
Compositional Construction of Real-Time
Dataflow Networks

Stephanie Kemper?

CWI, Amsterdam, The Netherlands, S.Kemper@cwi.nl

Abstract. Increasing sizes of present-day distributed software systems
call for coordination models which are both modular and scalable. Precise
modelling of real-life applications further requires the notion of real-time.
In this paper, we present a modular formal development of a compo-
sitional model for real-time coordination in dataflow networks. While
real-time dataflow networks are typically asynchronous, our approach
includes coordination patterns which combine, but are not limited to,
synchrony and asynchrony. We define a constraint- and SAT-based en-
coding, which allows us to benefit from high-end constraint solving tech-
niques when inspecting valid interactions of the system.

Key words: Real-Time Dataflow Networks, Component-Based Soft-
ware Construction, Coordination, Constraint Solving, SAT

1 Introduction

The size of present-day distributed software systems increases constantly, de-
manding for adequate scalable methods, which assist developers in constructing
large systems, by composing individual components. This in turn creates the
need for well-defined formal coordination languages to integrate and, more im-
portantly, orchestrate the distributed system components. Such coordination
languages must handle temporal and other nonfunctional interactive properties
that cannot be expressed algorithmically [18]. In this paper, we take the view
that concurrent interacting software systems are variants of real-time dataflow
networks. Distributed software components are components of the network, their
timed behaviour is orchestrated by component connectors, such that coordina-
tion amounts to composing the behavioural constraints of individual components
and their connectors. Traditionally, communication between components and
connectors is asynchronous, resembling the idea that connections are realised by
unbounded FIFO buffers.

Separation of concerns allows us to consider computation (i.e., concrete data
values) and coordination (i.e., presence and absence of dataflow) in real-time
dataflow networks separately. In this paper, we focus on the latter; in particular,
we do not handle concrete data values. Yet, the integration of these data values is
straightforward. We extend the untimed asynchronous communication model by
? Part of this research has been funded by the Dutch BSIK/BRICKS project AFM3.

adding timed connectors, which orchestrate the network behaviour. Connectors
consist of a number of distinctly named ports, through which they communicate
with the environment (i.e., components), by transmitting data items. The ports
are of three different types: read ports read data items from the environment,
write ports write data items to the environment, and internal ports (not visible
to the environment) transmit data items within the connector. Components are
no longer connected to each other, but to a connector, such that communica-
tion between components becomes anonymous. The connector imposes a certain
coordination pattern on the network, for example by delaying or reordering.

As a second extension of real-time dataflow networks, we take into account
environmental constraints, cf. [8]: in traditional approaches, the possible states
of ports are active (i.e. communicating) and inactive (i.e. idle). In this paper, we
assume that whenever the internal state of a connector permits communication,
it must not refuse communication requests from the environment (e.g., a simple
empty buffer can always accept data). Thus, a port in a connector may only be
inactive if there is a reason to delay the communication, coming from either the
connector or the environment (or both). We therefore split the inactive state of
ports into two, based on where the reason for the delay comes from.

In the end, we represent a network as a number of constraints, which can
be solved using well-studied constraint solving techniques [2]. A single solution
to these constraints corresponds to a valid interaction between a connector and
its environment, and the set of all solutions precisely describes the imposed
coordination pattern.

1.1 Contributions

The main contributions of this paper can be summarised as follows: we provide a
modular framework for compositional construction of a real-time generalisation
of dataflow networks. We use a new type of transition systems to describe the
behaviour of connectors. We provide a direct definition of the behavioural con-
straints of the connectors in terms of these transition systems, which makes it
easy to understand the incorporated coordination pattern. The approach is suit-
able to model both the “algorithmic” behaviour of connectors (i.e. the internal
implementation of the coordination pattern) and the inter-component coordina-
tion behaviour. In addition, it can also be used to model the behaviour of the
components, such that complete networks can be described with our formalism.

We define a constraint-based encoding of real-time networks, using proposi-
tional logic with linear arithmetic. These constraints capture the current state of
connectors, how connectors are plugged together, and possible synchronisations
with the environment. In this way, we can benefit from existing constraint solv-
ing techniques [2] to determine the possible coordination patterns of a connector,
or the valid interactions within a network, since these correspond to solutions of
the constraints. Starting from the transition systems describing the behaviour,
the translation from networks to constraints is fully automatic, such that new
connectors (incorporating new coordination patterns) can be easily introduced
simply by defining the underlying transition system.

1.2 Related Work

Dataflow networks have first been defined by Kahn [13], as a set of nodes—
containing arbitrary sequential processes—which communicate via unbounded
FIFO buffers. All processes need to be deterministic; the straightforward exten-
sion of the framework to nondeterministic processes is not compositional any-
more [7]. Jonsson [12] showed that to regain compositionality, the model needs to
contain information about all possible interleavings of all communication events
in the system (Kahn considers the sequential order on each port in isolation). For
this reason, we define the semantics of networks based on traces of LTSs (similar
to Jonsson), which contain the necessary information about the possible inter-
leavings. Beyond that, our communication model is more refined, in that we take
into account not only presence and absence of dataflow, but in addition require
a reason for the absence of dataflow, coming from either the network or the en-
vironment. Moreover, all the abovementioned approaches assume asynchronous
communication over unbounded FIFOs. In contrast, we allow both asynchronous
and synchronous communication—the latter being needed for global coordina-
tion (through synchronisation)—and we allow the nodes to be connected by
arbitrary channels, including for example reordering and delay.

