
A Flexible and Modular Framework for Implementing
Infrastructures for Global Computing ?

Lorenzo Bettini1, Rocco De Nicola1, Daniele Falassi1, Marc Lacoste2, Michele Loreti1

1Dipartimento di Sistemi e Informatica, Università di Firenze.
{bettini,denicola,falassi,loreti}@dsi.unifi.it

2Distributed Systems Architecture Department, France Telecom R& D.
marc.lacoste@rd.francetelecom.com

Abstract. We present a Java software framework for building infrastructures to
support the development of applications for systems where mobility and network
awareness are key issues. The framework is particularly useful to develop
run-time support for languages oriented towards global computing. It enables
platform designers to customize communication protocols and network architec-
tures and guarantees transparency of name management and code mobility in
distributed environments. The key features are illustrated by means of a couple
of simple case studies.

1 Introduction

Technological advances of both computers and telecommunication networks, and de-
velopment of more efficient communication protocols are leading to an ever increasing
integration of computing systems and to diffusion of “Global Computers” [9]. These
are massive networked and dynamically reconfigurable infrastructures interconnecting
heterogeneous, autonomous and mobile components, that can operate on the basis of
incomplete information.

Global Computers are thus fostering a new style of distributed programming that
has to take into account variable guarantees for communication, cooperation, resource
usage, security policies and mechanisms, and in particularcode mobility[10, 24].
They have stimulated the proposal of new theories, computational paradigms, linguistic
mechanisms and implementation techniques for the design, realization, deployment and
management of global computational environments and applications.

We have thus witnessed the birth of many calculi and kernel languages (see, e.g., [7]
and the references therein) intended to support global computing programming and to
provide tools for formal reasoning over the modelled systems. Many implementations
of these formalisms have been proposed, and very often the language used for
implementation is Java because it provides many useful features for building network
applications with mobile code. However, these Java mechanisms still require a big
programming effort, and so they can be thought of as “low-level” mechanisms. Because
of this, many existing Java-based distributed systems (see, e.g., [1, 4, 8, 19, 22, 23] and

? This work was funded by EU Global Computing initiative, project MIKADO IST-2001-32222.



the references therein) tend to re-implement from scratch many components that are
typical and recurrent in distributed and mobile applications.

To support the implementation of languages for global computing, we have been
working on a generic framework called IMC (Implementing Mobile Calculi) that can
be used as a kind of middleware for the implementation of different distributed mobile
systems. Such a framework aims at providing the necessary tools for implementing
new language run-time systems directly derived from calculi for mobility. The basic
idea and motivation of this framework is that the implementer of a new language would
need concentrating on the parts that are really specific of his system, while relying on
the framework for the recurrent standard mechanisms. The development of prototype
implementations should then be quicker and the programmers should be relieved from
dealing with low-level details. The proposed framework aims at providing all the
required functionalities and abstractions for arbitrary components to communicate and
move in a distributed setting.

IMC provides concrete implementations for the standard and most used func-
tionalities that should fit most Java mobile framework requirements (e.g., Java byte-
code mobility and standard network communication mechanisms). A user of IMC
can customize parts of the framework by providing its own implementations for
the interfaces used in the package. In this respect, the IMC framework can be
straightforwardly used if no specific advanced feature is needed. The framework is
however open to customizations if these are required by specific mobility systems.
Customization of the framework can be achieved seamlessly by taking advantage
of design patterns such asfactory method, abstract factory, template methodand
strategy[14] that are used throughout the packages.

The framework was designed to achieve bothtransparencyandadaptability. For
instance, for code mobility, the framework provides all the basic functionalities for mak-
ing code mobility transparent to the programmer: all issues related to code marshalling
and code dispatch are handled automatically by the classes of the framework. Its
components are designed to deal with object marshalling, code migration, and dynamic
loading of code. The framework can also be adapted to deal with many network
topologies (flat, hierarchical, peer-to-peer networks, etc.) and with message dispatching
and forwarding. Furthermore, the implementer can build his own communication
protocols by specializing the protocol base classes provided by the framework. Thus,
the developer will only have to implement the parts that are relevant to the system
he wants to build: typically, he will develop the communication protocol which best
matches application-specific requirements. Connections and network topology are dealt
with directly from within the framework. However, the developer may access the
current state of his application with listeners to events that the classes of the framework
generate.

