
Fault in the Future ?

Einar Broch Johnsen1, Ivan Lanese2, and Gianluigi Zavattaro2

1 Department of Informatics, University of Oslo, Norway
einarj@ifi.uio.no

2 Focus Team, Università di Bologna/INRIA, Italy
{lanese,zavattar}@cs.unibo.it

Abstract. In this paper we consider the problem of fault handling in-
side an object-oriented language with asynchronous method calls whose
results are returned inside futures. We present an extension for those
languages where futures are used to return fault notifications and to
coordinate error recovery between the caller and callee. This can be ex-
ploited to ensure that invariants involving many objects are restored
after faults.

1 Introduction

Concurrent and distributed systems demand flexible communication forms be-
tween distributed processes. While object-orientation is a natural paradigm for
distributed systems [14], the tight coupling between objects traditionally en-
forced by method calls may be criticized. Concurrent (or active) objects have
been proposed as an approach to concurrency that blends naturally with object-
oriented programming [1, 18, 27]. Several slightly differently flavored concurrent
object systems exist for, e.g., Java [5, 25], Eiffel [8, 22], and C++ [21]. Concur-
rent objects are reminiscent of Actors [1] and Erlang processes [4]: objects are
inherently concurrent, conceptually each object has a dedicated processor, and
there is at most one activity in an object at any time. Thus, concurrent objects
encapsulate not only their state and methods, but also a single (active) thread of
control. In the concurrent object model, asynchronous method calls may be used
to better combine object-orientation with distributed programming by reducing
the temporal coupling between the caller and callee of a method, compared to
the tightly synchronized (remote) method invocation model. Intuitively, asyn-
chronous method calls spawn activities in objects without blocking execution
in the caller. Return values from asynchronous calls are managed by so-called
futures [12,19,27]. Asynchronous method calls and futures have been integrated
with, e.g., Java [17] and Scala [11] and offer a large degree of potential concur-
rency for deployment on multi-core or distributed architectures.

In the event-driven communication model of Actors and Erlang processes,
fault recovery is typically managed by linking processes together [4] or by mon-
itors [2, 26]. These approaches do not address asynchronous method calls and

? Partly funded by the EU project FP7-231620 HATS and the ANR-2010-SEGI-013
project AEOLUS.

futures. In this paper, we extend the Java approach [17] with mechanisms for
error recovery developed in the context of web services. Futures are used to iden-
tify calls, so they provide a natural means to distribute fault notifications and
kill requests. We introduce also primitives for defining and invoking compensa-
tions allowing one to undo already completed method executions. In this way,
we obtain a symmetric framework where caller and callee can notify their failure
to the partner and manage the incoming notifications. This supports distributed
error recovery policies programming.

The work reported in this paper is based on ABS, a formal modeling language
for distributed concurrent objects which communicate by asynchronous method
calls and futures, to take advantage of its formal semantics and simplicity. ABS
is a variant of Creol [9, 16], and it is the reference language of the European
Project HATS [13]. Creol has been shown to support compositional verification
of concurrent software [3,9], in contrast to multi-threading. A particular feature
of ABS is its cooperative scheduling of method activations inside concurrent
objects, which allows different activities to be pursued within the object in a
controlled way; in particular, active and reactive object behaviors are easily and
dynamically combined. In ABS, any method may be called both synchronously
and asynchronously. Recently, this notion of cooperative scheduling has been
integrated in Java by means of concurrent object groups [25].

We work with an ABS kernel language for distributed concurrent objects
in which asynchronous method calls and futures form the basic communication
constructs. The proposed kernel language combines the concurrency model of
ABS with explicit language constructs for error recovery. In particular, both the
caller and callee may signal a failure: the caller by performing a x := f.kill
operation (reminiscent of the cancel method of Java futures) on the future
f identifying the call, while the callee by executing the abort n command (n
describes the kind of failure). If the callee aborts, then it will definitely terminate
its activities. On the contrary, if the caller performs x := f.kill, it expects that
the callee will react by executing some compensating activity (in contrast to Java,
where the call is just interrupted). Such activities are attached to the return
statement, that we replace with the new command return e on compensate s
(where s is the compensation code). This is the main novelty of our proposal:
when a callee successfully completes, it has not definitely completed its activity as
it will possibly have to perform its compensation activity in case of failure of the
caller. This mechanism is inspired by the compensation mechanisms adopted in
service orchestration languages like WS-BPEL [23] or Jolie [10]. A compensation
can return to the caller some results: to this aim we use a new future which is
freshly created and assigned to x by x := f.kill.

Paper structure. Section 2 introduces our ABS kernel language (without er-
ror handling) and presents its syntax and semantics. Section 3 proposes fault-
handling primitives for ABS and discusses by simple examples the typical pat-
terns of interaction between the caller and callee under our model of failures.
Section 4 discusses the operational semantics of the new primitives and their
impact on the ABS type system. Section 5 concludes the paper.