Clarke et al. [9] and Bonsangue et al. [6] present approaches for modelling
and verifying connectors in the channel-based coordination language Reo. The
basic ideas are similar to ours: [9] represents connectors as constraints, and [6]
uses an automata-based formal model, which takes into account environmental
constraints by modelling presence and absence of requests. Yet, our framework
is more general, in that neither of them considers timing constraints, or distin-
guishes between input and output ports. In fact, Reo networks and connectors
are an untimed subclass of networks in our framework.

The work of Ren and Agha [17] describes real-time systems as compositions
of actors (the components), together with timing relations on the occurrence of
events between them. The behaviour of the actors is orchestrated by so-called
RTsynchronizers. These are collections of declarative real-time constraints, which
restrict the temporal behaviour of events over groups of actors. The major draw-
backs of the approach are that the declarative constraints do not allow to reason
about sequential occurrences of events, and therefore are unable to express co-
ordination patterns like for example buffering (for buffer sizes >1) or reordering
(while this is possible in our approach). Moreover, RTsynchronizers describe a
high-level programming language construct rather than a concrete implementa-
tion, so ordinary programming languages first need to (be able to) implement
the construct in order to use it.

Kemper and Platzer [14] have presented an encoding of timed automata [1]
(TA) in propositional logic with linear arithmetic, the nature of which is close to
the constraints defined in this paper. Yet, due to the liberal notion of networks
and connectors presented here, and since we take into account environmental
constraints, we may consider TA to be a subclass of those systems covered here.
The same is true for earlier work on timed constraint automata [15] (modulo
data values, but this is a straightforward extension of the work presented here).

Example (Introduction). Fig. 1 (left side) shows our graphical representation of
the external interface of a connector C, with n read ports r1, . . . , rn, and m
write ports w1, . . . , wm. Our running example in the paper is a connector Sq
of a timed sequencer, cf. Fig. 1 (right side). The idea of Sq is to cyclically
communicate through ports w1, r1, w2, r2. For components Ci, i=1, 2, connected
to Sq via the pair (wi, ri), Sq in fact works as a token ring: it offers the token to
Ci through wi, accepts it back through ri, then offers it to the next component.
We assume a timeout for each component, i.e., if a component fails to accept
the token in time, Sq skips that component in the current round, and offers the
token to the next component. We formalise this internal behaviour in Sect. 2.1,
and we compose several instances of Sq to build a larger token ring in Sect. 2.2
(cf. also Fig. 3).

r1

rn ... C w1

wm... w1

r1
Sq r2

w2

Fig. 1. Graphical Representation of Connector Interfaces

Structure of the Paper In the next section, we provide the formal definitions
for syntax and semantics of real-time components and networks. In Sect. 3, we
present our encoding of real-time networks in propositional logic with linear
arithmetic, show how to use constraint solving techniques to determine pos-
sible coordination patterns, and depict some preliminary experimental results.
Finally, Sect. 4 concludes the paper and discusses some directions of future work.

2 Compositional Real-Time Networks

In this section, we present the formal definitions underlying our real-time net-
works, and illustrate them by means of our running example. In Sect. 2.1, we
define simple real-time connectors and how they capture environmental con-
straints, then we show how to compose these to generate networks and how to
propagate the environmental constraints (Sect. 2.2). In Sect. 2.3, we define the
semantics of real-time networks by means of transition systems.

2.1 Primitive Connectors

The behaviour of a port, i.e., whether data flows or not, not only depends on
the internal state of the connector, but also on the environment in which the
connector occurs. In particular, “no dataflow” requires a reason from either
the connector or the environment. This in turn means that if both connector
and environment are ready to communicate, then dataflow cannot be delayed.
Following the three-colouring idea from [8], we define three different states of

ports—called colours—which in the case of no dataflow capture where the reason
for delaying the communication comes from.

The set of possible colours of a port a is { a: , a: ! , a: ? }. A colouring
over a set of ports P is a function c assigning a colour to each port in P . The set
of all possible colourings of P is C(P). The colourings denote dataflow through a
(a:) and delay on a, with the underlying connector either providing (a: !)
or getting (a: ?) a reason for the delay on a. Intuitively, a: ? means that
the connector cannot actively delay dataflow through a, instead, delay requires
a reason from the outside. On the other hand, a: ! denotes that the connector
itself delays the communication. We write colourings in either orientation (e.g.
a: or :a), and we omit port name a if it is clear from the context.

We describe the internal behaviour of connectors by means of labelled transi-
tion systems (LTS), which we call Network Transition Automata (NTA). We use
clock constraints to describe enabling conditions of transitions: clock constraints
ϕ∈Φ(X) over a finite set of real-valued clocks X are conjunctions of true and
atoms x∼c, with x∈X, c∈Q, and ∼∈{<,≤,=,≥, >}. For simplicity, we assume
dataflow to be instantaneous. Time may only elapse while the NTA remains in
one of its states. Yet, it is straightforward to model duration of data flow, by for
example adding a fresh clock and appropriate clock guards >0 on transitions.

Definition 1 (Network Transition Automaton). An NTA T over a finite
set of ports P is a tuple T=(S, s0, X,E), with S a finite set of states, s0 the
initial state, X a finite set of real-valued clocks, and E⊆S×Φ(X)×C(P)×2X×S
the finite transition relation. An element (s, ϕ, c, Y, s′)∈E describes a transition
from state s to state s′, enabled under guard ϕ, with dataflow/delay according
to colouring c, and resetting all clocks in the set Y ; it is called delay iff s′=s,
Y=∅ and c(a) 6= for all a∈P , and communication otherwise. Two NTAs are
called disjoint if the respective subsets (i.e, ports, states and clocks) are disjoint.