The main intent of the IMC framework is not to be “yet another” distributed
mobile system. It should rather be seen at a meta-level, as a framework/toolbox for
building “yet another” distributed mobile system. A primordial version of the IMC
framework was initiated within the MIKADO project [6]. The version we present here
is completely re-designed and re-implemented to improve usability and to provide many
additional features.



2 Overview of the IMC Framework

We now sketch the main functionalities and interfaces of the framework. For the sake
of simplicity, we will not detail all the method signatures, e.g., we will not show the
exceptions.

2.1 Communication Protocols

When implementing a distributed system, one of the system-specific issues is the
choice of the communication protocol, which may range from high-level protocols such
as Java RMI, well integrated with the Java Virtual Machine environment and taking
advantage of the architectural independence provided by Java, to protocols closer to
hardware resources such as TCP/IP. Marshalling strategies may range from dedicated
byte-code structures to Java serialization. A generic communication framework [12, 13,
15, 18, 21] should be minimal, and allow to introduce support for new protocols with
little effort, without need to re-implement a new communications library. Thus, IMC
provides tools to define customized protocol stacks, which are viewed as a flexible
composition of micro-protocols. The IMC design, inspired from thex-kernel [17]
communication framework, allows to definebindingswith various semantics, and to
combine them in flexible ways. Thus, IMC enables to achieve adaptable forms of
communication transparency, which are needed when implementing an infrastructure
for global computing.

In IMC, a network protocollike, e.g., TCP, UDP, or GIOP is viewed as an
aggregation ofprotocol states: a high-level communication protocol can indeed be
described as a state automaton. The programmer implements a protocol state by
extending theProtocolState abstract class and by providing the implementation
for the methodenter, which returns the identifier of the next state to execute. The
Protocol class aggregates the protocol states and provides thetemplate method[14]
start that will execute each state at a time, starting from the first protocol state up to
the final one. Thus, the programmer must simply provide the implementation of each
state, put them in the correct order in a protocol instance, and then start the protocol.

public classProtocol {
public void start() { /∗ executes the states∗/ }

}

public abstract classProtocolState {
public abstract String enter();

}

The protocol states abstract away specific communication layers. This enables re-
using of a protocol implementation independently from the underlying communication
means: the same protocol can then be executed on a TCP socket, on UDP packets or
even on streams attached to a file (e.g., to simulate a protocol execution). This abstrac-
tion is implemented by specialized streams:Marshaller (to write) andUnMarshaller
(to read). These streams provide high-level and encoding-independent representations
of messages that are about to be sent or received, i.e., they are basically an extension of
standardDataOutput andDataInput Java streams, with the addition of means to send
and receive migrating code (explained later) and serialize and deserialize objects. The
interface ofUnMarshaller is the following (the interface ofMarshaller contains the
corresponding write instead of read methods):



public interface UnMarshallerextendsDataInput, Closeable, MigratingCodeHandler {
public Object readReference();
public MigratingCode readMigratingCode();
public MigratingPacket readMigratingPacket();

}

The data in these streams can be “pre-processed” by some customizedprotocol
layers that remove some information from the input and add some information to
the output: typically this information are protocol-specific headers removed from the
input and added to the output. A protocol layer is an abstract representation of a
communication channel which uses a given protocol. It lets messages be sent and
received through the communication channel it stands for using that protocol. The base
classProtocolLayer deals with these functionalities, and can be specialized by the
programmer to provide his own protocol layer.

These layers are then composed into aProtocolStack object that ensures the
order of preprocessing passing through all the layers in the stack. For instance, the
programmer can add a layer that removes a sequence number from an incoming packet
and adds the incremented sequence number into an outgoing packet. The framework
also provides functionalities to easily implementtunnels, so that it can be possible, e.g.,
to implement a tunneling layer to tunnel an existing protocol into HTTP (see Section 3).

Before reading something from a stack, a protocol state must obtain an
UnMarshaller instance from the stack by calling the methodup: this allows
the stack layers to retrieve their own headers. In the same way, before starting to write
information to the network, the state must obtain aMarshaller instance from the
stack by calling the methodprepare, so that the stack layers can add their own headers
into the output. When the state has finished to write, it must notify the stack by calling
the methoddown, passing the marshaller instance it had used to write the information,
in order to flush the output buffer.