2

2 A Language for Distributed Concurrent Objects

We consider ABS, an abstract behavioral specification language for distributed
concurrent objects (modifying Creol [9, 16] by, e.g., excluding class inheritance
and dynamic class upgrades). Characteristic features of ABS are that: (1) it al-
lows abstracting from implementation details while remaining executable; i.e.,
a functional sub-language over abstract data types is used to specify internal,
sequential computations; and (2) it provides flexible concurrency and synchro-
nization mechanisms by means of asynchronous method calls, release points in
method definitions, and cooperative scheduling of method activations.

Intuitively, concurrent ABS objects have dedicated processors and run in
a distributed environment with asynchronous and unordered communication.
Communication between objects is based on asynchronous method calls. (There
is no remote field access.) Calls are asynchronous as the caller may decide at
runtime when to synchronize with the reply from a call. Method calls may be
seen as triggers, spawning new concurrent activities (so-called processes) in the
called object. Thus, an object has a set of processes to be executed, which stem
from method activations. Among these, at most one process is active. The others
are suspended in a process pool. Process scheduling is non-deterministic, but
controlled by processor release points in a cooperative way.

An ABS model defines interfaces, classes, datatypes, and functions, and a
main method to configure the initial state. We elide the definition of data types
and functions to focus on the concurrency and communication aspects of ABS
models. Objects are dynamically created instances of classes; their declared at-
tributes are initialized to arbitrary type-correct values. This paper assumes that
models are well-typed, so method binding is guaranteed to succeed.

The concurrent object language of ABS is given in Fig. 1. Here, an inter-
face IF has a name I and method signatures Sg . A class implements interfaces
specifying types for its instances. A class CL has a name C, interfaces I, class
parameters and state variables x of type T , and methods M . (The attributes of
the class are its parameters and state variables.) A method signature Sg declares
the return type T of a method with name m and formal parameters x of types
T . M defines a method with signature Sg, local variable declarations x of types
T , and a body with statement s. Statements may access attributes of the current
class, locally defined variables, and the method’s formal parameters.

Right-hand side expressions rhs include object creation new C(e), commu-
nication constructs (discussed below), and expressions e. Expressions include
Boolean expressions, the read-only self-reference this, references x to attributes
and local variables, and functional terms (omitted here). Statements are stan-
dard for assignment x := rhs, sequential composition s1; s2, skip, if, while,
and return constructs. The release statement unconditionally releases the
processor, suspending the active process. In await g do {s}, the guards g con-
trol processor release and consist of Boolean conditions b and return tests x? (see
below). If all guards g evaluate to false, the processor is released and the process
suspended. When the processor is idle, any enabled process from the object’s
pool of suspended processes may be scheduled.

3

Syntactic categories.
C, I,m in Names
g in Guard
s in Statement
e in Expression
b in Bool Expression

Definitions.

IF ::= interface I {Sg }
CL ::= classC [(T x)] [implements I] {T x; M}
Sg ::= T m (T x)

M ::= Sg{T x; s}
g ::= b | x? | g ∧ g | g ∨ g
e ::= b | x | this | . . .
s ::= s; s | x := rhs | release | await g do {s} | skip
| if b then { s } [else { s }] | while b { s } | return e

rhs ::= e | new C [(e)] | e!m(e) | x.get

Fig. 1. ABS syntax for the concurrent object language.

Communication in ABS is based on asynchronous method calls, denoted
o!m(e). After an asynchronous call x := o!m(e), the caller may proceed with its
execution without blocking on the call. Here x is a future variable, o is an object
(an expression typed by an interface), and e are expressions. A future variable x
refers to a return value which has yet to be computed. There are two operations
on future variables, which control external synchronization in ABS. First, a
return test x? evaluates to false unless the reply to the call can be retrieved.
(Return tests are used in guards.) Second, the return value is retrieved by the
expression x.get, which blocks execution in the object until the return value is
available. The statement sequence x := o!m(e); v := x.get encodes a blocking,
synchronous call, abbreviated v := o.m(e) whereas the statement sequence x :=
o!m(e); await x? do v := x.get encodes a non-blocking, preemptable call,
abbreviated await v := o.m(e).

2.1 Operational Semantics

The operational semantics of ABS is presented as a transition system in an SOS
style [24]. The rules, given in Fig. 2, apply to subsets of configurations (the stan-
dard context rules are not listed). For simplicity we assume that configurations
can be reordered to match the left hand side of the rules (i.e., matching is mod-
ulo associativity and commutativity as in rewriting logic [20]). We denote by
[[e]]cnσ a confluent and terminating reduction system which reduces expressions e
to data values (from a set Val) in a substitution σ and a configuration cn. (In
particular, [[x?]]cnσ = true if [[x]]cnσ = f and fut(f, v) ∈ cn for some value v 6= ⊥,
otherwise [[x?]]cnσ = false. The remaining cases are fairly straightforward.)