A communication (s, ϕ, Y, c, s′) describes conditions on presence/absence of
dataflow and on clocks which trigger a state change, while a delay (s, ϕ, ∅, c, s)
describes the conditions under which T may delay in s, namely, as long as guard
ϕ is satisfied, and a reason for delay exists which satisfies colouring c.

Definition 2 (Connector). A connector C is a tuple C=(P r, Pw, T), with T
an NTA over a set of ports P , P r⊆P and Pw⊆P finite disjoint sets of read
respectively write ports. The set IC

def= P r∪Pw 6=∅, with IC⊆P , called external
interface of C, contains all externally visible ports, while P may contain addi-
tional internal ports. Two connectors are called disjoint if the respective subsets
(i.e., ports and NTAs) are disjoint.

Example (Primitive Connector). Using Def. 2, the Sq connector from Sect. 1 is
Sq=({r1, r2}, {w1, w2}, T), with NTA T=({ot1, wf1, ot2, wf2}, ot1, {x}, E). The
details of E—with a deadline of 3 time units on the availability of the token—
are shown in Fig. 2. Communications are denoted by solid lines, delays by dashed
lines. We omit empty clock sets and clock constraints equal to true, and we use
assignment rather than set notation for clock sets. We arrange the colourings

so that they reflect the layout in Fig. 1 (r1 and w1 on the left, w2 and r2 on
the right), and then omit the port names. For explanatory purposes, we assume
component Ci is connected to Sq through wi and ri, i = 1, 2.

Sq starts in ot1, where it offers the token to C1. It may delay in this state
(delay loop) as long as the deadline of 3 time units is not violated and C1 is not
ready to accept the token (w1 requires a reason). If C1 accepts the token in time
(x<3), Sq moves to wf1 and waits for C1 to return the token. Otherwise (x=3),
Sq moves directly to ot2. In wf1, Sq delays until C1 returns the token (r1 requires
a reason); then (with dataflow through r1) moves to ot2 to offer the token to C2,
thereby resetting clock x to start a new deadline for C2. The behaviour in ot2
and wf2 is symmetric.

ot1 wf1

wf2 ot2

x<3,
! !

!

x=3, x:=0, !

!
!

! x:=0, !

!

!
x=3, x:=0, !

!
!

!

x<3,
!

! !

x:=0,
!

!

!

x≤3,
!

?

!

!

?

!

!

!

x≤3,
!

!

?

!

!

!

!

?

Fig. 2. NTA of the Two-Token Ring Connector

2.2 Compositional Construction of Networks

We define composition of connectors by joining sets of (read and write) ports,
which yields “invisible” internal ports. This is depicted as

r1

C

w1

w2

D

r2

r1

C

w1

w2

D

r2

r1

C

w1

w2

D

r2

C ⊗D

Joining write port w1 (from C) with read port r2 (from D) yields a new connector
C⊗D with a read port r1, a write port w2, and an invisible internal port. For
a set of ports P , we call a set P ′⊆P of ports intended to be joined a merge
set (over P), the resulting internal port is denoted as p≺P ′ . Ports in P ′ become
invisible to the environment (i.e., are removed from the external interface).

The intended behaviour of internal ports is to act as self-contained, stateless
“pumping stations” [4], merging data from write ports, and replicating data to
read ports. If data flows, then it flows through exactly one write port and through
all read ports. Absence of dataflow is subject to environmental constraints on

the involved ports: if there is a reason for delay (!) on at least one read port
or on all write ports, data cannot flow. Stated differently, a valid colouring of
an internal port must not involve the colour ? only. While other approaches
restrict composition to one-to-one relations [3,8,9], we do not impose any restric-
tion on the number, type (read/write) or origin (which connector) of ports in a
merge set; the only condition is that merge sets are pairwise disjoint. Though
the composition of colourings would be slightly simpler, our many-to-many com-
position provides a direct and more intuitive way of specifying compositions for
for example mergers, replicators or multi-synchronisations.

A colouring c∈C(P) is valid over a merge set P ′/an internal port p≺P ′ if it
satisfies the following conditions for all ports p, p′, q∈P ′ (where P r and Pw are
the subsets of P of read respectively write ports):

1. If ∃p∈P w:c(p)= , then ∀q∈P r: c(q)= , and ∀p′∈P w, p′ 6=p:c(p′) 6=
2. If ∃q∈P r:c(q)= , then ∃p∈P w:c(p)=

3. If @p∈P ′:c(p)= , then ((∀p′∈P w:c(p′)= !) or (∃q∈P r:c(q)= !))

Only valid colourings correctly model the aforementioned behaviour: condi-
tions 1 and 2 describe simultaneous dataflow through exactly one write port and
all read ports of p≺P ′ . Condition 3 describes the propagation of environmental
constraints (delays): no dataflow is possible only if either all write ports or at
least one read port in P ′ provide a reason to delay.

The flip rule [8] is used to reduce the size of NTAs by identifying redun-
dant (with respect to compositionality) colourings. If for some set of ports P
and a port p∈P , two colourings c1∈C(P) and c2∈C(P) are identical except for
c1(p)= ! and c2(p)= ? , then c2 is redundant and can be removed: the set of
colourings with which c2 can compose over p is a strict subset of the set of colour-
ings with which c1 can compose over p. The valid colourings (after applying the
flip rule) of an internal port p≺{r1,r2,w1,w2} are given by

w1
w2

r1
r2

!
!