The methodsup, prepare and down rely on methodsdoUp, doPrepare and
doDown, respectively, of the classProtocolLayer, that will be called in the right order
so to implement the stack of layers. The subclasses ofProtocolLayer can provide
their own implementations for these methods.

public classProtocolLayer {
public UnMarshaller doUp(UnMarshaller um) { .../∗ implementation of the programmer∗/ ... }
public Marshaller doPrepare(Marshaller m) { .../∗ implementation of the programmer∗/ ... }
public void doDown(Marshaller m) { .../∗ implementation of the programmer∗/ ... }

}

The UnMarshaller returned by the lower layer in the stack is passed to the imple-
mentation methoddoUp; thus, a layer can use the passedUnMarshaller to retrieve
its own header and pass theUnMarshaller to the next layer, or it can create a new
UnMarshaller to pass to the next layer. The latter scenario is typical of tunneling
layers (as briefly shown in Section 3). Similarly, theMarshaller returned by the lower
layer is passed todoPrepare. Typically, the firstUnMarshaller and Marshaller
objects will be created by the lowest layer, e.g., in case of a TCP socket, it will be a
stream attached to the socket itself, while, in case of UDP packets, it will be a buffered



stream attached to the datagram contents. Low layers for TCP and UDP are already
provided by the framework.

2.2 Code Mobility

This part of the framework provides the basic functionalities for making code mobility
transparent to the programmer. It deals with object marshalling, code migration, and
dynamic loading of code. An object will be sent along with the byte-code of its class,
and with the byte-code of all the classes of the objects it uses (i.e., all the byte-code
it needs for execution). Obviously, only the code of user-defined classes must be sent,
as other code (e.g., Java class libraries and the classes of the IMC packages) must be
common to every application. This guarantees that classes belonging to Java standard
class libraries are not loaded from other sources (especially, the network); this would
be very dangerous, since, in general, such classes have many more access privileges
with respect to other classes. The framework also allows the programmer to manually
exclude other classes (or entire packages) from mobility.

The framework defines the empty interfaceMigratingCode that must be imple-
mented by the classes representing a code that has to be exchanged among distributed
sites. This code is intended to be transmitted in aMigratingPacket, stored in the
shape of abyte array. How aMigratingCode object is stored in and retrieved from a
MigratingPacket is taken care of by the following two interfaces:

public interface MigratingCodeMarshaller {
public MigratingPacket marshal(MigratingCode code);

}

public interface MigratingCodeUnMarshaller {
public MigratingCode unmarshal(MigratingPacket p);

}

Starting from these interfaces, the framework provides concrete classes that au-
tomatically deal with migration of Java objects together with their byte-code, and
transparently deserialize such objects by dynamically loading their transmitted byte-
code. In particular, the framework provides the base classJavaMigratingCode,
implementing the above mentioned interface,MigratingCode, that provides all the
procedures for collecting the Java classes that the migrating object has to bring to the
remote site:

public classJavaMigratingCodeextendsThreadimplementsMigratingCode {
public JavaMigratingPacket make_packet() {...}

}

The methodmake_packet will be used directly by the other classes of the framework
or, possibly, directly by the programmer, to build a packet containing the serialized
(marshalled) version of the object that has to migrate together with all its needed byte-
code. Thus, this method will actually take care of all the code collection operations.
The names of user defined classes can be retrieved by means of class introspection
(Java Reflection API). Just before dispatching a process to a remote site, a recursive
procedure is called for collecting all classes that are used by the process when declaring:



data members, objects returned by or passed to a method/constructor, exceptions thrown
by methods, inner classes, the interfaces implemented by its class, the base class of its
class. Once these class names are collected, their byte code is gathered and packed along
with the object in aJavaMigratingPacket object (a subclass ofMigratingPacket
storing the byte-code of all the classes used by the migrating object, besides the
serialized object itself).

Finally, two classes, implementing the above mentioned interfacesMigrating-

CodeMarshaller and MigratingCodeUnMarshaller, will take care of actually
marshalling and unmarshalling aJavaMigratingPacket containing a migrating
object and its code. In particular, the former will basically rely on the method
make_packet of JavaMigratingCode, while the latter will rely on a customizedclass
loaderprovided by the framework (aNodeClassLoader) to load the classes stored in
the JavaMigratingPacket and then on Java serialization to actually deserialize the
migrating code contained in the packet.

