
Fair Subtyping for Multi-Party Session Types

Luca Padovani

Dipartimento di Informatica, Università di Torino, Italy
padovani@di.unito.it

Abstract. The standard subtyping relation used in dyadic session type theories
may compromise the liveness of multi-party sessions. In this paper we define a
fair subtyping relation for multi-party session types that preserves liveness, we
relate it with the standard subtyping relation, and we give algorithms for deciding
it. As a side effect, we provide an original and remarkably simple coinductive
characterization of the fair testing preorder for nondeterministic, sequential pro-
cesses consisting of internal choices of outputs and external choices of inputs.

1 Introduction

Type systems for dyadic sessions [15,16,22] require that, at any time, the two ends
of a session must be used by exactly two processes and in complementary ways. These
requirements enforce session correctness, namely communication safety (no message of
unexpected type is ever sent) and liveness (whenever a message is exchanged, all of the
processes involved in the session make progress). For example, the session p : T |q : R,
where T and R are the session types defined by

T = q!a.T ⊕q!b.end and R = p?a.R+p?b.end ,

is correct and describes a conversation between two processes identified by the tags p
and q: process p sends either an a message or a b message to q; the decision as to which
type of message is sent is taken by p, whence the internal choice operator ⊕. Process q
must be ready to receive either an a or a b message from p, whence the external choice
operator +. If an a message is exchanged, the two processes repeat this pattern; as soon
as a b message is exchanged, the session ends.

The shift from dyadic to multi-party sessions [17] makes the definition of session
correctness more subtle. First, it is no longer obvious what it means to use the ends of
the session “in complementary ways” if the session involves more than two participants.
Second, it is no longer reasonable to pretend that all of the involved participants make
progress whenever a message is exchanged if communications are point-to-point and
yet one would like to state that no participant is left behind. A natural formalization of
correctness for multi-party sessions requires that, at any time, the session must have the
possibility to reach a terminal configuration where all of its participants no longer use
the session ends. For example, in the session p : T ′ |q : R |r : p?c.end, where

T ′ = q!a.T ′⊕q!b.r!c.end ,

the processes p and q may exchange an arbitrary number of a messages and, during
their interaction, the process r does not make any progress. However, the session is

2 Luca Padovani

correct because, as long as a messages are exchanged, it is always possible (although
not granted) for p to send a b message to q followed by a c message to r. If this happens,
all of the involved participants reach a terminal state and the session ends.

This difference between dyadic and multi-party sessions has dramatic effects on the
subtyping relation for session types [12,6]. Subtyping defines an asymmetric compat-
ibility between types such that, when T is a subtype of S, it is harmless to replace a
channel with type S with another one with type T or, equivalently, it is harmless to re-
place a process that behaves according to T with another one that behaves according
to S. For example, the session type T defined above is a subtype of q!b.end: using a
channel of type q!b.end means sending a b message to process q. Since the session type
T permits sending both an a message and a b message, using a channel with type T
in place of another one with type q!b.end does not compromise the correctness of the
session. In general, we may deduce that T is a subtype of S if S is a variant of T where
some branches of some internal choices have been pruned. According to this intuition
every session type in the family

S2 = q!a.q!a.S2⊕q!b.end · · · Sn = (q!a.)nSn⊕q!b.end · · · S∞ = q!a.S∞

is a supertype of T . The type Sn allows sending a b message only after the number of
sent a messages is a multiple of n. The type S∞ is somehow the limit of the sequence
{Si}i≥2 and describes a process that only sends a messages. The fact that T is a sub-
type of S∞ may be questionable, because the sessions p : Si |q : R for i≥ 2 all have the
potential to terminate (it is always possible that a b message is sent), while the session
p : S∞ |q : R is doomed to loop forever. In a dyadic session like p : S∞ |q : R this is miti-
gated by the observation that every participant of the session makes indefinite progress.
However, using the same arguments we might also deduce that S∞ is a supertype of T ′,
and now in the session p : S∞ |q : R |r : p?c.end process p keeps interacting with q while
c is stuck waiting for a message that is never sent. We conclude that the well-known
subtyping relation for dyadic session types is unsound in multi-party theories because
it may not preserve the liveness of multi-party sessions.

In this paper we study a sound subtyping relation for multi-party session types.
Understanding when two session types are related by subtyping in our theory is a sur-
prisingly complex business. First of all, the differences between the standard subtyping
relation and ours emerge only when recursive session types are involved, while the
two relations coincide on finite session types. Second, unlike the standard subtyping
relation for session types, deciding whether some branch of an internal choice can be
safely pruned may involve a non-local check on the structure of the session types being
compared. This makes the subtyping relation particularly difficult to axiomatize. To il-
lustrate the subtleties behind our subtyping relation, consider the session types T , S2,
and S∞ represented as the three automata in Figure 1, where the initial states have been
labelled with the name of the session type and the solid arcs with the actions performed
by the processes that behave according to these types. The subtyping relation establishes
a correspondence between states of two session types. In the figure, the correspondence
is depicted as the three dotted arrows showing, for each state of S2, the corresponding
state of T . The fact that S∞ is not a supertype of T can be easily detected since no end
state is reachable from S∞, but this does not explain why S2 is a supertype of T . Observe