!
!

!
?

!
!

?
!

?
?

!
!

(for clarity, the internal port is conceptually depicted on the left). The colouring
on the right, for example, can be read as follows: if all write ports get a reason
(?), the reason propagates to the read ports, which then provide a reason
(!), and dataflow is not possible.

The behaviour of a composed connector C⊗D is described by the composition
TC./TD of the underlying NTAs. The basic idea is along the same lines as the
standard cross product in other automata models. Yet, to ensure the composed
NTA correctly models the propagation of reasons for delay on internal ports,
we need to ensure that colourings satisfy the above conditions. Colourings in
TC./TD are compositions of colourings from TC and TD. The composition c1∪c2
of colourings c1∈C(P1) and c2∈C(P2), with P1 and P2 disjoint, is a new colouring
c=c1∪c2∈C(P1∪̇P2), with c(p)=c1(p) iff p∈P1, and c(p)=c2(p) iff p∈P2 for all
ports p∈P1∪P2.

Definition 3 (NTA Composition). Let T ={T1, . . . , Tk}, k≥1, be a set of dis-
joint NTA, Ti=(Si, s0,i, Xi, Ei), i≤k, an NTA over port set Pi, Q={Q1, . . . , Qn},
n≥1, a set of disjoint merge sets over

⋃
Pi. The composition of the Ti over Q,

denoted T1./Q/QTk (or simply T ./Q), is a new NTA T ./Q=(S, s0, X,E)
over P def=

⋃
Pi, with S=

∏
Si (Cartesian product), s0=(s0,1, . . . , s0,k), X=

⋃
Xi,

and transitions in E are given by

(s1, ϕ1, c1, Y1, s
′
1)∈E1, . . . , (sk, ϕk, ck, Yk, s′k)∈Ek,

c=c1∪ . . .∪ck valid over P

((s1, . . . , sk), ϕ1∧ . . .∧ϕk, c, Y1∪ . . .∪Yk, (s′1, . . . , s
′
k))∈E

The definition of connector composition is now straightforward. The basic
idea is to compose the NTAs, join the sets of read and write ports, and remove
the ports in the merge sets from the external interface.

Definition 4 (Connector Composition). Let C={C1, . . . , Ck}, k≥1, be a set
of disjoint connectors, with Ci=(P r

i , P
w
i , Ti), i≤k. Let R def=

⋃
P r

i , W def=
⋃
Pw

i , let
Q={Q1, . . . , Qn}, n≥1, a set of disjoint merge sets over R∪W . The composition
of the Ci over Q, denoted C1⊗Q . . .⊗QCk (or simply C⊗Q), is a new connector
C⊗Q=(P r, Pw, T), with P r=R\

⋃
Qi, Pw=W\

⋃
Qi, and T=

⋃
Ti./Q. We call the

Ci the underlying connectors of C⊗Q.

Connector composition is commutative and—after applying the flip rule to
remove redundant colourings—associative (modulo state names).

Though the ports contained in merge sets are removed from the external
interface IC during composition, they are still contained in the underlying NTA
T . We define the reduction of C=(P r, Pw, T) to IC , denoted C↓, to be a new
connector C↓=(P r, Pw, T↓), where transitions (s, ϕ, c′, Y, s′) in T↓ are obtained
from transitions (s, ϕ, c, Y, s′) in T by restricting the colourings to the external
interface—i.e. c′=c|IC—and removing duplicates if necessary

Example (Connector Composition). Consider a set S={Sq,0, Sq,1, Sq,2} of three
instances of the Sq connector from Sect. 2.1. The connectors are identical, except
that we add an additional index 0, 1, 2 to all names (ports, states, clocks) to
make clear which connector they belong to, and we change the start state of the
NTAs of Sq,1 and Sq,2 to be wf2,1 and wf2,2, respectively (to ensure initially only
Sq,0 offers a token). Composing S over Q={{w2,0, r2,1}, {w2,1, r2,2}, {w2,2, r2,0}},
we create a token ring for mutual exclusion for three components, as depicted
in Fig. 3 (left side). The reachable part of the NTA of the resulting connector
S⊗Q is shown in Fig. 4. Again, we omit port names in the colourings, and we
arrange the colourings so that they reflect the graphical layout. See the right
side of Fig. 3 for an example.

In the initial state, S⊗Q offers the token to the environment through w1,0.
If the token is taken in time, S⊗Q moves to (wf1,0wf2,1wf2,2), where it waits for
the token to be returned through r1,0. Otherwise (i.e., if the value of x0 reaches
the timeout), S⊗Q moves to state (ot2,0wf2,1wf2,2). Note that it is not possible to
delay in this state. This is due to the fact that in state ot2,0, Sq,0 offers the token
to the environment through w2,0, cf. Fig. 2. A delay in ot2,0 is only possible if Sq,0

w1,0

r1,0
Sq,0

r2,0

w2,0 r2,1 w2,1

Sq,1

w1,1 r1,1

w2,2

r2,2
Sq,2

r1,2

w1,2
r1,0: :w2,0

w1,0: :r2,0

!

! !

w1,1: :r1,1
r2,1: :w2,1

! !
!

r2,2: :w1,2
w2,2: :r1,2

?
!

!
!