Configurations cn are sets of objects, invocation messages, and futures. The
associative and commutative union operator on configurations is denoted by
whitespace. Configurations live inside curly brackets; in the term {cn}, cn cap-
tures the entire configuration. An object is a term ob(o, a, p, q) with identifier o,
an attribute mapping a representing the object’s fields, an active process p, and
a pool of suspended processes q. A process p consists of a mapping l of local vari-
able bindings and a list s of statements, denoted by {l|s} when convenient. In
an invocation message invoc(o, f,m, v), o is the callee, f the future to which the
call’s result is returned, m the method name, and v the call’s actual parameter

4

(Assign1)

x ∈ dom(l) v = [[e]]ε(a◦l)
ob(o, a, {l|x := e; s}, q)
→ ob(o, a, {l[x 7→ v]|s}, q)

(Assign2)

x ∈ dom(a) v = [[e]]ε(a◦l)
ob(o, a, {l|x := e; s}, q)
→ ob(o, a[x 7→ v], {l|s}, q)

(Bind-Mtd)

p′ = bind(o, f,m, v)

ob(o, a, p, q) invoc(o, f,m, v)
→ ob(o, a, p, enqueue(p′, q))

(Async-Call)

o′ = [[e]]ε(a◦l) v = [[e]]ε(a◦l) fresh(f)

ob(o, a, {l|x := e!m(e); s}, q)
→ ob(o, a, {l|x := f ; s}, q)
invoc(o′, f,m, v) fut(f,⊥)

(Return)

v = [[e]]ε(a◦l) l(destiny) = f

ob(o, a, {l|return e; s}, q) fut(f,⊥)
→ ob(o, a, {l|s}, q) fut(f, v)

(Await1)

[[gi]]
cn
(a◦l)

{ob(o, a, {l|await gi do si; s}, q) cn}
→ {ob(o, a, {l|si; s}, q) cn}

(Await2)

∀i.¬[[gi]]
cn
(a◦l)

{ob(o, a, {l|await gi do si; s}, q) cn}
→ {ob(o, a, {l|release; await gi do si; s}, q) cn}

(Read-Fut)

v 6= ⊥ f = [[e]]ε(a◦l)
ob(o, a, {l|x := e.get; s}, q) fut(f, v)
→ ob(o, a, {l|x := v; s}, q) fut(f, v)

(Release)

ob(o, a, {l|release; s}, q)
→ ob(o, a, idle,

enqueue({l|s}, q))

(Activate)

p = select(q, a, cn)

{ob(o, a, idle, q) cn}
→ {ob(o, a, p, q\p) cn}

Fig. 2. ABS semantics.

values. A future fut(f, v) has an identifier f and a reply value v (which is ⊥ when
the reply value has not been received). Values are object and future identifiers,
Boolean expressions, and null (as well as expressions in the functional language).
For simplicity, classes are not represented explicitly in the semantics, but may
be seen as static tables. We assume given a function bind(o, f,m, v) which re-
turns a process resulting from the activation of m in the class of o with actual
parameters v, callee o and associated future f ; and a predicate fresh(i) asserts
that a name i is globally unique (where i may be an identifier for an object or
a future). Let idle denote any process {l|s} where s is an empty statement list.

Transition Rules. There are different assignment rules for expressions (As-
sign1 and Assign2), method calls (Async-Call), and future dereferencing (Read-
Fut). Rules Assign1 and Assign2 assign the value of expression e to a variable x
in the local variables l or in the fields a, respectively. Here and in the sequel, the
variable s will match any (possibly empty) statement list. (We omit the standard
rules for skip, if-then-else, and while and the rule for object creation.)

Process Suspension and Activation. Three operations manipulate a process
pool q: enqueue(p, q) adds a process p to q, q \ p removes the process p from q,
and select(q, a, cn) selects a process from q (if q is empty or no process is ready,
this is the idle process [16]). The different possible definitions correspond to
different process scheduling policies. Let ∅ denote the empty pool. Rule Release
suspends the active process to the pool, leaving the active process idle. Rule
Await1 consumes the await statement if one of the guards evaluates to true in
the current state and selects the related continuation, rule Await2 adds a release
to suspend the process if all the guards evaluate to false. Rule Activate selects
a process from the pool for execution if this process is ready to execute, i.e., if
it would not directly be resuspended or block the processor [16].

5

s ::= . . . Standard statements
| abort n (Abort)
| return e on compensate s (Return)
| on x := f.get do s on fail n s (Get)

rhs ::= . . . Standard rhs
| f.kill (Kill)

Fig. 3. Primitives for error handling

Communication. Rule Async-Call sends an invocation message to o′ with the
unique identity f (by the condition fresh(f)) of a new future, the method name
m, and actual parameters v. The return value of the new future f is undefined
(i.e., ⊥). Rule Bind-Mtd consumes an invocation method, placing the process
corresponding to the method activation in the callee’s process pool. A reserved
local variable ‘destiny’ stores the identity of the future associated with the call.
Rule Return places the return value in the call’s associated future. Rule Read-Fut
dereferences the future f if v 6= ⊥, otherwise the object is blocked.