The readMigratingCode method of theUnMarshaller, shown in Section 2.1,
will rely on an aMigratingCodeUnMarshaller to retrieve a migrating object and the
corresponding method inMarshaller will rely on a MigratingCodeMarshaller to
send a migrating object, so that all the code mobility issues will be dealt with internally
by the framework. Even in this case, the programmer can provide his own implementa-
tions ofMigratingCodeUnMarshaller andMigratingCodeMarshaller so that the
framework will transparently adapt to the customized code mobility. For further details
and examples concerning this part of the framework we refer the reader to [2].

2.3 Node Topology

The framework already provides some implemented protocols to deal withsessions.
The concept of session is logical, since it can then rely on a physical connection (e.g.,
TCP sockets) or on a connectionless communication layer (e.g., UDP packets). In the
latter case, a keep-alive mechanism can be implemented. ASessionManager instance
will keep track of all the connections.

This can be used to implement several network topology structures: aflat network
where only one server manages connections and all the clients are at the same level; a
hierarchicalnetwork where a client can be in turn a server and where the structure of
the network can be a tree or, in general, an acyclic graph of nodes; or, apeer-to-peer
network.

A participant to a network is an instance of the classNode contained in the
framework. A node is also a container of running processes that can be thought of as
the computational units. The framework provides all the means for a process to access
the resources contained in a node and to migrate to other nodes. Thus, a developer of
a distributed and mobile code system has all the means to start to implement its own
infrastructure or the run-time system for a mobile code language.

A process is a subclass of the classNodeProcess that implements the
JavaMigratingCode base class (this allows to easily migrate a process to a
remote site), and can be added to a node for execution with the methodaddProcess

of the classNode.
A NodeProcess has the following interface:



public abstract classNodeProcessextendsJavaMigratingCode {
public abstract void execute();
public final void run() { // framework initialization operations; then call execute() }

}

Thus, a node keeps track of all the processes that are currently in execution. A
concurrent process is started by callingstart on theNodeProcess thread; the final
implementation ofrun will initialize the process structure (not detailed here) and then
invokeexecute that must be provided by the programmer.

A different kind of process, callednode coordinator, is allowed to execute
privileged actions, such as establishing a session, accepting connections from other
nodes, closing a session, etc. Standard processes are not given these privileges, and
this allows to separate processes that deal with node configurations from standard
programs executing on nodes. For these processes a specialized class is provided called
NodeCoordinator.

The programmer can provide its implementation of the concept ofNodeLocation

to address in a unique way a node in the net (e.g., the standard IP address:port
representation). If there is a session with a node, then a location is mapped by the
session manager into a protocol stack. Thus a process can retrieve a stack to run its own
protocols with a remote node.

The framework also provides means to “manipulate” a protocol: it permits extend-
ing a protocol automaton by adding new states and extending the protocol stack by
inserting new layers. With respect to the manipulation of the protocol automaton, it is
possible to add a new starting state and a new final state, so that the original protocol is
embedded in an extended protocol. When a new start and a new end state are added to
an existing protocol, the framework will also take care of re-naming the previous start
and end state and update all the references to the original start and end state with the
re-named version. This will guarantee that the original protocol will transparently work
as before internally, while from the outside, the new start state will be executed before
the original start state and the new end state will be executed after the original end state.

The manipulation of a protocol is used internally by the classes of the framework,
for instance in session management. TheNode class provides aconnect method to
establish a session and a methodaccept to accept a session. These methods, apart from
the connection details (e.g., host and port) also take a protocol instance as a parameter.
These methods will take care of establishing (accepting, resp.) a physical connection,
add a starting session protocol state as the new start state and a ending session state as
the end state to the passed protocol. They also take care of setting the low layer in the
protocol stack (e.g., TCP socket or UDP datagrams). Then, the protocol can be started.
This manipulation is depicted in Figure 1.

2.4 Naming and Binding

The framework also supports logical name management, inspired by the JONATHAN

ORB [12], which provides very flexible primitives to implement the concepts defined
in the CORBA naming service [20]. This part of the framework aims to define a uniform
manner to designate and interconnect the set of objects involved in the communication
paths between computational nodes.