Fig. 3. Connector Composition: Three-Token Ring Connector

gets a reason to delay on w2,0. But Sq,1, which is connected to w2,0 via r2,1, never
provides a reason for delay on r2,1 in state wf2,1 (cf. Fig. 2 again). Therefore,
the only possible transition from (ot2,0wf2,1wf2,2) is to move to (wf2,0ot1,1wf2,2),
which correctly corresponds to passing the token from Sq,0 to Sq,1 without delay.
This shows the importance of taking into account environmental constraints,
since without these (i.e., when having only one unconstrained “no flow” colour)
it would wrongly be possible to delay in (ot2,0wf2,1wf2,2). The explanation for
the rest of the connector is symmetric. Hiding the three internal ports, that
means reducing S⊗Q to IS⊗Q , yields a similar NTA, where blue colourings are
removed.

Note that we have removed transitions with unsatisfiable guards. For exam-
ple, there is a transition from (ot2,0wf2,1wf2,2) back to (ot1,0wf2,1wf2,2), with guard
x0=3. But since clock x0 is reset on both incoming transitions of (ot2,0wf2,1wf2,2),
and S⊗Q cannot delay in that state (see above), this guard can never be satisfied.

Remark 5 (Size of the Composition). While the NTA of S⊗Q still has a rea-
sonable size, the number of states of the NTA of a composed connector can be
exponential in the worst case. In Sect. 3.3, we define an encoding of the compo-
sition of connectors, which avoids the explicit construction of the composition,
and is linear in the number of underlying connectors.

2.3 Semantics

We define the semantics of a connector C=(P r, Pw, T), with T=(S, s0, X,E), as
the set of runs of the associated LTS LC , which describes transition sequences of
T . A configuration q of LC is a pair 〈s, ν〉 of a state s∈S and a clock valuation ν.
A clock valuation is a mapping ν:X→R≥0 assigning a real value to each clock,
its current value. V(X) denotes the set of all clock valuations over X, and we
use |= for the standard satisfaction relation.

The initial configuration of LC is 〈s0,0〉, with 0(x)=0 for all x∈X. Transitions
of LC directly correspond to the two types of transitions of NTA. An action
transition 〈s, ν〉 c−→〈s′, ν′〉 describes the firing of an instantaneous communication
(s, ϕ, Y, c, s′)∈E, with ν|=ϕ, and ν′ resulting from ν by resetting all clocks in
the set Y to zero. A delayed action transition 〈s, ν〉 t,c−→〈s, ν+t〉, with delay t≥0,
describes the firing of a delay (s, ϕ, ∅, c, s)∈E, where ν+t′|=ϕ for all 0≤t′≤t (that
means the guard has to be satisfied at all times during the delay). In both cases,
data flows according to colouring c.

ot1,0
wf2,1

wf2,2

ot2,0
wf2,1

wf2,2

wf1,0

wf2,1

wf2,2

wf2,0

ot1,1
wf2,2

wf2,0

ot2,1
wf2,2

wf2,0

wf1,1

wf2,2

wf2,0

wf2,1

ot1,2

wf2,0

wf2,1

ot2,2

wf2,0

wf2,1

wf1,2

x0=3,x0:=0,

!
!

!
!

!
?

!
!
?
!

!
!

x0<3,

! !
!

!
?

!
!
?
!

!
!

x0:=0,

!
!
!

!
?

!
!
?
!

!
!

x0<3,x1:=0,

!
! !

! !
!
?
!

!
!

x1<3,

!
!

!
?

!
!
!
?
!

!
!

x1=3,x1:=0,

!
!

!
?

!
!

!
!
?
!

!
!

x1:=0,

!
!

!
?

!
! !

?
!

!
!x1<3,x2:=0,

!
!

!
?

!
!

!

!
!
!

x2<3,

!
!

!
?

!
?

!
!
!
! !

x2=3,x2:=0,

!
!

!
?

!
?

!
!
!
!

!
!

x2:=0,

!
!

!
?

!
?

!
!
!
!

!
x2<3,x0:=0,

!
!

!

!
?

!
!
! !

!

x0≤3,

!
?

!
!

!
?

!
!
?
!

!
!

?
!

!
!

!
?

!
!
?
!

!
!

x1≤3,

!
!

!
?

?
!

!
!
?
!

!
!

!
!

!
?

!
!

?
!
?
!

!
!

x2≤3,

!
!

!
?

!
?

!
!
!
!

?
!

!
!

!
?

!
?

!
!
!
!

!
?

Fig. 4. Connector Composition: NTA of the Three-Token Ring Connector

An execution of C of length k is given by a k-run of LC , which is a sequence
of k transitions, starting in the initial configuration: 〈s,0〉 γ1−→q1 γ2−→ . . . γk−→qk, with
γi∈C(P r∪Pw)∪(C(P r∪Pw)×R≥0), and qi∈(S×V(X)), for all 1≤i≤k. The se-
mantics of C is given by the set RunC of k-runs of LC , for all k≥0.

Example (Semantics). Consider again the connector S⊗Q in Fig. 4, after hiding.
A run of length 6 is given as1

〈
` ot1,0

wf2,1
wf2,2

´
,0〉 1,

!
!
?

!
!
!−−−−−→〈
` ot1,0

wf2,1
wf2,2

´
,

x0=1
x1=1
x2=1

〉
!
!

!
!
!−−−−→〈
`wf1,0

wf2,1
wf2,2

´
,

x0=1
x1=1
x2=1

〉
!

!

!
!
!−−−−→〈
` ot2,0

wf2,1
wf2,2

´
,

x0=0
x1=1
x2=1

〉

!
!
!

!
!
!−−−−→〈
`wf2,0

ot1,1
wf2,2

´
,

x0=0
x1=0
x2=1

〉 3,

?
!
!