3 Primitives for Error Handling

In this section we describe the syntax and the informal semantics of the primi-
tives we propose for distributed error handling. As already said, ABS communi-
cation is asynchronous and based on futures. Thus we extend this idea to allow
also for error notification and management. We assume to have a set Err of
fault names, ranged over by n. The sets Err of fault names and Val of values
are disjoint. Consider a method invocation x := o!m(e). The caller will use future
x inside all primitives related to handling errors for this method invocation. In
the callee instead the used future is implicit, since each method execution has
an attached future, i.e. the one where the return value is put.

In order to deal with errors, we mainly have to extend statements s and right-
hand sides rhs w.r.t. Fig. 1. Small extensions will be needed also for method
signatures and types. The extended syntax for statements and right-hand sides
is described in Fig. 3. One may have a look to Fig. 4 and Fig. 5, described in
detail later, to see how those primitives can be used.

We have a new primitive, abort n, to be used by the callee to signal its
failure to its caller. Name n is used to notify the kind of error, and is rem-
iniscent of exception types in e.g. Java3. The abort statement concludes the
execution of the method. Also, the primitive return is extended with the clause
on compensate s. This clause declares that, after the return has been ex-
ecuted and the method’s normal execution completed, if compensation of this
method call is needed, code s has to be executed. No continuation different from
a compensation is allowed after return. Compensation s will be executed in
the same environment of the method body.

3 Our approach can be generalized to exception types, we choose to have just names
for simplicity.

6

The two primitives above are executed by the callee. The caller has primitives
for detecting the result of an invocation and for killing/compensating a past
invocation. For detecting the result of the invocation we extend the x := f.get
primitive of ABS (we use f for an expression that evaluates to a future). It
becomes part of the construct on x := f.get do s on fail ni si, which executes
x := f.get as before, but then it executes s if the future f contains a value v,
or the clause si if f contains a fault name ni. In the first case the value v is
assigned to variable x, otherwise x is unchanged.

The primitives described so far allow errors generated in the callee to be
managed. On the other side, the caller may enter an error situation that requires
to annul the effect of the call. This is done using the statement x := f.kill.
Here f is the future corresponding to the method call to be annulled while x
is a variable that will contain the fresh future f ′ to be used to interact with
the compensation. The annul request is asynchronous, and the result can be
tested by using the normal await and get primitives. Upon the execution of
x := f.kill the value of f becomes the special value kill(f ′), denoting that a
kill request has been sent, and a reply is expected in f ′. The identity of future
f ′ is stored in x and f ′ is initialized to ⊥. The annul request will be managed
by the target method call either before it starts, or at its end. In the first case
the method is not executed at all. In the second case, if execution was successful
then the compensation code is executed, otherwise no code is executed (only
successful executions can be compensated). The value of future f ′ is changed
to a normal value v or to an error notification n depending on the result of the
compensation code. Since f ′ is a future, one may even ask to kill an ongoing
compensation. Two special fault notifications may be returned in such a future:
Ann, specifying that either the method call has been annulled before starting or
that it aborted on its own, and NoC, specifying that the killed method defined
no compensation.

Note that both values and fault notifications unlock the await statement.
We clarify the error handling style induced by these primitives with a simple

bank transfer example and a speculative parallelism example4.

Example 1 (Bank transfer). Assume that a bank A wants to transfer some
amount of money money from one of its accounts accNoA to an account accNoB
of a bank B. Clearly, the interaction has to guarantee that money is neither cre-
ated nor destroyed, and this should hold even in case of failures.

The codes of the caller and callee are in Fig. 4 and Fig. 5, respectively.
The caller asks for the transfer by invoking method MAKETRANSFER (Fig. 4,
line 3). If later on it finds a problem (e.g., there is not enough money in the
source account5) it kills the MAKETRANSFER computation (Fig. 4, line 5). If
the computation has already failed then nothing has to be done, and the clause
on fail Ann (Fig. 4, line 9) is executed. If the MAKETRANSFER computation

4 For simplicity, we avoid in the examples the typing of faults: this is considered in the
following. We also shorten x := x + e (resp. x := x− e) into x += e (resp. x −= e).

5 This particular problem could have been checked before the invocation, but this is
useful to show in a small example most of the error recovery mechanisms.