Fair Subtyping for Multi-Party Session Types 3

T

end

q!a

q!b

S2

•

end

q!a

q!b

q!a

S∞

q!a

Fig. 1. Relation between T = q!a.T ⊕q!b.end and S2 = q!a.q!a.S2⊕q!b.end.

that S2 has an intermediate state • which lacks the outgoing q!b-labelled transition that
T has. The correspondence between T and this state of S2 is safe if (and only if) there is
no session type R such that p : T |q : R is a correct session and q is capable to loop the
interaction starting from p : S2 |q : R in such a way that the • state is visited infinitely
often. If this were the case, q could rely on the observation of a b message after having
received an odd number of a messages to terminate successfully. This cannot happen in
the example above because p : S2 can always break the loop by sending q an a message
followed by a b one (the act of sending a message is irrevocably decided by the sender).
We express this as the fact that S2 rules over (every context, like q : R, that completes)
T , which we denote by T ≺ S2.

T •

end
q!a,q!b

q?a

q?b

S •

end

• •

q!a

q?b

q?a q!a,q!b

q?a

q?b
×

Fig. 2. Relation between T = q!a.(q?a.T + q?b.end) ⊕ q!b.(q?a.T + q?b.end) and S =
q!a.(q?a.(q!a.(q?a.S+q?b.end)⊕q!b.(q?a.S+q?b.end))+q?b.end.

A more involved example is depicted in Figure 2. The only difference between T
and S is that S lacks the outgoing q!b-labelled transition that T has. Basically, p : S may
send a b message only after an odd number of a messages have been sent to q and an
equal number of a messages have been received. Unlike the previous example, it is q
that decides whether to terminate the interaction with p, by sending a b message, or to
continue, by sending an a message. Consider now the participant q : R where

R = p?a.p!a.(p?a.p!a.R+p?b.p!a.R)+p?b.p!b.end .

It is easy to see that p : T | q : R is correct while p : S | q : R loops through state S. In
other words, q forces p : S to go through state S in hopes that a b message is received.

4 Luca Padovani

This was possible with p : T , but not with p : S. The fact that a participant like q : R
exists means that T is not ruled by S, and therefore T is not a subtype of S. In this paper
we show that the “ruled by” relation fully characterizes the contexts in which pruning
outputs is safe.

Related work. The framework we have depicted is known in concurrency theory as
fair testing [18,21]. Testing [10,9,14] is a general technique for defining refinement
relations v between processes so that, when P v Q holds, the process Q can be safely
used in place of process P because every “test” that P passes is passed also by Q. Fair
testing adds a fairness assumption to standard testing: if a system goes infinitely often
through a state from which some action is possible (like the action q!b from state T in
Figure 2), a component of the system may rely upon the eventual observation of that
action to terminate successfully. In the present paper, we instantiate fair testing to a
context where processes are session types describing the behavior of participants of a
multi-party session and the “test” is given by the correctness of a session.

Since the v relation is defined by universally quantifying over an infinite number
of tests, a crucial aspect of every testing theory is the study of alternative, possibly
effective characterizations of v or approximations of it. Alternative characterizations
of refinements not considering fairness have been defined, for example, in [13,14] and
later, in coinductive form, in [7] and in [4,1]. Alternative characterizations of fair re-
finements have already been given in the literature, but we find them unsatisfactory. The
authors of [18] present a characterization based on sets of infinite strings, while [21] re-
lies on a denotational model of processes. In both cases the characterizations are quite
complex, if compared to those of corresponding unfair refinements, because they are
semantically – rather than syntactically – based. In fact, as pointed out in [21], no com-
plete axiomatization of these refinements is known at the present time. Recently, [2,3]
have investigated subcontract relations for Web services which are closely related to
fair subtyping of session types, but they refer to [21] when it comes to characterizing
and deciding them. The authors of [4] provide a coinductive characterization that is
not complete (for instance, it fails to assess that T is a subtype of S2 in Figure 1). The
standard reference for subtyping of session types is [12], where the subtyping relation
is “unfair” by definition. A fair theory of multi-party session types has been developed
in [19], but no alternative characterizations nor algorithms were given.

Contributions. This paper presents a self-contained theory of multi-party session types
where the focus is on the eventual satisfaction of all the interacting participants. From a
technical viewpoint, the main novelty is an alternative characterization of the fair sub-
typing relation which is expressed as the combination of the familiar, “unfair” subtyp-
ing relation [12] and a “ruled by” relation which can be expressed as a syntax-directed
notion of behavioral difference between session types. This allows us to present a com-
plete deduction system for the subtyping relation as a minor variation of the standard
one, up to the use of the “ruled by” relation.

Structure of the paper. In Section 2 we formalize the language of (multi-party) session
types, the notion of correct session, and subtyping as the relation that preserves correct-
ness. We show that our subtyping differs from the standard one. Section 3 provides a

Fair Subtyping for Multi-Party Session Types 5

sound and complete coinductive characterization of subtyping based on the “ruled by”
relation. Section 4 presents algorithms for deciding subtyping and related notions. Sec-
tion 5 concludes. Proofs and auxiliary technical material are available in the appendix
of the full version of the paper [20].

