
innovation drivers in the area of big-data management. Histor-
ically speaking, due to the data explosion and the increase of
different applications, the traditional approaches based on data
warehouses and ETL jobs started to be increasingly complex
and costly. Therefore, new highly-scalable and cost-effective
concepts gradually emerged. One of the most prominent ones,
data lakes, have introduced their own set of challenges related
to data curation, metadata management, and lack of transac-
tional access, known from relational databases [3]. In recent
years, an ever-increasing demand for high-quality structured
data access, e.g. driven by machine-learning applications, has
supported the emergence of novel approaches and technologies
that nowadays allow data engineers to make yet another
paradigm shift.

= = @
BI Reports D; Machine
T Science Learning

[sqQLAPIs | (Declarative DF APIs |
[I IIVIetadata APIIs I]

Metadata, Caching, and

Indexing Layer

00111011001110110
011001010110010101100101 01100101

Data Lake

8 Bt B

Structured, Semi-structured & Unstructured Data

Figure 1: Data Lakehouse storage model [4]

As described in [4], Data Lakehouse is a data management
system based on low-cost and directly-accessible storage
that also provides traditional analytical DBMS management
and performance features such as ACID transactions, data

394

2021 17th International Conference on Network and Service Management (CNSM)

versioning, auditing, indexing, caching, and query optimization.
Lakehouses thus combine the key benefits of data lakes and data
warehouses: low-cost storage in an open format accessible by
a variety of systems from the former, and powerful management
and optimization features from the latter.

In architectural terms (see Figure 1), Data Lakehouse can be
viewed as a combination of a cheap data lake storage system
with a transactional metadata layer on top, which is responsible
for transaction management, data versioning, auditing, indexing,
caching, query optimization, and schema enforcement. The data
are continuously normalized, transformed, and curated via batch
and streaming ETL/ELT jobs. Structured access to data can
be achieved via distributed SQL query engines, or declarative
jobs executed by distributed processing engines.

II. DATA PLATFORM ARCHITECTURE

Our goal was to design and implement a prototype of an
open data platform that would follow the Data Lakehouse
architecture, whilst taking the specifics of network telemetry
data into consideration. Another objective was to follow the
cloud native principles in order to be able to easily deploy
the whole platform into the Kubernetes container orchestration
system, both in managed and self-hosted variants. Finally, we
have focused on interoperability and openness, that is why all
the used components are open-source, and both ingestion data
formats are de-facto standards. IPFIX (RFC7011) is used for
network flows telemetry, and IETF Syslog (RFC5424) is used
for infrastructure logs telemetry. Figure 2 shows the overall
architecture of the data platform prototype.

o IPFIXcol2 is a tool developed by CESNET (Czech NREN)
used for collection, processing and storage of IPFIX flow
data. In our case, it serves as an ingress point that is able
to transform IPFIX data to JSON and write it to Kafka.

e Syslog-ng is a high-performance log collector used for
parsing, filtering, and rewriting heterogeneous log data.
In our case, it serves as an ingress point that is able to
transform IETF Syslog data to JSON and write it to Kafka.

o JSON is a lightweight, text-based, language-independent
data interchange format, which we use for intermediary,
semi-structured data exchange.

o Apache Avro is a binary serialization format capable of
representing complex data structures. During the data
serialization and de-serialization, it relies on external
data schema to specify its structure. It supports schema
evolution and we use it for in-transit data.

o Apache Kafka is a renowned distributed data streaming
platform designed with high throughput in mind. It is
responsible for high-volume, low-latency data exchange
between the respective components of the prototype.

e Apache Spark is a distributed analytics engine for both
batch and streaming data. It was developed to remove the
limitations of the MapReduce paradigm and extend its
usage to other areas such as machine learning or structured
streaming. This is where ETL/ELT happens.

e Apache ORC is a columnar data storage format developed
to improve the performance of MapReduce jobs and

reduce the size of the stored data. It also enables the
readers to process only the data that are required by the
actual query. We use it for data in-situ.

o Apache Iceberg is an open table format for large analytic
datasets saved in a distributed storage. In our prototype, it
serves as a transactional metadata layer and it uses several
query optimization techniques. Thanks to Iceberg, it is
possible to organize ORC data into huge structured tables.

o Apache Hive Metastore serves as a metadata store (catalog)
for Iceberg. It contains various information about the
managed tables, partitions, table columns, and their
locations. It allows the prototype to work with the data
via SQL. It uses Apache Thrift protocol to communicate.

e MinlO is a distributed, high-performance, S3-compatible
object storage. The raw ORC/Iceberg data are stored here.

o Trino is a distributed SQL query engine able to effectively
execute queries over huge amounts of data from multiple
sources. It forms an additional layer over Iceberg and it
provides further query optimizations and caching.

o Apache Superset is an intuitive and easy-to-use open-
source platform for structured SQL-based data exploration
and visualization. It is used by the users of our prototype
to interact with the stored data via web GUI.

e PostgreSQL is a well-known RDBMS, which can be used
to store relatively small amounts of data (e.g. blocklists)
for immediate, low-latency access in SQL queries.

Superset [€=SQL—] Trino
X ORC/Iceberg :
JDBC Thrift
; \ 4
PostgreSQL Metastore Minio S3
JDBC Thrift
v ORC/Iceberg
Spark
A
Avro JSON
I
Ipfixcol2 —JSON-»| Kafka [€<JSON— Syslog-ng :
i S—— f ... f
IPFIX Syslog/JSON

Figure 2: Components of the data platform prototype deployed in Kubernetes

III. DEMO DESCRIPTION

In the introductory part of the demonstration, we will first
showcase the easy and straightforward deployment of the whole
platform into a Kubernetes cluster (see Figure 3a) and discuss
the advantages and disadvantages of this approach, e.g. from
the perspective of extensibility and scalability.

