
Protocol Reconfiguration using Component-based
Design

Fotis Foukalas1, Yiorgos Ntarladimas2, Aristotelis Glentis3, Zachos Boufidis4

1 Communications Network Laboratory, Department of Informatics and Telecommunica-
tions, University of Athens, Ilisia Campus 157 84,

Athens, Greece
{foukalas, yiorgos, arisg, boufidis}@di.uoa.gr

http://cnl.di.uoa.gr

Abstract. Previous modular protocol design and implementation allow a flexi-
ble configuration and reconfiguration of protocol layers or full protocol stacks.
However, in our days, software engineering technologies introduce new meth-
ods for designing and specifying modular software. Such a technology is the
component-based software technology. Using those techniques, a software sys-
tem could be modular. This paper proposed a reconfigurable protocol design
and specification approach as well as a protocol reconfiguration manage-
ment/runtime model based on protocol components that represent distinct pro-
tocol functions, which in previous works have been designed and specified as
modules. The following content could be considered as a suggestion for a UML
profile for protocol components and protocol reconfiguration.

1 Introduction

This document is an attempt to introduce a UML profile for protocol components
and how protocol reconfiguration can be achieved using component-based software
design methods. The objective of this paper is the definition of the protocol compo-
nent data model and the protocol component management model for reconfiguration
purposes. The protocol component data model is the preclusive step that defines the
stereotypes for modeling, specifying and implementing protocols as components. It is
obvious that a protocol reconfiguration presupposes a reconfigurable way to design
and specify communication protocols. Considering components as modular unit ver-
sus modules, we avoid the probability that a component will not include its manifesta-
tion in order to be replaced within its environment. The new component definition
and specification, defined in UML 2.0, permits the component concept to be used to
describe component designs or implementations, without losing the ability to describe
deployment information [4].

In addition, the component-based design is one of the key enabling technologies
for designing reconfigurable software. This design method supports the composi-
tional adaptation approach of software systems that can be modified dynamically in
terms of its structure and behavior [7]. The compositional adaptation of a software

mailto:boufidis}@di.uoa.gr

system is not just enabled for tuning software variables, like the parameter adaptation
approach, but in contrast, enables the dynamic recomposition of the software during
execution, for example to switch software components in and out of memory, or to
add new behavior to deployed systems. Component-based design supports two types
of composition the static composition and the dynamic composition. The second
composition method is relied on late binding programming technique, which enables
coupling of compatible components at runtime. It may be remarked that the dynamic
composition is the only way in which a software engineer can add, remove or recon-
figure components at runtime, although this method’s flexibility can be constrained in
order to ensure the system’s integrity across adaptation.

The intention of this paper is to introduce the concept of protocol components and
their reconfiguration that depend on the components and composite structures pack-
ages as well as the state machines package from infrastructure and superstructure
specification of UML 2.0 [4][5]. In this direction, some steps for the component-
based protocol design and specification have been identified [8]. Moreover, compo-
nents for the physical and data link layer have been introduced by OMG for radio
communications [9]. Related works also have introduced modular approaches for the
design and implementation of protocol functions [1][10]. Moreover, an architecture
that allows dividing protocol function into components using component-based soft-
ware engineering and particularly the EJB Component Model has been addressed
[11]. Considering the above-mentioned works and also the UML 2.0 specification, we
are introducing the UML extension for protocol design and specification as well as
reconfiguration management using the component classifier. A component-based
design approach is the way to achieve a dynamic reconfiguration of communication
protocols.

The rest of this document is organized as follows: In Section 2, we introduce the
protocol component concept and definition and also a case study for implementing a
protocol function as protocol component. Section 3 describes the protocol reconfigu-
ration management model introducing the protocol component reconfiguration con-
cept and also a user model for a MOF layer 0 protocol reconfiguration management
model. In this section also is introduced the protocol manager as the entity for man-
aging the protocol reconfiguration process. Section 4 discusses the protocol stack
issues and how a stack can be constructed using protocol components and what are
the requirements for a protocol stack reconfiguration. In addition, some future per-
spectives of our work are addressed. The last section of this paper is devoted to sum-
mary and conclusions.