2 Syntax and Semantics of Session Types

We assume a set R of role tags ranged over by p, q, . . . , a countable set M of message
types ranged over by a, b, . . . , and a countable set X of recursion variables ranged
over by x, y, Table 1 defines the syntax of sessions and session types. Sessions,
ranged over by M, N, . . . , are finite compositions p1 : T1 | · · · | pn : Tn made of a fixed
number of participants that communicate with each other according to the session types
Ti. We work exclusively with well-formed sessions, where each participant is uniquely
identified by a tag pi (i 6= j implies pi 6= p j). Session types, ranged over by T , S, . . . ,
are the closed terms generated by the grammar in Table 1 such that:

– every recursion variable is guarded by at least one (input or output) prefix, and
– in every subterm ∑i∈I p?ai.Ti or

⊕
i∈I p!ai.Ti the ai’s are pairwise distinct.

The first condition forbids non-contractive session types such as µx.x, while the
second condition ensures that session types are unambiguous by requiring that every
prefix of the form p?ai or p!ai uniquely determines a continuation Ti. We consider ses-
sion types modulo the folding and unfolding of recursive terms. Therefore, we assume
µx.T = T{µx.T/x} where T{µx.T/x} denotes the session type obtained from T by
replacing every free occurrence of x in T with µx.T (µ is the only binder for recur-
sion variables, and the notions of free and bound variables are defined as expected).
In practice, this amounts to saying that session types are the possibly infinite, finitely-
branching, regular trees [8] generated by the productions of the grammar in Table 1.
Note that all the session types defined in the introduction can be finitely and uniquely
expressed as possibly recursive terms generated by the grammar in Table 1.

Table 1. Syntax of session types and sessions.

T ::= Session Type
fail (failure)

| end (termination)
| x (variable)
| ∑i∈I p?ai.Ti (input)
|

⊕
i∈I p!ai.Ti (output)

| µx.T (recursion)

M ::= Session
p : T (participant)

| M |M (composition)

The session type end describes a process that no longer participates to the ses-
sion. The session type ∑i∈I p?ai.Ti describes a process that waits for a message from
the source participant identified by tag p: depending on the type ai of the message
it receives, the process behaves according to the continuation Ti. The session type

6 Luca Padovani

⊕
i∈I p!ai.Ti describes a process that internally decides to send a message of type ai to

the destination participant identified by tag p. After the output operation the process be-
haves as described in the session type Ti. Terms x and µx.T are used to build recursive
session types. It is technically convenient (although not necessary) to have a canoni-
cal term fail describing failed processes that are unable to terminate successfully. This
happens, for example, if a participant receives an unexpected message. Sometimes we
will use the infix notation p?a1.T1 + · · ·+p?an.Tn to denote ∑

n
i=1 p?ai.Ti and p!a1.T1⊕

·· · ⊕ p!an.Tn to denote
⊕n

i=1 p!ai.Ti. Note that mixed choices like p?a.T + p!b.S and
p?a.T +q?a.S are forbidden. In particular, the source participant p and the destination
participant p in ∑i∈I p?ai.Ti and

⊕n
i=1 p!ai.Ti must be the same in all branches (all the

examples in the introduction are consistent with these conventions). While slightly re-
dundant, the syntax for inputs and outputs allows us to conveniently switch between
the prefix forms and the corresponding infix forms. Also, we will write trees(T) for the
finite set of subtrees that T is made of, including T itself (recall that a regular tree is
made of a finite number of distinct subtrees [8]). Take for example T = µx.(p!a.q?c.x⊕
p!b.end). Then trees(T) = {T,q?c.T,end}.

We express the evolution of a session by means of a transition system. The idea
is that each participant of a session behaves as described by the corresponding session
type and the session evolves by means of internal choices taken by the participants and
by synchronizations occurring between them. Labels of the transition system, ranged
over by α̂ , are generated by the grammar

α̂ ::= τ | X | p : p?a | p : p!a

and we use α to range over actions different from τ .

Table 2. Transition system of sessions.

(T-SUCCESS)

p : end
X−→ p : end

(T-OUTPUT)

p : q!a.T
p:q!a−→ p : T

(T-CHOICE)
k ∈ I

p :
⊕
i∈I

q!ai.Ti
τ−→ p : q!ak.Tk

(T-INPUT)
k ∈ I

p : ∑
i∈I

q?ai.Ti
p:q?ak−→ p : Tk

(T-FAILURE)
a 6= ai

(i∈I)

p : ∑
i∈I

q?ai.Ti
p:q?a−→ p : fail

(T-PAR ACTION)

M α̂−→M′ α̂ 6=X

M |N α̂−→M′ |N

(T-COMM)

M
p:q!a−→ M′ N

q:p?a−→ N′

M |N τ−→M′ |N′

(T-PAR SUCCESS)

M X−→M N X−→ N

M |N X−→M |N

Table 2 defines the transition system (symmetric rules omitted) in terms of a family

of labelled relations α̂−→. Rule (T-SUCCESS) states that end performs a X action that

Fair Subtyping for Multi-Party Session Types 7

flags successful termination and reduces to itself. Rules (T-OUTPUT) and (T-CHOICE)
deal with outputs. The former one shows that a participant p willing to send an a mes-
sage to participant q performs a p : q!a action. The latter one states that a participant that
is ready to send any message from a set internally and irrevocably chooses one partic-
ular message to send. In both rules we use the abbreviation q!a0.T0 for

⊕
i∈{0} q!ai.Ti.