!
!
!−−−−−→〈
`wf2,0

ot1,1
wf2,2

´
,

x0=3
x1=3
x2=4

〉
!
!
!

!
!
!−−−−→〈
`wf2,0

ot2,1
wf2,2

´
,

x0=3
x1=0
x2=4

〉

After a delay of 1, the token is delivered to the environment through w1,0, and
accepted back immediately through r1,0. The next transition corresponds to the
token being transmitted from Sq,0 to Sq,1 (since internal ports are hidden, there is
no visible dataflow). Next, S⊗Q delays in state (wf2,0ot1,1wf2,2) for 3 time units,
then, due to the timeout condition x1=3, moves to (wf2,0ot2,1wf2,2).

1 The colourings—reflecting the layout in Fig. 4 after hiding—correspond to w1,1, r1,0,
w1,0 on the left (top to bottom) and r1,1, w1,2, r1,2 on the right (top to bottom).

3 Encoding

In this section, we construct a formula ϕ(C) in propositional logic with linear
arithmetic, that encodes the transition relation of an NTA T of a connector C,
and we present an encoding of connector composition which is linear in the
number of involved connectors. In the sequel, let C=(P r, Pw, T) be a connector,
with T=(S, s0, X,E) over P⊇IC (cf. Def. 2).

3.1 Basic Concepts

The presence (and absence) of dataflow through the ports of C depends on the
state of T and the values of its clocks. We encode these concepts as follows.

For every port p∈P , we introduce two Boolean variables p0 and p1, to encode
the three possible colours of p: the encoding p〈c〉 of p under colouring c is ¬p0∧¬p1
iff c(p)= ? , ¬p0∧p1 iff c(p)= ! , and p0 iff c(p)= .

We use logarithmic encoding for states: for |S|=n, we introduce a vector s of
j=dlog2(n)e Boolean variables, encoding a j-digit Boolean value. The intended
meaning is that s encodes the value i, denoted by si, iff the connector is in
state si; si is called the encoding of si.

For every clock x∈X, we introduce a rational variable x (clock reference),2

such that x holds the absolute point in time when x was last reset prior to
the current step. An additional rational variable z (absolute time reference)
denotes the absolute amount of time that has passed, such that the clock value
of clock x is given by z−x, and the encoding ϕ of a clock constraint ϕ=x∼c
is ϕ=(z−x)∼c. This temporal difference representation significantly reduces the
number of arithmetic operations [14].

3.2 Transition Relation

The transition relation of T describes the possibilities to evolve to the next step,
based on the configuration in the current step. In the sequel, the variables intro-
duced in the previous section refer to the values before the firing of a transition,
and primed variants refer to the values after the firing.

Definition 6 (Connector Encoding). Let C and T be a connector and NTA
as before, f=(si, ϕ, Y, c, sj) and d=(sk, ϕ, ∅, c, sk) a communication respectively
delay in E. The encoding ϕ(C) of C is given in (5) (on the following page).

The encoding of a communication (1) ensures that the connector is in state
si before firing, guard ϕ is satisfied, and data can flow according to colouring c.
After firing, the connector is in state sj , the values of the absolute time reference
and clock references of X\Y have not changed, while all other clock references
have been set to the actual point in time. The encoding of a delay (2) is similar,
except that the value of the absolute time reference increases, while all other
2 Linear arithmetic is equisatisfiable for rational and real variables [14], so rational

variables are sufficient to encode real-valued clocks.

clocks keep their value. In addition, guard ϕ still needs to be satisfied after
the time delay. The disjunction of these formulas expresses (nondeterministic)
transition choice (3). The connector starts in its initial state, and initially all
clocks start at zero (4).

ϕf (f) = si∧ϕ∧(z′=z)∧
V

x∈Y

(x′=z
′)∧ (1)V

x∈X\Y
(x′=x)∧

V
p∈IC

p〈c〉∧sj
′

ϕd(d) = sk∧ϕ∧(z′≥z)∧
V

x∈X

(x′=x)∧ (2)V
p∈IC

p〈c〉∧sk
′∧ϕ

′

ϕE(C) =
W

f comm.

ϕf (f)∨
W

d delay

ϕd(d) (3)

ϕi(C) = s0∧(z=0)∧
V

x∈X

(x=0) (4)

ϕ(C) = ϕi(C)∧ϕE(C) (5)

ϕ(C)k = ϕi(C)∧
V

0≤j≤k

ϕE(C)j·′ (6)

ϕ1(P) =
W

w∈Pw
w
0→
` V

r∈Pr
r
0∧V

wh,wi∈Pw,
wh 6=wi

¬(wh
0∧wi0)

´ (7)

ϕ2(P) =
W

r∈Pr
r
0→

W
w∈Pw

w
0 (8)

ϕ3(P) =
V

p∈P

¬p0→
` V

w∈Pw
w
1∨

W
r∈Pr

r
1
´

(9)

ϕ(P) = ϕ1(P)∧ϕ2(P)∧ϕ3(P) (10)

ϕ(C⊗Q) =
V

C∈C
ϕ(C)∧

V
Q∈Q

ϕ(Q) (11)

3.3 Connector Composition

Though the flip rule (Sect. 2.2) reduces the size of NTAs, the size of the NTA
of a composed connector is still exponential in the worst case. Here, we define a
linear size logical encoding of the composition of connectors. The basic idea is
to define composition via conjunction of the encodings of the single connectors.
In addition, we need to encode the constraints on internal ports, to ensure the
encoding of the composition correctly models internal ports.