2 Protocol functions as components

2.1 Protocol Component definition

The idea for mapping protocol functions into modular software units has already
introduced [1][3][10]. Protocol functions have already recognized as much as possi-
ble generic like the flow control, error control, segmentation/reassembly that repre-
sent well-known protocol functions. However, these generic protocol functions con-
sist of more concrete protocol functions. For instance, error control protocol function
consists of error correction, error detection and retransmission protocol functions as
well as flow control consists of window-based and rate-based protocol functions [2].
Moreover, using different protocol mechanisms can specify protocol functions. Pro-
tocol mechanisms are like traditional protocol specifications: they have a unique
name and they define the rules governing data transfer from one service user to its
peer and handling of payload and control information [1]. On the other hand, in UML
2.0 the component concept has been clarified to be more definite and meaningful
throughout the development life cycle. The UML 2.0 specification defines the com-
ponent as a modular part of a system that encapsulates its contents and whose mani-
festation is replaceable within its environment [4][5]. Considering all the above fea-
tures of communication protocols as well as the capabilities of component to be
modulated, we have designed the following diagram (Fig. 1) that defines the protocol
component concept.

Component
(from Components)

ConnectableElement
(from InternalStructures)

ProtocolComponent

ProtocolFunction

ProtocolMechanism
* 1

+communicationRole

*

{subsets rol e}

1

1

*

+type 1

*

Fig. 1. Protocol Component definition

It has been recognized that a protocol mechanism consists of a sending and a re-
ceiving part, e.g., segmentation and reassembly, or the sending and receiving part of
automatic repeat request (ARQ) [1]. ProtocolMechanism references protocol compo-
nents, which can represent two definite roles the sender and/or receiver that instances
play in this protocol mechanism. Therefore, the ProtocolComponent has a communi-
cation role in a protocol mechanism. Each ProtocolComponent represents the sender
or the receiver role in a communication protocol mechanism. A protocol component
can implement only one protocol mechanism and a protocol mechanism can be im-

plemented by different protocol components. An example of protocol mechanism and
protocol component association is given in the following paragraph.

Moreover, each protocol mechanism specifies only one protocol function and on
the other hand each protocol function could be specified by several protocol mecha-
nisms. The type association role defines the type of protocol function that the protocol
mechanism specifies. Regarding the parents of ProtocolComponent, have been se-
lected the Component from Components package and the ConnectableElement from
InternalStructures package [4]. The parent Component indicates a protocol compo-
nent as a kind of component since we have already envisioned a protocol component
as a software unit that can be replaced within its environment. The parent Connect-
ableElement expresses a protocol component as a kind of connectable element that
can be communicated with another instance through a network connection or some-
thing more simple as a pointer in case that the protocol component connects with
another protocol component in the same node to form a protocol component stack.
The following subsection gives an example of protocol mechanism specification
using the extension in UML 2.0 for protocol components.

2.2 Protocol Component: A case study

In Fig.1 is illustrated the protocol components data model. The protocol compo-
nents data model defines the basic stereotypes needed for the protocol design and
specification using component-based software engineering methods and their associa-
tions with UML 2.0. In case that a protocol engineer needs to design and specify a
protocol using protocol components, a question will be raised. What is the granularity
of protocol functions and protocol mechanisms? It has been already recognized that
the finer the granularity of protocol functions, the higher the number of different
configurations and the higher the flexibility [1]. For instance, using a final granular
approach could be specified an error detection protocol function that is a fine granular
form of error control protocol function. In sequence, the error detection protocol
function can be specified by a feedback error control mechanism, which finally can
be implemented by a protocol component instance [2]. An example of the protocol
component model for the fine granular protocol function error detection is depicted in
the following figure (Fig. 2a). However, for a full specification of protocol mecha-
nism a collaboration diagram is needed in order to depict the communication role of
the protocol component. The Fig. 2b depicts the collaboration diagram of error detec-
tion protocol mechanism and the roles of the protocol component instances. It is use-
ful to denote that a protocol component could be developed implementing both the
sending and receiving part [1]. In our case the fdback_EC_S protocol component
implements only the sending part.

