
Building a Configurable Publish/Subscribe
Notification Service

C. Fiorentino?, M. Cilia??, L. Fiege, A. Buchmann

Databases and Distributed Systems Group, Dept. of Computer Science
Technische Universität Darmstadt, Darmstadt, Germany

<lastname>@dvs1.informatik.tu-darmstadt.de

Abstract. The convergence of technologies and information-driven ap-
plications require a middleware that supports data streams. This middle-
ware needs to interpret, aggregate, filter and analyze streams of messages
usually in a distributed environment. Publish/Subscribe middleware ba-
sically deals with some of these issues, but it is typically monolithic and
includes only a subset of features. A problem arises when users want to
find a middleware that completely fulfills their application requirements.
Based on our experience, we propose a framework that allows the con-
figuration/adaptation of a Pub/Sub solution based on a reusable and
extensible set of components.

1 Introduction

New applications and the convergence of technologies, ranging from sensor net-
works to ubiquitous computing and from autonomic systems to event-driven
supply chain management, require middleware platforms that support the han-
dling of streams of data. In these cases, the underlying infrastructure needs to
deal with the dissemination of data in a distributed environment from where it
is produced to the destinations where consumers are located. Streaming data
needs to be interpreted, aggregated, filtered, analyzed, reacted to and eventually
disposed of. Publish/Subscribe (Pub/Sub) middleware basically deals with this
problem.

Pub/Sub is founded on the principle that producers simply make information
available and consumers place a standing request for information by issuing sub-
scriptions. The pub/sub notification service (NS) is then responsible for making
information flow from a producer (publisher) to one or more interested consumers
(subscribers). Such a notification service provides asynchronous communication,
it naturally decouples producers and consumers, makes them anonymous to each
other, and allows a dynamic number of publishers and subscribers.

As you can imagine, there are commercial products (WebSphereMQ (for-
merly MQ-Series), TIB-Rendezvous, or pure JMS) that deal with some of these
issues. In academia there are several projects that focus on one or the other issue
? Faculty of Sciences, UNICEN, Tandil, Argentina - cfiorent@exa.unicen.edu.ar

?? Also Faculty of Sciences, UNICEN, Tandil, Argentina



of interest, like efficient dissemination, addressing models, message correlation,
mobility, scalability, fault-tolerance, access control, data integration, security,
privacy protection, transactions, caching, etc.

But specific requirements of a given application may need a combination of
some of the previously mentioned aspects. For instance, a news ticker appli-
cation basically requires topic-oriented addressing, efficient data dissemination
and scalability, but does not include transaction support. On the other side,
supply-chain management based on the AutoID Infrastructure requires content-
based addressing, transactions, security, fault-tolerance, data integration and
scalability, while other aspects like access control or caching are optional. Today
no product does offer all features. Moreover, these products are often hardly
extendible so that missing features cannot be added to fulfill all application
requirements.

Based on our own experience in building notification services [3, 8, 9] and
specific features for them [10–15] and the experience of others [6, 7, 16–20], we
develop a framework for building pub/sub notification services. It facilitates
the combination of required features in a notification service, and as a result
the middleware is ‘shaped’ towards application requirements. This offers us a
testbed where different ideas can be experimented and proven together with
other approaches.

In Section 2 we present the basic idea behind pub/sub notification services
including an overview of related projects in this area, and we also include re-
lated work on service-based infrastructures. Section 3 enumerates the system
requirements and sketches our proposal. In Section 4 we present our main de-
sign decisions including architecture, interfaces, and pre-defined components.
Section 5 briefly describes the deployment strategy together with the runtime
environment. Section 6 presents our conclusions and future work.

2 Background & Related Work

In a notification service there are different participants: applications, which basi-
cally produce and/or consume messages, and brokers, which help to disseminate
messages across the network between producers and consumers. Each broker
maintains a routing table that determines in which directions a message needs
to be forwarded. This table needs to be maintained up-to-date with respect to
active consumers and their subscriptions. We basically distinguish three types
of brokers: local brokers constitute the clients’ access point to the middleware
and they are usually part of the communication library loaded into the clients.
A local broker is connected to at most one border broker. Border brokers form
the boundary of the distributed communication middleware and maintain con-
nections to local brokers. Inner brokers are connected to other inner or border
brokers and do not maintain any connections to the applications.