For a merge set P , the encoding ϕ(P) of internal port p≺P is given in (10).
The constituents of ϕ(P) directly correspond to the conditions in Sect. 2.2
(on Page 7). For example, (9) corresponds to condition 3: if there is no flow
at all (left side of the implication), then (right side) either all write ports, or at
least one read port provide a reason for delay (first respectively second disjunct).
Using this, the encoding of a composition C⊗Q, for sets C and Q of disjoint con-
nectors respectively merge sets (over the ports of connectors in C), is defined
in (11).

Hiding the internal ports amounts to existential quantification over the vari-
ables representing ports in Q: the reduction of ϕ(C⊗Q) to IC is defined as
∃

⋃
Qi(ϕ(C⊗Q)).

Example (Encoding). Consider again the connector S⊗Q from Sect. 2.2, and
the definition of its encoding (11). Due to space limitations, we do not show the
complete encoding, but restrict this example to two instructive transitions of
S⊗Q. For each of the underlying connectors Sq,i, i=0, 1, 2, we introduce a vector
si of two Boolean variables, where si0, si1 and si2 are the encodings of states
ot1,i, ot2,i and wf2,i, respectively. We show the encoding of the communication
from ot1,0 to ot2,0 (12), and the delays in ot1,0 (13), wf2,1 (14) and wf2,2 (15). The
communication from (ot1,0wf2,1wf2,2) to (ot2,0wf2,1wf2,2) (in S⊗Q) is then given

by the conjunction of (12), (14) and (15), and the delay in (ot1,1wf2,1wf2,2) by
the conjunction of (13), (14) and (15).

s0 0∧((z−x0)=3)∧(z′=z)∧(x′0=z
′)∧

¬r1,0
0∧r1,0

1∧¬w1,0
0∧w1,0

1∧¬r2,0
0∧r2,0

1∧¬w2,0
0∧w2,0

1∧s0 1
′

(12)

s0 0∧((z−x0)≤3)∧(z′≥z)∧(x′0=x0)∧
¬r1,0

0∧r1,0
1∧¬w1,0

0∧¬w1,0
1∧¬r2,0

0∧r2,0
1∧¬w2,0

0∧w2,0
1∧s0 0∧((z′−x′0)≤3)

(13)

s1 2∧(z′≥z)∧(x′1=x1)∧¬r1,1
0∧¬r1,1

1∧¬w1,1
0∧w1,1

1∧¬r2,1
0∧r2,1

1∧¬w2,1
0∧w2,1

1∧s1 2 (14)

s2 2∧(z′≥z)∧(x′2=x2)∧¬r1,2
0∧¬r1,2

1∧¬w1,2
0∧w1,2

1∧¬r2,2
0∧r2,2

1∧¬w2,2
0∧w2,2

1∧s2 2 (15)

3.4 Coordination as Constraint Satisfaction

With the encoding ϕ(C) of a connector C (5), traditional constraint solving
techniques [2] and tools (e.g. MathSAT [16] or HySAT [11]) are used to model
check the behaviour and verify properties of C. To inspect executions of C of
length k (cf. Sect. 2.3), the encoding ϕ(C) of C is unfolded k times, i.e., instan-
tiated for all steps up to k. The resulting formula is shown in (6). The formula
ϕE(C)j·′ denotes the variant of ϕE(C), where j primes have been added to
all variable symbols (e.g., ϕE(C)3·′ contains z3·′=z′′′). Intuitively, a satisfying
valuation (model, i.e., a single solution to the satisfiability check) of ϕ(C)k corre-
sponds to an execution of length k, and the set of all models precisely describes
the coordination pattern of C (for executions up to length k).

Other properties used to analyse the behaviour of C include for example
whether a certain error state s is reachable within k steps. This amounts to
conjoining ϕ(C)k with ρ def= s0·′∨ . . .∨sk·′, the error state is (un)reachable iff the
conjunction is (un)satisfiable. Lifting ρ to reason about configurations (i.e., in-
clude timing information) is straightforward. Other bounded LTL properties can
be specified using the encoding in [5], for example. The next section shows how
to use constraint satisfaction to check the correctness of the S⊗Q connector.

3.5 Preliminary experimental results

Some preliminary experimental results (runtime and memory consumption) are
shown below. All experiments have been carried out with MathSAT, on an Intel
Core 2 Quad with 2.83GHz, 8GB RAM and Fedora 10. The input file, containing
the system description and the representation of the properties, can be found at
http://www.cwi.nl/~kemper/ThreeTokenRing/. For the interested reader, we
have added some comments to the file, to ease understanding the encoding.

We checked three correctness properties for the encoding ϕ(S⊗Q) of the S⊗Q
connector, for executions of length 20 and 50, respectively. Property MoreTo-
kens is satisfiable iff S⊗Q can reach a state where more than one of the under-
lying connectors is in an “ot” state, i.e., where more than one token is offered at
the same time: though S⊗Q is composed from three two-token rings, there must
be only one token in the composition (remember that we changed the initial
states of Sq,1 and Sq,2 for this purpose). The property Shortcut is satisfiable iff

http://www.cwi.nl/~kemper/ThreeTokenRing/

it is possible to fire the communication from ot2,i to ot1,i in any of the underly-
ing connectors: firing it in Sq,0, for example, would wrongly skip the connectors
Sq,1 and Sq,2, and immediately offer the token through port w1,0 again. Property
NoSeqFlow is used to check that every dataflow through a w1,i port is followed
by dataflow through the corresponding r1,i port, without dataflow through any
other port of the external interface in between; it is satisfiable iff the sequential
order is violated. As expected, the result of checking the conjunction of ϕ(S⊗Q)
with any of the properties is “unsatisfiable”.

length MoreTokens Shortcut NoSeqFlow

20 1.493s 23.465MB 1.481s 23.227MB 4.526s 33.215MB

50 3.300s 29.598MB 2.242s 24.867MB 9.431s 39.484MB

The results clearly show that our approach is tailored towards and profits from
using well-optimised, high-end constraint solving techniques, as it scales very well
for long executions: the increase in runtime is roughly linear in the increase of
the execution length, while at the same time, the number of possible executions
that need to be checked increases exponentially.