Next, the datasets used throughout the demonstration will
be presented. Most prominently, we will use data [5] that were
collected from a digital twin of a fictitious organization, hence,
they are equal to data generated in real enterprise networks,
but, there is no need for their anonymization or obfuscation.

395

2021 17th International Conference on Network and Service Management (CNSM)

Cluster Explorer

Workload

RKE v1.20.9 il
138 16 6
O,
14 6 9
o, o .. {
S Pods Used Cores Reserved
e 78% 31%

86 0f 110 Pods Used 249 0f 80 Cores Reserved

RBAC

(a) Rancher cluster explorer for Kubernetes

Query s

Stages

0

MEmoRY ks SCHEDULED TIME SKEW couTIME SKEW

MEmoRY. ks SCHEDULED TIME SKEW CPUTIME SKEW
15K

1

MemoRy. ks ‘SCHEDULED TIME SKEW CPUTIME SKEW

(b) Distributed query overview in Trino

OO Superset Dashboards Charts SQLLab~ Data -

ino lceberg

default)

3]

cz_muni_csirt_ipfix_partitioned_300.
applcationid’
applicationname s
destinationipvéaddressi

RUN [o 1000 -

RESULTS QUERY HISTORY

destinationtransportport
egressinterface
exporttimen
exporttimeiso86014
flowendiso8601R
flowendmiliseconds!

PREVIEW: *CZ_MUNL CSIRT IPFIX_PARTITIONED.300.5

EXPLORE [3 DOWNLOADTOCSV I COPYTO CLIPBOARD

flowstartiso8601; 100
flowstartmilliseconds

destnationtransportport
ingressinterface

spplcatomane count
pclassofservicel ssors a0 e 4
fpversion ss202 & HrTe s
msglengthy

octetdeltacount 60262 s oNs.TCP

odid

packetdeftacount;

postdestinationmacaddress® 65103 3 wrTe 2

a0 ses27 e 2

(c) Apache Superset SQL editor

Applications Port communication

€ 1eupL
dOL"AA

o

1o2u00 d 14
r
¥oL

Q@

P
g

1A
(a |

dansolgeN
H:
d

S1L/7SS

dvai

IPFIX records

applcationid applcationname

soasm28 HTTP 104447
s0331728 HTTP 22555
50331728 HTTP 104447
soaaim28 HTTP 101332
50331728 HTTP oseI2
50331728 HTTP az2ss2
soasi728 HTTP 101333
50331728 HTTP 101333

soasm2e HTTP 103332

50331726 HTTP arzzss2

80 101333 0021

(d) Dashboard example in Apache Superset

Figure 3: Web-based user interfaces for selected components of the presented data platform

Finally, we will describe the full life-cycle of the data as
they pass through the platform prototype. First, the raw data are
ingested in one of the telemetry formats and converted into an
intermediary JSON representation. Alternatively, they can be

directly ingested in JSON, with Syslog-ng serving as a proxy.

Next, the data are normalized into structured Avro records by
their respective Spark streaming jobs. Such records can be
further cleaned and transformed in a streaming manner, until
they are ready to be stored in Iceberg tables. After storage, the
individual records are available to be queried by the Trino SQL
engine (see Figure 3b) or to be further processed via ad-hoc
Spark batch-processing jobs. At last, the Superset component
can be used by the end-users to directly interact with the stored
data via web-based UlI, as if they were stored in a traditional
relational database, but possibly on a petabyte scale.

A particular attention will be dedicated to the possible ways
third-parties can interact with the stored data tables, which is
essentially the main interest of any end-user. The examples will
include ad-hoc batch-processing and streaming jobs for Apache
Spark, integration with Python code for automation purposes,
and examples of exploratory analysis tasks (see Figure 3c) and
visualisation capabilities (see Figure 3d) of Apache Superset.

In the end, real-world applications and experience from daily
operations will be discussed, together with possible future
directions of our research and activities. These include, but

are not limited to, an addition of an SQL-like interface and
a processing engine for the execution of real-time streaming
queries, and a roadmap of the data platform with respect to
its planned open-source release.

ACKNOWLEDGEMENTS

This research was supported by the Security Research
Programme of the Czech Republic 2015-2022 (BV III/1-VS)
granted by the Ministry of the Interior of the Czech Republic
under No. V120202022164 Advanced Security Orchestration
and Intelligent Threat Management.

REFERENCES

[1] R. Hofstede, P. Celeda, B. Trammell, 1. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow Monitoring Explained: From Packet Capture to
Data Analysis With NetFlow and IPFIX,” IEEE Communications Surveys
Tutorials, vol. 16, no. 4, pp. 2037-2064, 2014.

A. Oliner and J. Stearley, “What Supercomputers Say: A Study of Five

System Logs,” in 37th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN’07), 2007, pp. 575-584.

P. Sawadogo and J. Darmont, “On Data Lake Architectures and Metadata

Management,” Journal of Intelligent Information Systems, vol. 56, no. 1,

pp. 97-120, Feb 2021.

[4] M. Zaharia, A. Ghodsi, R. Xin, and M. Armbrust, “Lakehouse: A New
Generation of Open Platforms that Unify Data Warehousing and Advanced
Analytics,” in 11th Conference on Innovative Data Systems Research, CIDR
2021, Online Proceedings, 2021.

[5] D. Tovariidk, S. Spacek, and J. Vykopal, “Traffic and Log Data Captured
During a Cyber Defense Exercise,” Data in Brief, vol. 31, p. 105784,
2020.

[2

—

3

—_

396