In recent years, academia and industry have concentrated on publish/subscribe
mechanisms because they offer loosely coupled exchange of asynchronous notifi-
cations, facilitating extensibility and flexibility. These approaches have evolved



from restricted channels to more flexible subscription mechanisms. For instance,
subject-based addressing [21] define a uniform name space for messages and
their destinations. Here, to every message a subject is attached in order to find
matchings with subscriptions, also expressed with subjects.

To improve expressiveness of the subscription model the content-based ap-
proach was proposed where predicates on the content of a notification can be
used for subscriptions. This approach is more flexible but requires a more com-
plex infrastructure [22]. Many projects in this category (like Rebeca, Siena, JEDI,
Gryphon) concentrate on scalability issues in wide-area networks and on efficient
algorithms and techniques for matching and routing notifications to reduce net-
work traffic [23–25]. Most of these approaches use simple Boolean expressions as
subscription patterns and assume homogeneous name spaces.

More recently a new generation of publish/subscribe systems built on top of
an overlay network has emerged. These systems mostly pursue wide-area scala-
bility based on a topic-oriented addressing model. This is the case of Scribe [17]
which is implemented on top of Pastry [16]. The mapping of topics onto multicast
groups is done by simply hashing the topic name. Hermes [6] uses a similar ap-
proach but tries to get around the limitations of topic-based publish/subscribe by
implementing a so-called “type and attribute based” publish/subscribe model.
It extends the expressiveness of subscriptions and aims to allow multiple inher-
itance in event types. A content-based addressing on top of a dynamic peer-to-
peer network was proposed in [8, 9] where the efficient routing of notifications
takes advantage of the topology graph underneath. This work combines the high
expressiveness of content-based subscriptions and the scalability and fault toler-
ance of a peer-to-peer system.

Most of the projects mentioned above are monolithic and they provide a static
set of features. Few of them are in some sense extensible while the extensions
are hard to develop. What is needed is the possibility to easily combine features
in order to completely fulfill application requirements. This can be achieved if
pub/sub notification services are built based on extensible set of components
that rely on an appropriate architecture/infrastructure. The main requirements
of such an infrastructure include: components’ life-cycle management, remote
and easy deployment, configurability, manageability, and monitoring capabilities.
Component containers founded on the principles of inversion of control [4] fulfill
some of these requirements.

Pico-Container is a small, light weight container but it does not provide com-
ponents’ management nor runtime configuration. DustDevil (a limited container
implemented in Bamboo) is also light weight and has a nice desired communica-
tion structure but does not cover most of the previously mentioned requirements.
JMX (Java Management eXtension) [2] is a little complex to use and heavy
weight (not specially suited for small devices). OSGi (Open Services Gateway
Initiative) [1] offers a container and management environment for managing
service life-cycle. Services are bundles, JAR files, which contain classes and a
configuration file. OSGi has a small footprint and is compliant with the J2ME
specification. OSGi itself is built as configurable set services.



3 A Pub/Sub Notification Service Framework

3.1 System Requirements

Based on our own experience on building notification services [3, 8–15] and the
experience of others [6, 7, 16–20] we shortly enumerate here the main require-
ments that, from our perspective, need to be included in the resulting system.

As in every framework, reusability is an issue. Here, in particular, we want
to reuse a predefined set of specific functionality, like serlialization of messages,
routing algorithms, or topology-related strategies. But also extensibility in the
sense of adding new features plays a fundamental role since optimizations and
new routing strategies appear frequently. As notification services are usually
distributed in a network of brokers, easy and remote deployment is a key factor.
Moreover, in such a distributed NS manageability and monitoring capabilities
are required in order to tune parameters or replace components if needed.

In most cases the user wants the resulting NS to be efficient and scalable.
The possibility to allow the user to find a trade-off between these two factors
is desired. Additionally, the possibility to build an adaptable NS where load-
or fault-related adaptations can be managed. In many cases, the underlying
infrastructure needs to run diverse and concurrent notification services just to
fulfill the requirements of diverse applications, resulting on a unreasonable use
of resources. This leads to an approach where the rational use of resources needs
to be taken into account.

3.2 Proposed Approach

We want to provide a framework to build pub/sub notification services according
to applications’ requirements, selecting from a set of predefined NS character-
istics like the underlying NS topology, routing strategies, message serialization
and also defining other features like how to deal with failures, caching, secu-
rity or access control. The resulting NS must be easily deployable. According to
this, our goal is to offer an environment that supports the development of the
application in question in the following three steps which are also sketched in
Figure 1.

1. Based on the application requirements, the set of functions and mechanisms
are selected from a pre-established component framework. These components
can be simply extended by following clearly established interfaces. Selected
components plus some Quality of Service (QoS) decisions are introduced
through a configuration tool. After a generate operation, the desired building
blocks are ready for the next phase.