7

1 bool TRANSFER (int accNoA, int accNoB, int money)
2 { bool x, y;
3 f := bankB!MAKETRANSFER (int accNoB, int money);
4 if accountsA[accNoA].balance < money then
5 { f’ := f.kill;
6 on x := f’.get
7 do return false
8 on fail no-money abort lost-money
9 on fail Ann return false

10 }
11 else
12 { await f? do
13 on y := f.get
14 do accountsA[accNoA].balance -= money;
15 return x
16 on fail no-acc
17 return false
18 } }

Fig. 4. Bank transfer example: caller.

has not started yet, it is annulled and the same clause line on fail Ann is
executed on the caller. If the MAKETRANSFER computation has successfully
terminated then a compensation has been installed and its execution is started
(when the scheduler decides to schedule it). When executing the compensation
one does not know whether the received money is still available. In fact, the lock
has been released after completion of method MAKETRANSFER, and another
method of bank B may have used the money. If the money is still available then
compensation is successful (we will see that the invariant has been preserved),
clause do is executed on the caller (Fig. 4, line 7), and value false is given as
a result. If the money is no longer available then the abort no-money (Fig. 5,
line 12) statement triggers the on fail no-money clause on the caller (Fig. 4,
line 8). In the caller this will cause an abort lost-money signaling at the upper
level that error recovery has not been successful. This is the only case where
money is not preserved, but this is notified by a failure to the upper level. Note
that in case of successful termination of the caller (which may happen even if
the call failed), the TRANSFER method returns true if the transfer has been
performed, false otherwise.

Example 2 (Speculative parallelism). As an additional example of the usage of
the error handling primitives, we consider a typical pattern of service composi-
tion —the so-called speculative parallelism. This pattern generalizes client-server
interaction to cases in which several servers can provide to the client the required
reply. In these cases, the client asynchronously calls all the possible (alternative)
servers, and then waits for the replies. The first reply will be accepted, while the
other calls will be killed.

8

1 bool MAKETRANSFER (int accNo, int money)
2 { if not valid(accNo) then
3 { abort no-acc }
4 else
5 { accountsB[accNo].amount += money;
6 return true
7 on compensate
8 if accountsB[accNo].amount >= money then
9 { accountsB[accNo].amount -= money;

10 return false }
11 else
12 { abort no-money }
13 } }

Fig. 5. Bank transfer example: callee.

Consider, for instance, a concert ticket reservation method (the client of
the pattern is specified in Fig. 6) that invokes two possible reservation services
(Fig. 6, lines 2-3). The servers are specified in Fig. 7. When one of the two
requests succeeds, the other is canceled. If the first one fails, the second one
is waited for. Only if both of them abort (Fig. 6, lines 10 and 17), the failure
no ticket is propagated to the upper level. In case both of them will succeed,
only one request will be considered (according to which of the two branches of
the await clause will be selected): the other one will be compensate via the
kill mechanism (Fig. 6, lines 6 and 13).

4 Semantics for Error Handling

In this section we extend the ABS semantics in Fig. 2 to include the error
handling primitives discussed above. The rules defining the semantics for error
handling in Fig. 8 are to be added to the ones of Fig. 2, but for rules Return
and Read-Fut, which are supposed to replace the homonymous rules in Fig. 2.

In order to understand the rules, one has to keep in mind the different states
a future can have. Futures are created with a value ⊥, saying that no result from
the invoked method is available yet. The callee can store in the future either a
value v ∈ Val specifying the return value of a successful method, or a failure
notification n ∈ Err in case of abort of the method call. On the other side the
caller can store in the future the kill request kill(f ′) where f ′ is the fresh future
used for receiving the result of the kill request.

Rules Return-Comp1 and Return-Comp2 model successful return and instal-
lation of a compensation. The two rules differ since in the first case the return
value is stored in the future, in the second case it is discarded because of a
kill request. The compensation is installed by letting it precede by a release,
forcing the terminated method to release the lock, and by an onkill f state-
ment. This last is runtime syntax. Its semantics is defined by rules Onkill1 and
Onkill2. In case there is a kill(f ′) inside future f the effect of onkill f is to

9

1 int CONCERT_TICKET (int concert_code)
2 { f1 := service1!RESERVE_TICKET (int concert_code);
3 f2 := service2!RESERVE_TICKET (int concert_code);
4 await f1? do
5 on x := f1.get
6 do { f3 := f2.kill;
7 return x }
8 on fail no_ticket
9 on y := f2.get do return y

10 on fail no_ticket abort no_ticket,
11 f2? do
12 on x := f2.get
13 do { f3 := f1.kill;
14 return x }
15 on fail no_ticket
16 on y := f1.get do return y
17 on fail no_ticket abort no_ticket
18 }

Fig. 6. Client in the “speculative parallelism” example.

1 int RESERVE_TICKET (int concert_code)
2 { await x := this.AVAILABLE(concert_code)
3 //returns the ticket code or -1
4 if (x = -1)
5 then abort no_ticket
6 else return x on compensate f := this!CANCEL(concert_code,x)
7 }

Fig. 7. Server in the “speculative parallelism” example.

change the special local variable destiny to f ′ so specifying that the result of
the compensation will be advertised on future f ′. Otherwise it releases the lock
and checks again later. Notice that the standard return statement corresponds
just to a return installing the default compensation abort NoC (rule Return).