State a

State b

State d

State c

START END

remove header

Layer y

Layer x

State a

State b

State d

State c

START1 END1

State Start
Session

START

State End
Session

END

Layer y

Layer x

P
r
o
t
o
c
o
l

S
t
a
c
k

Layer TCP

add header

Fig. 1. The original protocol (left) and the new protocol extended with a new start and end state
and the TCP layer (right).

In IMC, an identifier is a generic notion of name that uniquely designates an object
in a given naming context. Identifier semantics are naming context-specific: distributed,
persistent, etc. Anaming contextprovides name creation and management facilities. It
guarantees that each of the names it controls designates some object unambiguously. It
generally maps a name to an object or entity designated by that name, or can also map
names to other contexts, if the resolution of names needs to be refined. Finally, abinder
is a a special kind of naming context that, for a given managed name, is able to create
an access path, also calledbinding, towards the object designated by that name.

These definitions offer a generic and uniform view of bindings, and clearly separate
object identification from object access: in a given naming contextnc, a new name
for an objecto is obtained by thenc.export(o) invocation. Chains of identifiers
can then be created by exporting that name to other naming contexts. Moreover, the
creation of an access path to objecto designated by identifierid is performed by the
id.bind() invocation which returns a ready-to-use surrogate to communicate witho.
These abstractions are reflected in the following Java interfaces:

public interface Identifier {
public NamingContext getContext();
public Object bind();
public Object resolve();

}

public interface NamingContext {
public Identifier export(Object obj);

}

TheIdentifier interface represents the generic notion of identifier described above.
It contains a reference to its naming context, and bears the fundamentalbind operation
to set up a binding between two (possibly remote) objects. The interface, using the
resolvemethod, also permits returning the next element in a chain of identifiers, where
each identifier was obtained as the result of exporting the next one to some naming
context.



public classIncrementProtocolLayerextendsProtocolLayer {
private int sequence;
protectedUnMarshaller doUp(UnMarshaller um) {

sequence = um.readInt();return um;
}
protectedMarshaller doPrepare(Marshaller m) {

m.writeInt(sequence + 1);return m;
}

}

Listing 1: A protocol layer that deals with sequence numbers.

An object implementing theNamingContext interface stands for the most generic
notion of a naming context which manages names of typeIdentifier. The interface
includes theexport operation to create a new name in a given context – which can,
if used repeatedly, create chains of identifiers of arbitrary length. Other methods, not
represented here, deal with identifier transmission over the network, using encoding-
independent representations, namely involving theMarshaller andUnMarshaller
interfaces already described.

This export-bind pattern is closely related to the communication part of IMC: a
Protocol object can be viewed as a binder which exports (i.e., builds an access path
to) a communication end-point, aProtocolLayer designated through a specific type
of identifier, namely a protocol layer identifier. Typically, theexport operation will
be called by a server object to advertise its presence on the network. This will be
translated into a call to theaccept method of aNode object, to accept incoming
network connections. Thebind operation will be called by a client-side object to bind
to the interface designated by a given identifier. This will be translated into a call to the
connect method of theNode object, to establish the communication path to the remote
server-side object.

3 Some Examples

In this section we will present some simple examples that show how the framework
can be used to program a customized protocol. We will not show all the details of the
code, but we concentrate on how the single objects developed by the programmer can
be composed together and used from within the framework itself.

First of all, in Listing 1 we show a protocol layer that removes a sequence number
from the input stream and writes the incremented sequence number in the output stream.
Thus, when a protocol state starts reading, this layer will remove this header and when a
state starts writing this layer will add the incremented sequence number. We can create
our protocol stack with this layer:

ProtocolStack mystack =newProtocolStack();
mystack.insertLayer(new IncrementProtocolLayer());

We can now implement our own protocol; for simplicity it will consist of only
one state, that does nothing but read a line and send it back (an echo server); after
that the protocol ends. In order to implement such a state, we only need to extend the



public classEchoProtocolStateextendsProtocolState {
public String enter() {

UnMarshaller um = up(); // start reading
String line = um.readStringLine();
Marshaller m = prepare(); // stop reading, start writing
m.writeStringLine(line);
down(m); // finish writing
return "END";

}
}

Listing 2: An echo protocol state.