Rules (T-INPUT) and (T-FAILURE) deal with inputs. The former one is standard and
states that a participant p performs p : q?a actions according to the type of messages
it is willing to receive and the participant q from which it expects these messages to
come. The latter shows that a participant can receive an unexpected input, but in doing
so it will fail. Note the fundamental asymmetry between inputs and outputs: a partic-
ipant autonomously commits to sending one particular message by means of rule (T-
CHOICE), while it retains the ability to receive any message from a given set by means
of rule (T-INPUT). Rule (T-PAR ACTION) propagates transitions through compositions
and (T-COMM) is the usual communication rule. Finally, (T-PAR SUCCESS) states that a
composition has successfully terminated if all of its participants have. In the following
we adopt the following conventions: we write τ

=⇒ for the reflexive, transitive closure of
τ−→; we write α

=⇒ for τ
=⇒ α−→ τ

=⇒ and
α1···αn
===⇒ for the composition

α1=⇒··· αn=⇒; we let s,
t, . . . range over finite strings of actions different from X; we write M α−→ (respectively,
M α

=⇒) if there exists N such that M α−→ N (respectively, M α
=⇒ N); we write M X τ−→

(respectively, M Y α=⇒) if there exists no N such that M τ−→ N (respectively, M α
=⇒ N).

We also extend the labelled transition relation and the above notation to session types
so that, for example, T α−→ S if p : T α−→ p : S for some p.

Intuitively, a session is correct if the possibility to reach a state where every partici-
pant is successfully terminated is invariant under reductions. This can be formalized as
follows:

Definition 2.1 (correct session). We say that M is correct if M τ
=⇒ N implies N X

=⇒.

In Section 1 we have already seen a number of correct sessions, which the reader
may now formally check against Definition 2.1. It is useful to discuss a few examples
of incorrect sessions. For instance, M = p : q!a.end⊕q!b.end |q : p?a.end is not cor-
rect because p may decide to send a b message that q is not willing to receive. Even
though at the beginning of the interaction there is one potential path leading to success-
ful termination (indeed M X

=⇒), rule (T-CHOICE) can make the decision of sending b

irrevocable (in this case M τ−→ p : q!b.end |q : p?a.end τ−→ p : end |q : fail Y X=⇒). There
are also intrinsically flawed session types that can never be part of correct sessions. For
example, the session M |p : fail is incorrect regardless of M, because fail is never able
to perform X. Some sessions are incorrect despite that no fail term occurs in them. This
happens in the session p : µx.q!a.x |q : µy.p?a.y because, even though the participants
p and q keep interacting with each other, they do not have the ability to terminate the
interaction.

Some properties of correct sessions are easy to verify: p : end is the simplest correct
session; the session M |p : end is correct if and only if M is correct; finally, correctness
is preserved by reductions: if M is correct and M =⇒ N, then N is also correct.

8 Luca Padovani

We define the subtyping relation for session types semantically as the relation that
preserves correctness: we say that T is a subtype of S if every session M |p : T that is
correct remains correct when we replace T with S. Formally:

Definition 2.2 (subtyping). We say that T is a subtype of S, written T 6 S, if M |p : T
correct implies M | p : S correct for every M. We write ≶ for the equivalence relation
induced by 6, namely ≶=6∩6−1.

This definition may look surprising at first, because it speaks about left-to-right
substitutability (of behaviors), while subtyping is concerned with right-to-left substi-
tutability (of channels). The mismatch is only apparent, however, and is due to the fact
that session types are behavioral types (they describe the behavior of processes using
channels). To clarify this point, suppose that S is the type associated with a channel c
and that some process P uses c as indicated by S. By replacing channel c in P with
another channel d with type T 6 S, we are changing the set of processes that P is inter-
acting with, which together behave according to some M such that M |p : T is correct.
Replacing c with d does not affect the way P behaves: P uses channel d (whose ac-
tual type is T) as if it were channel c (thus according to S). This means that the actual
implemented session is M |p : S. Since T 6 S, we know that this session is correct.

A thorough study of the subtyping relation that solely relies on Definition 2.2 is
hard, because of the universal quantification over an infinite set of contexts M. Nonethe-
less, a few relations are easy to establish. For example, we have

(i) p?a.end6 p?a.end+p?b.end and (ii) p!a.end⊕p!b.end6 p!a.end

namely 6 behaves covariantly with respect to inputs and contravariantly with respect
to outputs, on finite session types. The two relations can be explained as follows: in (i),
every context M such that M |q : p?a.end is correct must eventually send some message
to q, and this message can only be a for otherwise q would fail because of rule (T-
FAILURE). Therefore, M |q : p?a.end+p?b.end is also correct, since p?a.end+p?b.end
is more receptive than p?a.end. In (ii), every context M such that M | q : p!a.end⊕
p!b.end is correct must be able to terminate successfully no matter which message (ei-
ther a or b) is sent to p. One such context is M = p : q?a.end+ q?b.end. Therefore,
nothing bad happens when we replace p!a.end⊕ p!b.end with a more deterministic
behavior, such as p!a.end. As a general note, observe that relation (i) increases (and re-
lation (ii) decreases) the number of paths along the session types that lead to end when
one reads the relations from left to right. Since correctness concerns the reachability
of a successfully terminated state, it is not obvious that reducing the number of paths
leading to end is generally safe, as we have already argued in the introduction.