Rules Abort1 and Abort2 define the abort n primitive. Essentially, it stores
the fault name n in the future and releases the lock. In case the future contains
kill(f ′) instead the fault name is not stored, and f ′ is set to fault name Ann.

Rules Kill1 and Kill2 perform kill. In Kill1 future f (containing a value,
possibly ⊥) is set to kill(f ′) and future f ′ is created and set to ⊥. In Kill2 instead
f contained a failure notification, thus f ′ is set to Ann. Rule Kill3 deals with
killing of an already killed method call: simply the existing reference to the result
of the kill is assigned to the variable. Thus kill is essentially idempotent.
Rule Pre-Kill discards a method invocation which has not started yet and which
has to be killed. The future waiting for the result is set to Ann.

The last two rules are used for getting the result of a method invocation (or of
a kill). If the value in the future is a non ⊥ data value (rule Read-Fut) then it is

10

(Return)

ob(o, a, {l|return e}, q)
→ ob(o, a, {l|return e on compensate abort NoC}, q)

(Return-Comp1)

v = [[e]]ε(a◦l) l(destiny) = f

ob(o, a, {l|return e on compensate s}, q) fut(f,⊥)
→ ob(o, a, {l|release; onkill f ; s}, q) fut(f, v)

(Return-Comp2)

l(destiny) = f

ob(o, a, {l|return e on compensate s}, q) fut(f, kill(f ′))
→ ob(o, a, {l|release; onkill f ; s}, q) fut(f, kill(f ′))

(Onkill1)

ob(o, a, {l|onkill f ; s}, q) fut(f, kill(f ′))
→ ob(o, a, {l[destiny 7→ f ′]|s}, q) fut(f, kill(f ′))

(Onkill2)

y 6= kill(f ′)

ob(o, a, {l|onkill f ; s}, q) fut(f, y)
→ ob(o, a, {l|release; onkill f ; s}, q) fut(f, y)

(Abort1)

l(destiny) = f

ob(o, a, {l|abort n}, q) fut(f,⊥)
→ ob(o, a, {l|release}, q) fut(f, n)

(Abort2)

l(destiny) = f

ob(o, a, {l|abort n}, q) fut(f, kill(f ′)) fut(f ′, x)
→ ob(o, a, {l|release}, q) fut(f, kill(f ′)) fut(f ′,Ann)

(Kill1)

f = [[e]]ε(a◦l) fresh(f ′) v ∈ Val

ob(o, a, {l|x := e.kill; s}, q) fut(f, v)
→ ob(o, a, {l|x := f ′; s}, q) fut(f, kill(f ′)) fut(f ′,⊥)

(Kill2)

f = [[e]]ε(a◦l) fresh(f ′) n ∈ Err

ob(o, a, {l|x := e.kill; s}, q) fut(f, n)
→ ob(o, a, {l|x := f ′; s}, q) fut(f, kill(f ′)) fut(f ′,Ann)

(Kill3)

f = [[e]]ε(a◦l)
ob(o, a, {l|x := e.kill; s}, q) fut(f, kill(f ′))
→ ob(o, a, {l|x := f ′; s}, q) fut(f, kill(f ′))

(Pre-Kill)

invoc(o, f,m, v) fut(f, kill(f ′)) fut(f ′,⊥)
→ fut(f, kill(f ′)) fut(f ′,Ann)

(Read-Fut)

v ∈ Val v 6= ⊥ f = [[e]]ε(a◦l)
ob(o, a, {l|on x := e.get do s′ on fail ni si; s}, q) fut(f, v)

→ ob(o, a, {l|x := v; s′; s}, q) fut(f, v)

(Read-Err)

nj ∈ Err f = [[e]]ε(a◦l) (on fail nj sj) ∈ on fail ni si

ob(o, a, {l|on x := e.get do s′ on fail ni si; s}, q) fut(f, nj)
→ ob(o, a, {l|sj ; s}, q) fut(f, nj)

Fig. 8. ABS semantics for error handling

assigned to the variable x and clause do is executed. If it is an error notification
(rule Read-Err) instead the corresponding clause on fail is executed.

11

(Get)

Γ ` x : fut〈T 〉
Γ ` x.get : T

(Return)

Γ ` e : Γ (return)
Γ ` return e

(Assign)

Γ ` e : T ′ T ′ � Γ (v)
Γ ` v := e

Fig. 9. Sample typing rules for ABS.

4.1 Typing

ABS relies on a type system guarenteeing that method binding always succeeds.
One can extend the type system to additionally ensure that faults are managed
in a correct way, in particular that all the faults that may be raised by a method
invocation are managed by the caller.

While referring to [15] for a full description of the type system, we report in
Fig. 9 the more interesting rules, and extend them to deal with error handling.

We use typing contexts which are mappings from names (of variables, inter-
faces and classes) to types. The reserved name return is bound to the return
type of the current method. Relation � is the subtyping relation.