4 Conclusion and Future Work

In this paper, we have presented a modular framework for compositional con-
struction of and coordination in real-time dataflow networks, which takes into
account environmental constraints from outside the network. We have defined a
new type of transition systems (NTA), used to describe the behaviour of com-
ponents and, since our approach is compositional, whole networks. This direct
definition of the behaviour makes it easy to understand (and thus, use) our
framework. In addition, it also facilitates the introduction of new, user-defined
primitives, by just giving the underlying NTA. Liberal notions of components
and networks allow to encode many common (coordination) models, like e.g.
TA [1] or timed constraint automata (TCA) [15], in our framework.

We have defined a constraint-based encoding of connectors, using proposi-
tional logic with linear arithmetic. This enables us to benefit from well-studied,
high-end constraint solving techniques, when checking for valid interactions
within a network, or inspecting the incorporated coordination pattern. The log-
ical encoding of networks —i.e. composition of connectors—is linear in the size
of the NTAs of the underlying connectors. In this way, we overcome the om-
nipresent state explosion problem, and are able to deal with larger systems.

We do not consider concrete data values which are transmitted, but rather
focus on the presence and absence of dataflow. However, the integration of han-
dling these data values is straightforward: transitions of NTA are augmented
with data constraints in a “TCA-like” style, the basis for encoding these con-
straints has already been established in [9].

Besides this, future work includes comparisons of our approach on different
real-world case studies, possibly using different constraint solvers. So far, no tool
support for the full theory presented in this paper exists. Yet, for the trivial case

of untimed connectors, our approach is essentially equivalent to the animation
of Reo [3] in the ECT framework [10]. We plan to further integrate our work
into this framework. In particular, implement an editor for NTA, which provides
composition and hiding, such that connectors and networks can be easily defined
by users. Adding the translation from NTA to constraints will then offer support
for the full theory. We expect some performance gains when using our constraint-
based approach as underlying theory for computing the Reo animations in the
ECT, which will increase the manageable system size.

References

1. R. Alur. Timed automata. In CAV, volume 1633 of LNCS, pages 8–22. Springer,
1999.

2. K.R. Apt. Principles of Constraint Programming. Cambridge Univ. Press, 2003.
3. F. Arbab. Reo: a channel-based coordination model for component composition.

Mathematical Structures in Comp. Sci., 14(3):329–366, 2004.
4. C. Baier, M. Sirjani, F. Arbab, and J.J.M.M. Rutten. Modeling component con-

nectors in Reo by constraint automata. Sci. Comp. Prog., 61(2):75–113, 2006.
5. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without

BDDs. In TACAS, volume 1579 of LNCS, pages 193–207. Springer, 1999.
6. M. Bonsangue, D. Clarke, and A. Silva. Automata for Context-Dependent Connec-

tors. In COORDINATION, volume 5521 of LNCS, pages 184–203. Springer, 2009.
7. J. D. Brock and W. B. Ackerman. Scenarios: A model of non-determinate compu-

tation. In ICFPC, volume 107 of LNCS, pages 252–259. Springer, 1981.
8. D. Clarke, D. Costa, and F. Arbab. Connector colouring I: Synchronisation and

context dependency. Sci. Comp. Prog., 66(3):205–225, 2007.
9. D. Clarke, J. Proença, A. Lazovik, and F. Arbab. Deconstructing Reo. Electr.

Notes Theor. Comput. Sci., 229(2):43–58, 2009.
10. Eclipse Coordination Tools. http://reo.project.cwi.nl/.
11. HySAT Bounded Model Checker. http://hysat.informatik.uni-oldenburg.de.
12. B. Jonsson. A fully abstract trace model for dataflow networks. In POPL, pages

155–165, 1989.
13. G. Kahn. The semantics of a simple language for parallel programming. In IFIP

Congress, pages 471–475, 1974.
14. S. Kemper and A. Platzer. SAT-based abstraction refinement for real-time systems.

Electr. Notes Theor. Comput. Sci., 182:107–122, 2007.
15. Stephanie Kemper. SAT-based verification for timed component connectors. Electr.

Notes Theor. Comput. Sci., 255:103–118, 2009.
16. The MathSAT 4 SMT solver. http://mathsat4.disi.unitn.it.
17. S. Ren and G. Agha. RTsynchronizer: Language support for real-time specifications

in distributed systems. In LCT-RTS, pages 50–59, 1995.
18. P. Wegner. Coordination as constrainted interaction (extended abstract). In CO-

ORDINATION, volume 1061 of LNCS, pages 28–33. Springer, 1996.

http://reo.project.cwi.nl/
http://hysat.informatik.uni-oldenburg.de
http://mathsat4.disi.unitn.it

	Compositional Construction of Real-Time Dataflow Networks
	Stephanie Kemper