2. The resulting NS is deployed by means of a deployment tool.
3. After the NS is deployed on the desired nodes, they can be monitored allow-

ing calibration and tuning of the whole service where QoS parameters can
be influenced.



Services
QoS

User

Framework

(2)
NS Deployment

(1) 
NS specification

(3)
NS ManagementNS

NSNS

elementary building blocks
resulting NS

NS

deployment
tool

Fig. 1. Our Approach

4 Design Decisions

We have first analyzed and identified possible interactions among elementary
building blocks of functionality based on a study that considered the projects
mentioned in the related-work section [5]. We then grouped those blocks, what we
call here components, according to their functionality and interaction patterns.
This analysis led us to a layering architecture. Figure 2 shows an overview of
the architecture.

Based on the analyzed interaction patterns, we have defined the interfaces
between layers. The communication among layers and components can be syn-
chronous or asynchronous. Messages can be passed between layers as events by
using the corresponding layer interface.

As it was mentioned before, a pub/sub NS relies on a distributed network of
nodes that cooperate. The way this network is modelled has an enormous im-
pact on the design of the infrastructure. For this reason, we assume an Overlay
network which can be seen as the most generic case, where main characteris-
tics of P2P (like self-organization and healing, robustness, load balancing, and
scalability) are considered. Nevertheless, the static tree approach can still be
modelled as a restricted overlay that does not offer such characteristics, since
the nodes are simply static. Founded on [26] and our own experience we have
defined a common overlay interface that condenses the kernel functionality of
different overlay networks.

From the runtime perspective we focus our approach on a ‘distributed’ run-
time environment that serves as a container for the resulting NS. This environ-



Routing Layer

Topology Layer

Network Layer

Broker Layer

M
an

ag
em

en
t

Application Layer

Fig. 2. High-level Architecture

ment should support remote deployment and management, and also monitoring
capabilities on the running NS.

The functionality to manage the whole system is orthogonal to the main
stack of layers.

4.1 Interfaces

The design of a common set of interfaces between layers was crucial. They make
possible to add and change functionality in every layer with minimal impact (if
any) on others components.

Because of the nature of the system we are building (which is basically mes-
sage passing), we can not restrict to synchronous interactions. Consequently, we
provide two different kinds of interfaces1. Within the asynchronous interfaces we
apply an event interaction. These interfaces are divided between pair-of-layers
messages (also distinguishing between upwards and downwards) and connection-
related messages. Figure 3 sketches the asynchronous interactions that may hap-
pen between layers.

Synchronous interfaces define a direct communication between layers and
components. They are basically defined with the purpose to get or set state of
components (in the same or neighbor layers), and also to get/set configuration
parameters by the management functionality.

1 Due to space reasons we cannot present the complete definition of all interfaces.



U
pd

at
e

(N
i)

D
el

iv
er

(R
m

)

Fo
rw

ar
d(

R
m

)

newEvent(ev)

N
ew

Ev
en

t(e
v)

U
pd

at
e(

N
i)

Update(Ni)

R
ec

ei
ve

(T
m

)

read()

R
ou

te
In

it(
R

m
,k

)

R
ou

te
C

on
t(R

m
,k

)

write()
B

rC
on

nR
eq

(B
r,D

)

B
rC

on
nt

R
es

(c
on

)

B
rC

on
nC

on
f (

co
n)

B
rC

on
nI

nd
(B

r)

Topology

Network

Routing

Broker

Se
nd

(T
m

,D
)

Update(Ni)

(u
n)

ad
v(

ad
v)

N
od

eC
on

nR
es

(N
i)

N
od

eC
on

nI
nd

(N
i)

Er
ro

r(
er

r)

errorDet()
N

od
eC

on
nR

eq
(N

i)

N
od

eC
on

nI
C

on
f(

N
i)

U
pd

at
e(

N
i)

(u
n)

su
b(

su
b )

no
tif

(e
v)

(u
n)

su
b(

su
b)

pu
b(

ev
)

cr
ea

te
/d

el
pu

b(
pu

bT
yp

e)

cr
ea

te
/d

el
su

b(
su

bT
yp

e)

no
tif

(e
v)

(un)adv(adv)

-Tm: Topology message
-Rm: Routing message
-Bm: BrokerMessage
-K: Key of destination
-D: Destination address
-Ni: Node info

: event

: routine

: shot event

Application

Fig. 3. Interfaces

4.2 Components’ Overview

In this section the responsibility of every layer is presented accompanied with a
description of possible components at each corresponding layer.