To check the correctness of error management, one has essentially to tag a
method with the list of failures it can raise. Also, one has to specify the behavior
of the compensation, including (recursively) its ability to throw faults. According
to this idea, the signature Sg of a method m becomes:

Sg ::= T m (T x) ED

ED ::= throws n [on comp T ED]

Here n is the list of names of faults method m may throw. The optional
clause on comp T ED specifies the typing of the compensation. It is omitted if
the compensation is not present. In this case it stands for the (infinite) unfolding
of the type on comp null throws NoC rec X.on comp null throws ε X
where null is a subtype of any data type and ε the empty list.

As an example, the signatures of methods TRANSFER in Fig. 4 and MAKE-
TRANSFER in Fig. 5 are respectively:

bool TRANSFER(int accNoA, int accNoB, int money)
throws lost-money

bool MAKETRANSFER(int accNo, int money)
throws no-acc on comp bool throws no-money

Similarly, futures have to declare the kinds of faults they are supposed to manage.
The type declaration of a future becomes:

T ::= . . . | fut〈T 〉 ED where ED is as before.

We show in Fig. 10 the main typing rules for error recovery. We need two
reserved names: faults, bound to the list of faults that the current method can
throw, and comp, bound to the typing of the current compensation. Rule T-
Abort simply checks that the thrown fault is allowed. Rule T-Get verifies that
the returned value has the correct type, and that all faults that may be raised
by the callee are managed. Rule T-Return checks the type of the returned value,

12

(T-Abort)

n ∈ Γ (faults)
Γ ` abort n

(T-Get)

Γ ` x : T Γ ` f : fut〈T ′〉 throws ni CM T ′ � T Γ ` s Γ ` si
Γ ` on x := f.get do s on fail ni si

(T-Return)

Γ ` e : Γ (return) Γ (comp) = T throws n CM
Γ [return 7→ T, faults 7→ n, comp 7→ CM] ` s

Γ ` return e on compensate s
(T-Kill)

Γ ` x : T ′ fut〈T 〉 throws mi,Ann CM � T ′
Γ ` f : fut〈T ′′〉 throws ni on comp T throws mi CM

Γ ` x := f.kill

Fig. 10. Sample typing rules for error management in ABS.

and ensures that the compensation has the expected behavior. Finally rule T-
Kill controls that variable x can store the result of the kill, including the
possibility for it to be Ann.

The subtyping relation � has to be defined also on the new types for futures.
It can be defined by:

(Fut-Sub)

T � T ′ n ⊇ n′ T1 � T ′
1 ED � ED′

fut〈T 〉 throws n [on comp T1 ED] � fut〈T ′〉 throws n′ [on comp T ′
1 ED

′]

The type system is easily extended from statements to configurations. Then, a
standard subject reduction theorem holds for configurations, ensuring that well-
typed configurations evolve to well-typed configurations. Finally, it is possible
to prove that in well-typed configurations whenever a get statement receives a
fault n, it provides a corresponding on fail n s clause for managing it.

5 Conclusion and Future Work

Taking inspiration from models and languages for fault and compensation han-
dling like the Sagas calculi [6] and the orchestration languages WS-BPEL [23]
and Jolie [10], we have presented an extension of the concurrent object-oriented
language ABS (the reference language in the European Projects HATS [13]) with
primitives for error handling. Callee side faults are similar to exceptions as in
e.g. Java, while the use of compensations for managing caller side kill requests is
novel for the object-oriented world as far as we know. Our main contribution has
been to combine these two mechanisms in a coherent way, suitable for a language
with asynchronous communication based on futures. This approach has been de-
veloped by ensuring that the main principles underlying ABS were preserved,
in particular concerning collaborative scheduling and asynchronous method ex-
ecution. These features of ABS are needed so to allow compositional correctness
proofs based on invariants, similarly e.g. to what done in [3, 9]. In fact, under
collaborative scheduling processes may ensure that an invariant holds only at
release points. If all pieces of code ensure that the invariant holds before any
release point by assuming that it holds at the beginning of their execution, then

13

the invariant holds under any possible scheduling, without any need to check for
interferences.

Invariants shed some light on a typical problem of the compensation ap-
proach, namely compensation correctness. In fact, compensations are supposed
to take the process back to a consistent state which is however different from
the state where the process started. In other words, the rollback is not perfect.
For instance, in [7] this is kept into account by relying on an user-defined equiv-
alence on states: the compensations should lead the program to a state which
is equivalent to the one where the program itself started. In a world where pro-
grams are equipped with invariants, compensation correctness becomes clearer:
compensation should restore the invariant which has been broken by the failure.