ProtocolState base class and provide the implementation for the methodenter and
return the stateEND as the next state in the protocol (Listing 2). We can then create our
protocol instance, set the protocol stack, and add the start state:

Protocol myprotocol =newProtocol();
myprotocol.setStack(mystack);
myprotocol.setState("START", newEchoProtocolState());

The protocol is now built, but no communication layer has been set yet. In order to
do so, we can use theNode class functionalities:

Node mynode =newNode();
mynode.accept(9999, myprotocol);
myprotocol.start();

These instructions wait for an incoming connection on port 9999, update the protocol
with a starting connection state and a final disconnection state, and update the protocol
stack with the low communication layer. At this point, the protocol can start on the
established physical connection.

As we suggested in Section 2, the framework provides a specialized protocol layer
base class,TunnelProtocolLayer, that permits implementing a tunneling layer, for
enveloping a protocol inside another one. A typical example is that of anhttp tunnel
that wraps a protocol in HTTP requests and responses. Notice that a tunnel layer does
not simply remove a header when reading and add a header when writing: typically it
will need to read an entire message, strip the tunneling protocol information, and pass
the wrapped information to the upper layer; in the same way, it will need to intercept
the information written by the upper layer and wrap it into a message according to
the tunneling protocol. For this reason the framework provides this specialized base
class with the features to implement these more complex functionalities. In particular,
TunnelProtocolLayer provides two piped stream pairs to allow the tunnel layer to
communicate with the tunneled layer: the fieldtunneledMarshaller is piped with the
fieldnewUnMarshaller (i.e., anything written intotunneledMarshaller can be read
from newUnMarshaller). Thus, the tunnel layer can implement thedoUp as follows:

public classHTTPTunnelLayerextendsTunnelProtocolLayer {
protectedUnMarshaller doUp(UnMarshaller um) {
String data = strip(readHTTPRequest(um));



tunneledMarshaller.writeStringLine(data);
return newUnMarshaller;

}
}

Similarly the implementation ofdoPrepare will return to the tunneled layer a piped
UnMarshaller and doDown will read the data written by the tunneled layer from
the other end of the pipe, envelop the data in the tunnel protocol structure and pass
everything to the lower layer by using theMarshaller originally returned by the lower
layer’sprepare method.

Since a tunneling layer is still a layer, it can be inserted smoothly in an existing
protocol stack:

ProtocolStack mystack =newProtocolStack();
mystack.insertLayer(new IncrementProtocolLayer());
mystack.insertLayer(newHTTPTunnelLayer());

Let us stress that the insertion of the tunnel layer did not require any change to the
existing protocol states and layers.

4 Conclusions

We have presented a Java software framework for building infrastructures to support
the development of applications over global computers where mobility and network
awareness are key issues. The framework enables platform designers to customize
communication protocols and network architectures and is particularly useful to
develop run-time supports for languages oriented towards global computing.

The components have been designed after a close analysis of proposed models
for mobile computing [3, 7]. We have tried to single out the most recurrent notions
of network aware programming and packed them together, to permit developers to
concentrate on the really specific of their system, while relying on the framework for the
recurrent standard mechanisms (node topology, communication and mobility of code).

The main aim of the framework is speeding up the development of prototype
implementations and relieving programmers from low level details. Of course, if
applications require a specific functionality that is not in the framework (e.g., a
customized communication protocol built on top of TCP/IP, or a more sophisticated
mobile code management), programmers can customize the part relative to these
mechanisms. The presented framework will be shortly released as open source software.

It has been pointed out that our design has some similarities with.Net Remoting,
which provides an abstract approach to interprocess communication and separates the
“remotable” object from a specific client or server application domain and from a
specific mechanism of communication. A closer look at the relationships between the
two approaches is definitely on demand. These relations are now under investigation.

In the near future, we will also use the framework for implementingDπ [16] and for
re-engineering KLAVA [5], the run time support for KLAIM [11] and for implementing
richer languages for global computing. But, we plan also to extend the IMC components
to deal with security issues.



Acknowledgments We are grateful to all people involved in the MIKADO project, in
particular, we would like to thank L. Lopes and V. Vasconcelos that contributed to the
initial design of IMC.