The standard subtyping relation for session types [12], which we dub “unfair sub-
typing” to distinguish it from the one of Definition 2.2, is defined thus:

Definition 2.3 (unfair subtyping). We say that S is a coinductive subtyping if T S S
implies either:

1. T = S = end, or
2. T = ∑i∈I p?ai.Ti and S = ∑i∈I∪J p?ai.Si and Ti S Si for every i ∈ I, or

Fair Subtyping for Multi-Party Session Types 9

3. T =
⊕

i∈I∪J p!ai.Ti and S =
⊕

i∈I p!ai.Si and Ti S Si for every i ∈ I.

Unfair subtyping, denoted by 6U, is the largest coinductive subtyping.

Item (1) states that the only subtype of end is end. Item (2) is the standard covariant
rule for input actions: it is safe for a process that is capable of handling a set {ai}i∈I∪J of
incoming message types to wait for messages from a channel on which a subset {ai}i∈I
of message types can be received. Item (3) is dual of item (2) and deals with outputs. It
states that a process can safely use a channel on which messages from the set {ai}i∈I∪J
can be sent if it never sends a message that is not in this set.

The relation 6U is appealing because of its simple and intuitive definition, but it is
neither sound nor complete if compared with 6. On the one hand, the 6U relation does
not preserve correctness as by Definition 2.1. For instance, the reader may verify that
T 6U S∞ holds for T and S∞ defined in the introduction, but T 66 S∞ because S∞ has
no end subtree. On the other hand, there exists a large class of equivalent session types
that are syntactically unrelated. For instance, we have S∞ ≶ fail and S∞ 66U fail. Session
types like fail or S∞ are flawed because there is no correct session in which they can
occur. Therefore, they are the 6-least elements and roughly correspond to the empty
type in other type theories. Patching Definition 2.3 to take flawed session types into
proper account is far from trivial (adding a case for dealing with fail session types is not
enough, as S∞ shows).

3 Coinductive Fair Subtyping

We devote this section to defining a complete, coinductive characterization of 6. To
ease the presentation, we proceed incrementally in three steps: (1) we introduce a nor-
mal form for session types that allows us to focus on the subclass of viable session
types, those that can be part of correct sessions and that, consequently, are the most rel-
evant in practice; (2) we express T 6 S as the combination of two relations, the familiar
(but unsafe) T 6U S subtyping for session types (which is shown to include 6 when
restricted to viable session types in normal form) and a T ≺ S relation that holds when
the paths leading to successful termination in T that have disappeared from S do not en-
danger correctness; (3) we show that the T ≺ S relation is equivalent to the viability of a
suitably defined T −S session type, somehow representing the “behavioral difference”
between T and S.

Normal form. At the end of Section 2 we have seen that there exist flawed session types
that cannot occur in any correct session. Session types that can occur in correct sessions
are our primary concern and we reserve a name for them.

Definition 3.1 (viability). We say that T is viable if M |p : T is correct for some M and
p. We write Tv for the set of viable session types.

A session type T is not viable if and only if T 6 fail. That is, being not viable
means being (6-smaller than) the empty type. The existence of non-viable session types
hinders the coinductive characterization of the subtyping relation in the style of Defi-
nition 2.3 because these characterizations are based on the intuition that semantically

10 Luca Padovani

related session types must be syntactically similar, while we have shown that this is not
necessarily true when non-viable session types are involved. We define a normal form
that makes non-viable session types readily detectable and the syntax of viable ones
meaningful in a sense that will be clarified shortly.

Definition 3.2 (normal form). We say that T is in normal form if either T = fail or
end∈ trees(S) for every S∈ trees(T). We write Tnf for the set of session types in normal
form.

The double indirection in Definition 3.2 imposes that an end leaf is included in
every subtree of T when T is different from fail. For example p?a.end+ p?b.fail is
not in normal form because fail ∈ trees(p?a.end+p?b.fail) and end 6∈ trees(fail). The
following proposition assures us that working with session types in normal forms is
convenient and yet not restrictive: every session type has an ≶-equivalent one in normal
form and every session type in normal form different from fail is viable.

Proposition 3.1. The following properties hold: (1) for every T ∈ T there exists S ∈
Tnf such that T ≶ S; (2) Tnf \{fail} ⊆Tv.

For instance, p?a.end is the normal form of p?a.end+p?b.fail. The syntax of session
types in normal form is “meaningful” in the sense that 6U includes 6 when we focus
on viable session types in normal form.

Theorem 3.1. Let T,S ∈Tnf \{fail}. Then T 6 S implies T 6U S.

Unfair subtyping and 6 decomposition. Focusing on viable session types in normal
form does not change the fact that 6U is unsound with respect to 6. More precisely,
6U does not introduce deadlocks, but it can introduce livelocks when recursive session
types are involved:

Theorem 3.2. Let T,S ∈Tnf and T 6U S. Then:

1. T recursion-free implies T 6 S;
2. M |p : T correct and M |p : S τ

=⇒ N X τ−→ imply N X−→.

Theorem 3.2 shows that 6U is not too far away from being a sound characterization
of 6. Therefore, we attempt at characterizing T 6 S as the combination of two relations:
T 6U S, expressing a safety property (S does not introduce deadlocks), and T ≺ S,
expressing a liveness property (S does not preclude the successful termination of any
context that completes T). The “ruled by” relation ≺ is defined thus:

Definition 3.3. Let T,S ∈ Tnf and T 6U S. We say that T is ruled by S, written T ≺ S,

if M |p : T correct implies M |p : S X
=⇒ for every M.