 a) b)

fdbackECfdbackEC

fdbackEC_SfdbackEC_S

fdbackEC_RfdbackEC_R

FeedbackErrorControlFeedbackErrorControl

sendersender receiverreceiver
«ProtocolComponent»

fdbackECfdbackEC

fdbackEC_SfdbackEC_S

fdbackEC_RfdbackEC_R

FeedbackErrorControlFeedbackErrorControl

sendersender receiverreceiver
«ProtocolComponent»

ErrorDetec tion
<<ProtocolFunction>>

fdback_EC_S
<<ProtocolComponent>>

FeedbackErrorControl
<<ProtocolMech anism >>

1

*

+errorDetection1

*

specifies

1

+sender

1

Fig. 2. a) Protocol Component Model for the error detection protocol function, - b) Protocol
Mechanism Collaboration Diagram

3 Protocol Components Management Model

3.1 Protocol Reconfiguration Management/Runtime Model

Protocol reconfiguration has been defined as the replacement of a component by
another component that implements the same protocol mechanism [1]. According to
3GPP definition, reconfiguration is the rearrangement of the parts, hardware and/or
software that make up the 3G network [15]. From the software engineering side,
dynamic reconfiguration means the ability of code to be introduced at runtime [7].
Considering all the above definitions we define the dynamic reconfiguration as the
process of the replacement/rearrangement of system parts which indeed must be per-
formed at runtime. Taking into account this definition we are introducing the follow-
ing diagram (Fig. 3) that represents the protocol reconfiguration management/runtime
model. The management model is an active runtime entity that is dealing with (man-
aging) data. The base data has been introduced in the previous section.
The context of the protocol component has been defined as the runtime entity that is
going to be forwarded to the new component. The ProtocolComponentContext con-
stitutes the reconfiguration of the ProtocolComponent. The association between the
protocol component context and the component itself is 1:n since a protocol compo-

nent context can be forwarded in numerous protocol components that implement the
same protocol mechanism. The protocol component context is composed by protocol
control information, actually, the header of the particular protocol data unit and the
current state of the protocol component that is running. The ProtocolComponentState
is a kind of ProtocolStateMachine of StateMachines package [4]. Furthermore, in
order to provide the ability for a protocol reconfiguration in a protocol software envi-
ronment, we have introduced the interface ReconfigurableProtocolComponent, which
provides all these operation for reconfiguration management. Through this interface a
ProtocolManager can manage the reconfiguration process.

ProtocolComponent

ProtocolComponentState ProtocolHeader

ProtocolComponentContext
1*

+reconfiguration
1*

1

1

+currentState
1

1

1

1

+protocolContext1

1

ReconfigurableProtocolComponent ProtocolManager*
1

+reconfiguredProtocolComponent

* +protocolMngr
1

ProtocolStateMachine
(f rom Protocol State Machi nes)

Fig. 3. Protocol Reconfiguration Management/Runtime Model

An example of protocol reconfiguration management user model, according to MOF
layers, using the protocol components stereotypes and the protocol reconfiguration
management model could be the following diagram (Fig. 4). This is based on dy-
namic protocol configuration and reconfiguration concept that has been introduced in
document [1]. The Ifdback_EC_S is the unified interface of the protocol component
provided for reconfiguration purposes. The operations of this interface enable to get
and set the protocol context in order to reconfigure the protocol. There is also an init
operation for the initialization of the protocol component with the appropriate proto-
col component context. Moreover, the interface for reconfiguration provides an op-
eration for retrieving protocol component statistics for example the number of de-
tected errors in a receiving CRC module. This last operation is provided for monitor-
ing purposes and not for the realization of protocol component performance. At the
moment, we are not going into details for protocol manager capabilities to select
protocol components. Nevertheless, the following text encompasses a brief list of
protocol manager capabilities in order to support the reconfiguration process.

fdback_EC_S
<<ProtocolComponent>>

Ifdback_EC_S

init(pContext : ProtocolComponentContext, pComponent : ProtocolComponent) : ProtocolComponent
get_context() : ProtocolComponentContext
set_context(pComponent : ProtocolComponent) : void
statistics(pComponent : ProtocolComponent) : void

<<ReconfigurableProtocolComponent>>

protocolMngr
<<ProtocolManager>>

+errorDetection

Fig. 4. Reconfigurable Protocol Component

3.2 The Protocol Manager

The need for introducing the protocol manager has been raised since an entity for
the following management procedures is necessary:

- A protocol manager must provide an efficient runtime environment for pro-
tocol configuration and reconfiguration.