References
1. A. Acharya, M. Ranganathan, and J. Saltz. Sumatra: A Language for Resource-aware Mobile

Programs. In Vitek and Tschudin [25], pages 111–130.
2. L. Bettini. A Java Package for Transparent Code Mobility. InProc. FIDJI, LNCS 3409,

pages 112–122. Springer, 2004.
3. L. Bettini, M. Boreale, R. De Nicola, M. Lacoste, and V. Vasconcelos. Analysis of

Distribution Structures: State of the Art. MIKADO Project Deliverable D3.1.1, 2002.
4. L. Bettini, R. De Nicola, G. Ferrari, and R. Pugliese. Interactive Mobile Agents in X-KLAIM .

In Proc. WETICE, pages 110–115. IEEE, 1998.
5. L. Bettini, R. De Nicola, and R. Pugliese. KLAVA : a Java Package for Distributed and Mobile

Applications.Software - Practice and Experience, 32(14):1365–1394, 2002.
6. L. Bettini, D. Falassi, R. D. Nicola, M. Lacoste, L. Lopes, M. Loreti, L. Oliveira, H. Paulino,

and V. Vasconcelos. Language Experiments v1: Simple Calculi as Programming Language.
MIKADO Project Deliverable D3.2.1, 2004.

7. G. Boudol, I. Castellani, F. Germain, and M. Lacoste. Models of Distribution and Mobility:
State of the Art. MIKADO Project Deliverable D1.1.1, 2002.

8. G. Cabri, L. Leonardi, and F. Zambonelli. Reactive Tuple Spaces for Mobile Agent
Coordination. In K. Rothermel and F. Hohl, editors,Proc. 2nd Int. Workshop on Mobile
Agents, LNCS 1477, pages 237–248. Springer, 1998.

9. L. Cardelli. Abstractions for Mobile Computation. In J. Vitek and C. Jensen, editors,Secure
Internet Programming: Security Issues for Mobile and Distributed Objects, LNCS 1603,
pages 51–94. Springer-Verlag, 1999.

10. G. Cugola, C. Ghezzi, G. Picco, and G. Vigna. Analyzing Mobile Code Languages. In Vitek
and Tschudin [25].

11. R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM : a Kernel Language for Agents Interaction
and Mobility. IEEE Transactions on Software Engineering, 24(5):315–330, 1998.

12. B. Dumant, F. Horn, F. Dang Tran, and J.-B. Stefani. Jonathan: an Open Distributed
Processing Environment in Java. InProc. MIDDLEWARE, 1998.

13. ExoLab Group. The OpenORB project, 2002.http://openorb.exolab.org/.
14. E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.
15. R. Hayton, A. Herbert, and D. Donaldson. Flexinet: a Flexible Component Oriented

Middleware System. InProc. ACM SIGOPS European Workshop, 1998.
16. M. Hennessy and J. Riely. Resource Access Control in Systems of Mobile Agents. In

U. Nestmann and B. C. Pierce, editors,HLCL ’98, volume 16.3, pages 3–17. Elsevier, 1998.
17. N. Huntchinson and L. Peterson. Thex-kernel: an Architecture for Implementing Network

Protocols.IEEE Transactions on Software Engineering, 17(1):64–76, 1991.
18. R. Klefstad, D. Schmidt, and C. O’Ryan. The Design of a Real-time CORBA ORB using

Real-time Java. InProc. ISORC, 2002.
19. D. Lange and M. Oshima.Programming and Deploying Java Mobile Agents with Aglets.

Addison-Wesley, 1998.
20. Object Management Group.Naming Service Specification, version 1.3 edition, 2004.

Available athttp://www.omg.org.
21. C. O’Ryan, F. Kuhns, D. Schmidt, O. Othman, and J. Parsons. The Design and

Performance of a Pluggable Protocols Framework for Real-time Distributed Object
Computing Middleware. InProc. MIDDLEWARE, 2000.

22. H. Peine and T. Stolpmann. The Architecture of the Ara Platform for Mobile Agents. In
Proc. MA, LNCS 1219, pages 50–61. Springer, 1997.

23. G. Picco, A. Murphy, and G.-C. Roman. LIME: Linda Meets Mobility. In D. Garlan, editor,
Proc. ICSE, pages 368–377. ACM Press, 1999.

24. T. Thorn. Programming Languages for Mobile Code.ACM Computing Surveys, 29(3):213–
239, 1997. Also Technical Report 1083, University of Rennes IRISA.

25. J. Vitek and C. Tschudin, editors.Mobile Object Systems - Towards the Programmable
Internet, LNCS 1222. Springer, 1997.