When T 6U S, the behavior S may preclude successful termination of a context M
that completes T only when some outputs in T have disappeared in S. The additional
property T ≺ S prevents this from happening. Observe that T 6 S implies T ≺ S, but
the converse is not true in general. In fact, ≺ precisely captures the difference between
6U and 6, in the following sense:

Fair Subtyping for Multi-Party Session Types 11

Definition 3.4 (coinductive fair subtyping). A coinductive subtyping S is fair if T S
S implies T ≺ S. We write 6C for the largest coinductive fair subtyping.

The relation 6C is indeed the characterization of 6 we are looking for:

Theorem 3.3. Let T,S ∈Tnf \{fail}. Then T 6 S if and only if T 6C S.

Characterization of ≺ and behavioral difference. We now shift the focus to the ≺
relation. Suppose T 6U S and T 6≺ S. Then there exists some context M such that the
correctness of M | p : T crucially depends on the outputs that T emits and that S does
not. In order to find M, we define a session type T − S that somehow represents the
“difference” between T and S and that is viable if (and only if) such M does exist. The
intuition is that T −S differs from T and S in three respects:

1. Every end that lies on a path shared by T and S is turned to a fail in T−S. Therefore,
any hypothetical context M such that M |p : T −S is correct can only count on those
end leaves found in T that have disappeared in S.

2. T − S performs no more inputs than those performed by T . In this way we stay
assured that, if M exists, it does not use any additional input capability provided by
S but not by T .

3. T −S performs all the outputs performed by T .

Formally:

Definition 3.5 (session type difference). Let T 6U S. The difference of T and S, de-
noted by T −S, is coinductively defined by the following equations:

end− end = fail

∑i∈I p?ai.Ti−∑i∈I∪J p?ai.Si = ∑i∈I p?ai.(Ti−Si)⊕
i∈I∪J p!ai.Ti−

⊕
i∈I p!ai.Si =

⊕
i∈J\I p!ai.Ti⊕

⊕
i∈I p!ai.(Ti−Si)

To make acquaintance with ‘−’ let us revisit some of the examples in the introduc-
tion. Let T = µx.(q!a.x⊕q!b.end) and Sn = µy.((q!a.)ny⊕q!b.end). We have

T −Sn = µz.(q!a.(q!a.(· · ·(q!a.︸ ︷︷ ︸
n

z⊕q!b.end) · · ·)⊕q!b.end︸ ︷︷ ︸
n−1

)⊕q!b.fail)

and T − S∞ = T . Observe that T − S∞ is viable, while no T − Sn is because of the
q!b.fail branch. Also, when either T or S is finite T − S is never viable. For example,
T −q!b.end= q!a.T ⊕q!b.fail and T −q!a.q!b.end= q!a.(q!a.T ⊕q!b.fail)⊕q!b.end.
This is consistent with Theorem 3.2(1), showing that 6U and 6 coincide when the 6U-
smaller session type is finite. In general, we can prove that T ≺ S holds if and only if
the difference between T and S is not viable.

Theorem 3.4. Let T,S ∈Tnf and T 6U S. Then T ≺ S if and only if T −S is not viable.

On the practical side, Theorem 3.4 allows us to decide T ≺ S if we can decide the
viability of a session type (we will address this in Section 4). On the theoretical side,

12 Luca Padovani

it highlights an interesting analogy between our framework and that of semantic sub-
typing [11], which also motivates the notation T −S. We have observed that “being not
viable” is equivalent to “being smaller than fail”, and that fail somehow represents the
empty type in our theory. Therefore, a consequence of Theorems 3.3 and 3.4 is that in
order to decide T 6 S one has to decide whether T −S 6 fail. This reformulation is pre-
cisely the one used in the framework of semantic subtyping, where types are interpreted
as sets of values and deciding the subtyping relation σ ⊆ τ is equivalent to deciding the
emptiness of σ \ τ . Note however that T ≺ S alone does not imply T 6 S. For exam-
ple, we have q!a.T ⊕q!b.end≺ q!a.S⊕q!b.end where T = µx.(q?a.(q!a.x⊕q!b.T)+
q?b.end) and S = µy.(q?a.q!a.y+ q?b.end). Still, q!a.T ⊕ q!b.end 66 q!a.S⊕ q!b.end
because T 66 S, as we already know.

4 Algorithms

In this section we define algorithms for deciding viability, for computing the normal
form of viable session types, and for deciding subtyping. We also discuss the decidabil-
ity of session correctness.

Viability. The viability of a session type T is tightly related to the reachability of end
subtrees occurring in it. The algorithm we propose assumes initially that every subtree
of T is viable and iteratively discards those subtrees for which this assumption is dis-
proved. Each iteration performs three checks: a subtree S ∈ trees(T) is viable provided
that end can be reached from it; input nodes are viable provided that there is at least
one branch that is viable; output nodes are viable provided that every branch is viable.
Formally, let the viability sequence for T be the sequence {VT

i }i∈N of sets of session
types defined in the following way, where ≤ is the usual prefix relation between strings
of actions:

VT
0 = trees(T)