Network Layer: Since this layer is at the bottom of the stack, its responsibility
is oriented to the mediation with the physical network. On one side, messages
coming from the topology layer need to be serialized and transmitted to a specific
network address by using a determined protocol. On the other side, incoming
messages from the protocol-side need to be de-serialized and passed to the upper
layer. In this layer, different components can be used in order to apply diverse
serialization or compression approaches and even different protocols.

Topology Layer: The main responsibility of this layer is to maintain the status
information of the overlay up-to-date considering, for instance, dynamic changes
like node joins and leaves, or errors. These situations must generate management
events that need to be handled accordingly. Possible components within this layer
are:

– DHT: is a specific kind of overlay network (bases on Distributed Hash Ta-
bles) that provides self-stability (dealing with failures and dynamic changes
on the participant nodes), high scalability, good distributed object location
in wide-area peer-to-peer applications, like Pastry and Bamboo.



Scopes Bit Zipper Spanning 
Tree P2P

Rebeca
Routing Ants

DHT Static tree

Network (UDP)

BrokerA BrokerB

Broker

Routing

Topology

Network

M
an

ag
em

en
t

Channels

no
tif

y

fo
rw

ar
d

de
liv

er

pub 
sub 
adv

route

re
ce

iv
e

Filter

se
nd

AppComp1

Application

no
tif

y

AppComp2

pub 
sub 
new

Pub

Serializer Network (TCP)

ServiceA ServiceB

Fig. 4. Layers and components

– Static tree: is the simplest case of overlay networks. It is conformed as a
static set of nodes, with fixed network physical addresses.

– Channels: may be defined as a dynamic set of paths, through which mes-
sages are transmitted. They can be thought as shortcuts within the network
(reaching more directly different destinations). This improves performance
and organization. This component can be combined with other components
within the same layer.

Routing Layer: This layer performs the main message routing decisions. Ac-
cording to the addressing model, it must decide where to transmit specific events.
Here, subscriptions, publications and advertisings are differentiated to decide
when to change routing tables and transmit messages. The Routing Layer ba-
sically maintains message destinations according to the available subscription
information. The destinations types may vary with respect to the selected ser-
vice, for example they may be specific node addresses or just DHT keys. Within
this layer, diverse components applying different routing strategies can be used,
like the ones mentioned below:

– Traditional (Rebeca) routing algorithms [3], like Flooding, Simple Routing,
Identity Routing, Covering, or Merging.

– P2P routing algorithms, like Bit Zipper, or the P2P approach presented in
[11].

– The Ants approach [18], where the routing strategy is based on real ant
behavior. This was simply traduced to a message routing algorithm that



first floods the broker network, and then fills routing tables (according to
some probabilities) to better route messages.

– The use of Scopes [27] which is an interesting routing strategy based on a
selection criteria to restrict/group the set of message destinations.

Broker Layer: This broker basically offers the Pub/Sub functionality to the
application layer. Additionally, it handles client and broker connections and
message filtering. In general most events like subscriptions and notification reach
this layer to be treated. Nevertheless, not all messages reach this layer due to
shortcuts in the lower layers Event correlation filters are handled at this layer.
As mentioned before, brokers are classified on a) inner brokers, that manage
the connections to other brokers and can apply correlation filters to the flow of
messages b) border brokers, that handles connections with clients (which may
offer, for instance, a store and forward functionality) and c) local broker, that
basically manages the pub/sub interactions between the border broker and the
client.

Application Layer: This layer is the one that includes application’s logic re-
lated to NS usage. It accesses the NS by calling the pub/sub interface always
on the broker layer. There may be at least two typical cases where this layer
is used. The first one is in the case of P2P applications where the application
is also a peer that runs broker functionality (see Figure 4). The other case is
characterized by applications acting as a pure end consumer and/or producer of
messages. They are not in charge of routing messages since they delegate this
task to the corresponding border broker. In this particular case, the topology
and routing layers are empty.

4.3 Services

Combining components from different layers is not trivial and there are obvi-
ously combinations that are inadequate. Dependencies among components are
also represented within the framework. The combination of components crossing
all layers is called here a service. Different services (or NS instances) can run
concurrently within a single runtime environment. Moreover, and with the pur-
pose of better using resources, a single component in a layer may serve various
services within the same runtime environment.