Let us consider Example 1. There we have a distributed invariant specifying
that the sum of the money in the source and target accounts should not change.
Since this invariant involves two distinct objects, it may not hold when there
are pending method invocations, kills or when at least one of the objects has
not released the lock. It is easy to check that the invariant is preserved by the
normal execution, where no fault happens. Interestingly, it is also preserved in
case of faults which are handled. In fact, in case of fault in the callee the money
is never removed from the starting account, and in case of failure in the caller
the compensation withdraws the excess of money from the callee. The only case
where the invariant is violated is if the caller wants to compensate the call, but
this is no more possible because the money has already been used by the callee.
This is also the only case where method TRANSFER aborts. Thus one can say
that the code satisfies the invariant above in the sense that either it aborts, or
the invariant holds when the call is terminated, independently on the number of
(successfully managed) failures. In this sense we can say that the compensation
code in the example is correct w.r.t. this specific invariant.

As future work, we plan to develop general techniques for proving correctness
of compensations using invariants. Moreover, to better evaluate the practical
impact of our proposal, we will implement the proposed primitives in ABS and
we will investigate the possibility to apply our fault handling model in other
object-oriented languages with futures.

References

1. G. Agha and C. Hewitt. Actors: A conceptual foundation for concurrent object-
oriented programming. In Research Directions in Object-Oriented Programming,
pages 49–74. MIT Press, 1987.

2. G. Agha and R. Ziaei. Security and fault-tolerance in distributed systems: an
actor-based approach. In Proc. of CSDA’98, pages 72–88. IEEE Computer Society
Press, 1998.

3. W. Ahrendt and M. Dylla. A system for compositional verification of asynchronous
objects. Science of Computer Programming, 2010. In press.

4. J. Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, 2007.

5. L. Baduel et al. Grid Computing: Software Environments and Tools, chapter Pro-
gramming, Composing, Deploying, for the Grid. Springer, 2006.

14

6. R. Bruni, H. Melgratti, and U. Montanari. Theoretical foundations for compensa-
tions in flow composition languages. In Proc. of POPL ’05, pages 209–220. ACM
Press, 2005.

7. L. Caires, C. Ferreira, and H. Vieira. A process calculus analysis of compensations.
In Proc. of TGC’08, volume 5474 of LNCS, pages 87–103. Springer, 2008.

8. D. Caromel. Service, Asynchrony, and Wait-By-Necessity. Journal of Object Ori-
ented Programming, pages 12–22, Nov. 1989.

9. F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In
Proc. of ESOP’07, volume 4421 of LNCS, pages 316–330. Springer, 2007.

10. C. Guidi, I. Lanese, F. Montesi, and G. Zavattaro. Dynamic error handling in
service oriented applications. Fundam. Inform., 95(1):73–102, 2009.

11. P. Haller and M. Odersky. Scala actors: Unifying thread-based and event-based
programming. Theoretical Computer Science, 410(2–3):202–220, 2009.

12. R. H. Halstead Jr. Multilisp: A language for concurrent symbolic computation.
ACM Trans. Prog. Lang. Syst., 7(4):501–538, 1985.

13. European Project HATS. http://www.cse.chalmers.se/research/hats/.
14. International Telecommunication Union. Open Distributed Processing — Refer-

ence Model parts 1–4. Technical report, ISO/IEC, Geneva, July 1995.
15. E. B. Johnsen, M. Kyas, and I. C. Yu. Dynamic classes: Modular asynchronous

evolution of distributed concurrent objects. In Proc. of FM’09, volume 5850 of
LNCS, pages 596–611. Springer, 2009.

16. E. B. Johnsen and O. Owe. An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling, 6(1):35–58, 2007.

17. JSR166: Concurrency utilities. http://java.sun.com/j2se/1.5.0/docs/
guide/concurrency.

18. R. G. Lavender and D. C. Schmidt. Active object: an object behavioral pattern
for concurrent programming. In Pattern languages of program design 2, pages
483–499. Addison-Wesley Longman Publishing Co., Inc., 1996.

19. B. H. Liskov and L. Shrira. Promises: Linguistic support for efficient asynchronous
procedure calls in distributed systems. In Proc. of PLDI’88, pages 260–267. ACM
Press, 1988.

20. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96:73–155, 1992.

21. B. Morris. CActive and Friends. Symbian Developer Network, Novem-
ber 2007. http://developer.symbian.com/main/downloads/papers/
CActiveAndFriends/CActiveAndFriends.pdf.

22. P. Nienaltowski. Practical framework for contract-based concurrent object-oriented
programming. PhD thesis, Department of Computer Science, ETH Zurich, 2007.

23. Oasis. Web Services Business Process Execution Language Version 2.0. http:
//docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.

24. G. D. Plotkin. A structural approach to operational semantics. Journal of Logic
and Algebraic Programming, 60–61:17–139, 2004.

25. J. Schäfer and A. Poetzsch-Heffter. JCoBox: Generalizing active objects to concur-
rent components. In Proc. of ECOOP 2010, volume 6183 of LNCS, pages 275–299.
Springer, 2010.

26. N. Venkatasubramanian and C. L. Talcott. Reasoning about meta level activities
in open distributed systems. In Proc. PODC’95, pages 144–152. ACM Press, 1995.

27. A. Yonezawa. ABCL: An Object-Oriented Concurrent System. MIT Press, 1990.

15