VT
2i+1 = {S ∈ VT

2i | ∃s : S s
=⇒ end,∀t ≤ s : S t

=⇒ S′ ∈ trees(T)⇒ S′ ∈ VT
2i}

VT
2i+2 = {end ∈ VT

2i+1}∪{∑ j∈I p?a j.Tj ∈ VT
2i+1 | ∃ j ∈ I : Tj ∈ VT

2i+1}
∪{

⊕
j∈I p!a j.Tj ∈ VT

2i+1 | ∀ j ∈ I : Tj ∈ VT
2i+1}

Observe that, in computing VT
2i+1, it is not enough to be able to reach an end subtree

from S to declare S viable. It must be the case that every subtree along the path S s
=⇒ end

has not been proved non-viable. Note also that, in principle, the computation of VT
2i+1

may need to consider an infinite number of strings s such that S s
=⇒. However, it is

enough to consider those paths such that the derivation S s
=⇒ never goes through the

same subtree twice. Since session types are regular trees and have a finite number of
distinct subtrees, it always suffices to consider a finite number of paths. Every set in
the sequence is finite and the sequence is decreasing. Therefore, there exists k ∈N such
that VT

k = VT
k+1 = VT

k+2. We denote the fixpoint of the sequence with viables(T).

Theorem 4.1 (viability). T ∈Tv if and only if T ∈ viables(T).

Fair Subtyping for Multi-Party Session Types 13

Normal form. Once we know how to identify viable session types, computing their nor-
mal form is only a matter of pruning away those subtrees that are not viable. The normal
form of T , denoted by nf(T), is defined coinductively by the following equations:

nf(T) = fail if T 6∈Tv

nf(end) = end
nf(∑i∈I p?ai.Ti) = ∑i∈I,nf(Ti)6=fail p?ai.nf(Ti)
nf(

⊕
i∈I p!ai.Ti) =

⊕
i∈I p!ai.nf(Ti)

(all the equations but the first one apply only to viable session types).

Theorem 4.2 (normal form). For every T , nf(T) is in normal form and T ≶ nf(T).

Fair subtyping. We present a complete, algorithmic deduction system for the subtyping
relation, which is coinductively defined in Table 3 (the corresponding inductive sys-
tem can be obtained with standard memoization techniques). Rules (FS-END) and (FS-
INPUT) are just the same as in well-known deduction systems for the unfair subtyping
relation (see, e.g., [12]). Rule (FS-FAIL) states that fail is the least element according to
6A. Rule (FS-OUTPUT) is similar to the familiar contravariant rule for outputs, except
that it is applicable only when the smaller session type is ruled by the larger one, which
can be determined by checking the viability of the difference of the two session types.
It is enough to check the condition T ≺ S only when T and S are outputs. This is shown
to imply that the condition holds whenever T 6A S is provable.

Table 3. Deduction system for the subtyping relation.

(FS-FAIL)
fail6A T

(FS-END)
end6A end

(FS-INPUT)
Ti 6A Si

(i∈I)

∑
i∈I

p?ai.Ti 6A ∑
i∈I∪J

p?ai.Si

(FS-OUTPUT)
Ti 6A Si

(i∈I) nf(T −S) = fail

T =
⊕

i∈I∪J
p!ai.Ti 6A

⊕
i∈I

p!ai.Si = S

Theorem 4.3. T 6 S if and only if nf(T)6A nf(S).

It seems like the ≺ relation does not admit a simple axiomatization. The problem is
that the 6 relation is not local, in the sense that the applicability of rule (FS-OUTPUT)
may depend upon regions of the session types that are arbitrarily far away from the
place where it is applied. Consider for instance the session type

T = µx.q!a.(q?a.)n(q!a.(q?a.)nx⊕q!b.end)⊕q!b.end

and observe that the two q!b branches can be arbitrarily distant depending on the num-
ber n of input actions. Both the session types

S1 = µx.q!a.(q?a.)n(q!a.(q?a.)nx⊕q!b.end)
S2 = µy.(q!a.(q?a.)nq!a.(q?a.)ny⊕q!b.end)

are supertypes of T and they differ from T because one of the two q!b.end branches has
been pruned. However, pruning both branches results into a non-viable session type.
Therefore, one branch can be safely removed only if the other one is not.

14 Luca Padovani

Correctness. We conclude this section with a few considerations on the decidability of
correctness. Observe that, since session types are regular and finite branching, the set
R(M)

def
= {N |M τ

=⇒ N} is finite and can be computed in finite time by exploring every
session reachable from M. Now M is correct if and only if for every N ∈R(M) there

exists N′ ∈R(N) such that N′ X−→.
In the special case of binary sessions, when only two participants p and q are in-

volved, the session p : T |q : T is always correct, assuming that q is the only role occur-
ring in T , that T is in normal form, and that T is the dual of T coinductively defined by:

end= end ∑i∈I q?ai.Ti =
⊕

i∈I p!ai.Ti
⊕

i∈I q!ai.Ti = ∑i∈I p?ai.Ti

By definition of 6, every session p : T |q : S where T 6 S is also correct. However,
the converse is not true. That is, there are correct sessions p : T | q : S where T 66 S,
for example when T = µx.(q!a.(q?a.x+ q?b.x)⊕ q!b.end) and S = µy.(p?a.p!a.y+
p?b.end). This is in sharp contrast with the unfair theories [12,6], where p : T |q : S is
correct (in the “unfair” sense) if and only if T 6U S.