In Figure 4 two services that bundle different components across layers is
presented. ServiceA represents the BitZipper approach [9] relying on P2P in-
frastructure by using a UDP network connection component. On the other hand,
ServiceB is characterized by a Rebeca routing strategy [3] relying on a tree
topology combined with the use of channels and a traditional TCP network
connection.



5 Deployment & Runtime

As can be clearly seen from the interfaces (Figure 3), they basically model three
main roles within NS participants. The upward flow of data (left-side of the
figure) basically represents consumers of messages, since messages are injected
from the network layer and they leave the stack at the top (application layer).
The downward flow (right-side of the figure) characterizes producers of messages
since the flow begins at the top of the stack (application layer) and leaves it at
the bottom. The third case basically combines the previous two cases and it is
characterized by participants that act as brokers within the NS network. This is
clearly visible in the figure by the upward flow (up to the broker layer) and the
downward flow (up to the network layer) forming an inverted U. The picture also
shows possible shortcuts within this flow representing routing optimizations. It
must be noticed that NS participants can play just one of these roles or simply
all roles simultaneously.

The identification of these flows within the layered architecture leads us to
apply another idea for deployment purposes. We adopted a solution that is based
on subscribing to components (instead of subscribing to certain messages) that
offer certain features. This ends up with a pipeline of components, defining a
straight communication between layers.

According to the specified service, a sequence of components can be built
which basically represents the previously mentioned flow of messages. Depending
on the roles established for participants, different sequences can be built for that
purposes. At deployment-time, we build then pipelines of components (with
limited control flow just to skip some of them if necessary) that basically process
messages. This pipeline is ready to be deployed on a runtime environment.

We have selected OSGi as the runtime platform for our implementation. It
offer most of our required functionalities: components life cycle management and
remote configuration and deployment, it is light weight and easy to use.

Installing a whole NS is simple by relying on the OSGi platform. We obtain
the desired NS as a file that contains all necessary components (in the form of
service bundles). With this, the deployment of the NS can be performed (locally
or remotely). After deployment, any component can be started and monitored.
The system supports dynamic updates of new installed functionalities, gaining
flexibility and runtime configurability.

6 Conclusions

We have presented in this paper a framework that allows system engineers to
bundle components to satisfy a set of notification service requirements. The lay-
ered architecture of building blocks helps to understand, organize, and build no-
tification service. This bundle is then deployed in our runtime environment that
controls component life-cycle and offers monitoring capabilities that allow tun-
ing and adaptation of the resulting NS. The presented solution covers pub/sub



NSs that range from a light weight single purpose static NS to multi-broker, dy-
namic, remotely manageable NS. The decision of relying on an abstract overlay
network simplifies the unification of different topology approaches.

Our solution for building pub/sub NSs can be used as a testbed for improve-
ments on routing algorithms and other ongoing research projects. By having
reusable components at hand, it is easy to pick the functionality you require for
your experiments and also for probing these ideas under diverse NS constella-
tions.

We have not (fully) automated the process of searching and selecting com-
ponents from a repository. This is part of our ongoing work. Another pending
task is a performance analysis comparing native pub/sub notification services
like Rebeca, Hermes or BitZipper with their implementation based on our frame-
work.

References

1. OSGi Alliance. The OSGi Service Platform. Technical report, July 2002.
2. Sun Microsystems. Java Management Extensions. White paper, 1999.
3. Gero Mühl. Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis,

Darmstadt University of Technology, Germany, September 2002.
4. Martin Fowler. Inversion of control containers and the dependency injection pat-

tern. http://martinfowler.com/articles/injection.html, January 2004.
5. Cristian Fiorentino. Building a configurable notification service (under prepara-

tion). Master’s thesis, Faculty of Sciences, UNICEN, Tandil, Argentina, April
2005.

6. Peter Pietzuch and Jean Bacon. Hermes: A distributed event-based middleware
architecture. In J. Bacon, L. Fiege, R. Guerraoui, A. Jacobsen, and G. Mühl,
editors, In Proceedings of the 1st International Workshop on Distributed Event-
Based Systems (DEBS’02), July 2002.

7. Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling churn
in a DHT. In Proceedings of the 2004 USENIX Annual Technical Conference
(USENIX ’04), Boston, Massachusetts, June 2004.

8. Wesley W. Terpstra, Stefan Behnel, Ludger Fiege, Andreas Zeidler, and Alejan-
dro P. Buchmann. A Peer-to-Peer approach to Content-Based publish/subscribe.
In In Proceedings of the 2nd International Workshop on Distributed Event-Based
Systems (DEBS’03), June 2003.

9. Wesley W. Terpstra, Stefan Behnel, Ludger Fiege, Jussi Kangasharju, and Alejan-
dro Buchmann. Bit zipper Rendezvous—Optimal data placement for general P2P
queries. In EDBT 04 Workshop on Peer-to-Peer Computing & DataBases, 2004.

10. Mariano Cilia, Ludger Fiege, Christian Haul, Andreas Zeidler, and Alejandro Buch-
mann. Looking into the past: Enhancing mobile publish/subscribe middleware. In
Proceedings of the 2nd International Workshop on Distributed Event-Based Sys-
tems (DEBS’03), San Diego, California, June 2003. ACM Press.

11. Ludger Fiege, Felix C. Grtner, Oliver Kasten, and Andreas Zeidler. Supporting mo-
bility in Content-Based publish/subscribe middleware. In ACM/IFIP/USENIX In-
ternational Middleware Conference (Middleware 2003), pages 103–122, June 2003.

12. Ludger Fiege, Andreas Zeidler, Alejandro Buchmann, Roger Kilian-Kehr, and Gero
Mhl. Security aspects in publish/subscribe systems. In Third Intl. Workshop on
Distributed Event-based Systems (DEBS’04), May 2004.



13. Mariano Cilia, Mario Antollini, Christof Bornhvd, and Alejandro Buchmann. Deal-
ing with heterogeneous data in pub/sub systems: The Concept-Based approach.
In International Workshop on Distributed Event-Based Systems (DEBS’04), Edin-
burgh, Scotland, May 2004.

14. Jose Antollini, Mario Antollini, Pablo Guerrero, and Mariano Cilia. Extending
rebeca to support Concept-Based addressing. In In Proceedings of the Argentinean
Symposium on Information Systems (ASIS’04), Cordoba, Argentina, September
2004.

15. M. Cilia, C. Bornhövd, and A. Buchmann. CREAM: An Infrastructure for Dis-
tributed, Heterogeneous Event-based Applications. volume 2172 of LNCS, Italy,
November 2003. Springer.

16. Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object loca-
tion, and routing for large-scale peer-to-peer systems. Lecture Notes in Computer
Science, 2218, 2001.

17. Antony I. T. Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Dr-
uschel. SCRIBE: The design of a large-scale event notification infrastructure. In
Networked Group Communication, pages 30–43, 2001.

18. M. Gunes, U. Sorges, and I. Bouazzi. Ara – the ant-colony based routing algorithm
for manets, 2002.

19. Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermar-
rec. The Many Faces of Publish/Subscribe. ACM Computing Surveys, 35(2):114–
131, 2003.

20. Matt Welsh, David E. Culler, and Eric A. Brewer. SEDA: An architecture for
well-conditioned, scalable internet services. In Symposium on Operating Systems
Principles, pages 230–243, 2001.

21. B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The Information Bus – An Architecture
for Extensible Distributed Systems. In Proceedings of the 14th Symposium on
Operating Systems Principles (SIGOPS), pages 58–68, USA, December 1993.

22. A. Carzaniga, D. R. Rosenblum, and A. L. Wolf. Challenges for Distributed
Event Services: Scalability vs. Expressiveness. In Engineering Distributed Objects
(EDO’99), Los Angeles, CA, May 1999.

23. Lukasz Opyrchal, Mark Astley, Joshua Auerbach, Guruduth Banavar, Robert
Strom, and Daniel Sturman. Exploiting IP Multicast in Content-based Publish-
Subscribe Systems. volume 1795 of LNCS, pages 185–207. Springer, 2000.

24. G. Mühl, L. Fiege, and A.P. Buchmann. Filter Similarities in Content-Based Pub-
lish/Subscribe Systems. In Proc. of ARCS, volume 2299 of LNCS, 2002.

25. F. Fabret, F. Llirbat, J. Pereira, A. Jacobsen, K. Ross, and D. Shasha. Filtering
Algorithms and Implementation for Very Fast Publish/Subscribe. pages 115–126,
2001.

26. Frank Dabek, Ben Zhao, Peter Druschel, John Kubiatowicz, and Ion Stoica. To-
wards a common api for structured peer-to-peer overlays. In Proceedings of the
2nd International Workshop on Peer-to-Peer Systems (IPTPS03), Berkeley, CA,
February 2003.

27. L. Fiege, M. Mezini, G. Mühl, and A.P. Buchmann. Engineering Event-Based
Systems with Scopes. In Proc. of ECOOP’02, volume 2374 of LNCS, 2002.