5 Conclusions

The standard subtyping relation for session types may compromise liveness of multi-
party sessions. Even in dyadic sessions it might be desirable not to lose the ability to
reach successful termination of the interacting parties. These scenarios naturally call for
the definition of (multi-party) session type theories where every participant preserves
the possibility to reach a successfully terminated state.

Fair subtyping relations (often referred to as refinements in concurrency theory)
have rightfully gained the fame of being hard to characterize completely [18,21] or
even to approximate [4,19]. In this paper we have fully characterized the fair subtyp-
ing relation as a simple variation of standard subtyping [12,6]. It is not entirely clear
how much the characterization of the subtyping relation we have given owes to the fact
that we work with a very primitive process language. The proof of the characterization
(Theorem 3.3) only needs the semantic definition of ≺ (Definition 3.3) and therefore
should be generalizable to full-featured process languages. It is not obvious, and thus
subject to future investigation, whether the same holds for the notion of difference (Def-
inition 3.5).

Checking whether a multi-party session is correct can be more expensive than
in dyadic theories (Section 4). This observation substantiates the effectiveness of the
design-by-contract approach advocated in [5,17], where the session types of a multi-
party session are obtained as projections of a global type associated with the session.
The approach guarantees that the resulting session is correct by construction. However,
it may be necessary to use subtyping both during the projection as well as while type
checking processes against the session types of the channels they use. Therefore, it is
fundamental for subtyping to preserve session liveness (in the sense of Definition 2.1).
Type checking processes using a fair subtyping relation seems to pose interesting tech-
nical problems, because of the interplay between coinductive typing of recursive pro-
cesses and the liveness property we want to enforce on sessions. We leave these issues
for future investigations.

Fair Subtyping for Multi-Party Session Types 15

Acknowledgments. The author is grateful to Daniele Varacca for the discussions on
fairness and to the anonymous referees who helped improving the paper. This work was
partially supported by a visiting professor position of the Université Paris Diderot.

References
1. Franco Barbanera and Ugo de’Liguoro. Two notions of sub-behaviour for session-based

client/server systems. In Proceedings of PPDP’10, pages 155–164. ACM, 2010.
2. Mario Bravetti and Gianluigi Zavattaro. A foundational theory of contracts for multi-party

service composition. Fundamenta Informaticae, 89(4):451–478, 2009.
3. Mario Bravetti and Gianluigi Zavattaro. A theory of contracts for strong service compliance.

Mathematical Structures in Computer Science, 19:601–638, 2009.
4. Michele Bugliesi, Damiano Macedonio, Luca Pino, and Sabina Rossi. Compliance preorders

for Web Services. In Proceedings of WS-FM’09, LNCS 6194, pages 76–91. Springer, 2010.
5. Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-centred

programming for web services. In Proceedings of ESOP’07, LNCS 4421, pages 2–17, 2007.
6. Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Elena Giachino, and Luca Padovani.

Foundations of session types. In Proceedings of PPDP’09, pages 219–230. ACM, 2009.
7. Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of contracts for Web ser-

vices. ACM Transactions on Programming Languages and Systems, 31(5):1–61, 2009.
8. Bruno Courcelle. Fundamental properties of infinite trees. Theoretical Computer Science,

25:95–169, 1983.
9. Rocco De Nicola and Matthew Hennessy. Testing equivalences for processes. Theoretical

Computer Science, 34:83–133, 1984.
10. Rocco De Nicola and Matthew Hennessy. CCS without τ’s. In Proceedings of TAP-

SOFT’87/CAAP’87, LNCS 249, pages 138–152. Springer, 1987.
11. Alain Frisch, Giuseppe Castagna, and Veronique Benzaken. Semantic subtyping: dealing

set-theoretically with function, union, intersection, and negation types. Journal of the ACM,
55(4):1–64, 2008.

12. Simon Gay and Malcolm Hole. Subtyping for session types in the π-calculus. Acta Infor-
matica, 42(2-3):191–225, 2005.

13. Matthew Hennessy. Acceptance trees. Journal of the ACM, 32(4):896–928, 1985.
14. Matthew Hennessy. Algebraic Theory of Processes. Foundation of Computing. MIT Press,

1988.
15. Kohei Honda. Types for dyadic interaction. In Proceedings of CONCUR’93, LNCS 715,

pages 509–523. Springer, 1993.
16. Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type dis-

ciplines for structured communication-based programming. In Proceedings of ESOP’98,
LNCS 1381, pages 122–138. Springer, 1998.

17. Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
In Proceedings of POPL’08, pages 273–284. ACM, 2008.

18. V. Natarajan and Rance Cleaveland. Divergence and fair testing. In Proceedings of ICALP
’95, LNCS 944, pages 648–659. Springer, 1995.

19. Luca Padovani. Session types at the mirror. EPTCS, 12:71–86, 2009.
20. Luca Padovani. Fair subtyping for multi-party session types. Full version available at http:

//www.di.unito.it/~padovani/Papers/FairSessionTypes.pdf, 2011.
21. Arend Rensink and Walter Vogler. Fair testing. Information and Computation, 205(2):125–

198, 2007.
22. Vasco T. Vasconcelos. Fundamentals of session types. In SFM’09, LNCS 5569, pages 158–

186. Springer, 2009.

http://www.di.unito.it/~padovani/Papers/FairSessionTypes.pdf
http://www.di.unito.it/~padovani/Papers/FairSessionTypes.pdf

	Fair Subtyping for Multi-Party Session Types