- A protocol manager must link, initialize, and release protocol components,
synchronize parallel components, and forward packets within stack of pro-
tocol components.

- A protocol manager must monitor the properties of protocol components
- A protocol manager must be enabled to realize protocol performance in or-

der to decide the substitution between protocol components implemented the
same protocol mechanism.

- A protocol manager must be enabled to map the requirements for protocol
stack reconfiguration in the appropriate protocol selection and composition

However, the above-mentioned functionality is not an exhaustive list of protocol
manager functionality. In addition, the protocol manager is envisioned as the entity
that provides the time and storage management of the needs of a protocol component
instance. The protocol manager will be also the entity that can parse the protocol
component graph of a particular protocol stack. In the following section, we are dis-
cussing the requirements for a protocol component composition and selection and
what they represent for a protocol reconfiguration.

4 Discussion

4.1 Requirements for Protocol Stack Reconfiguration

In most cases, the need for a reconfiguration process, in a modular software sys-

tem, is being satisfied according to application requirements. In our case, a modular
software system is the protocol stack of reconfigurable equipment [13]. A protocol
stack reconfiguration has been considered as a reconfiguration process, which recon-
figures a protocol or the stack as a whole, according to application requirements. The
protocol stack is considered as protocol component graph that is composed by proto-
col components. Each protocol component implements a specific protocol mechanism
required for the satisfaction of application requirements [1]. Application requirements
represent the required QoS needed for running the appropriate application. The QoS
requirements have to be mapped into protocol components properties for the selection
of protocol components. The result of this mapping should be a reconfigured protocol
stack providing the satisfaction of the application requirements.

However, a protocol stack reconfiguration requirements can be also surfaced from
the properties offered by lower layers. For instance, a mobile device’s protocol stack
must be reconfigured in order to operate in a different radio technology. In such a
case, the terminal can change its radio interface that includes properties. These prop-
erties represent the offered QoS and express the radio interface requirements. Some of
the required radio-specific characteristics has already identified and indeed specified
[12].

Therefore, considering the above mentioned reconfiguration scenarios we have rec-
ognized two dimension requirements; requirements that represent the required and
offered QoS respectively (Fig.5).

R ad io Interface R eq uirem ents
{offered Q oS }

A pp lic atio n R equ irem en ts
{req uired Q o S}

S t ru c tu re d Cla s s i fier
(fro m In te rn a lS truc tu re s)

R ad io Interface R eq uirem ents
{offered Q oS }

A pp lic atio n R equ irem en ts
{req uired Q o S}

S t ru c tu re d Cla s s i fier
(fro m In te rn a lS truc tu re s)

Fig. 3. Requirements for Protocol Stack reconfiguration

Using the definitions of several OMG’s specification for components, we can de-

fine the requirement and property for protocol reconfiguration management. Re-
quirement is the desired feature requested by component implementation [6]. Prop-
erty represents a set of protocol component instances that are owned by a containing
classifier instance [4]. In our case the containing classifier is the protocol stack that
contains protocol components. The parent of protocol stack has been considered the
structured classifier from the InternalStructures subpackage since the structured clas-
sifier provides the mechanisms for specifying structures of interconnected elements
that are created within an instance of a containing classifier. Those interconnected
elements are the protocol components that constitute the protocol stack as well as
play the role of the protocol function that protocol components implement and a pro-
tocol mechanism specifies.

4.2 Future work

In the previous subsection, we have envisioned and defined the protocol stack con-
cept composed by protocol components. In this direction, we are considering the
protocol component selection and composition according to radio interface and/or
application requirements. The selection of the appropriate components according to
requirements is enrolled in reconfigurable computing area. The requirements have to
be mapped to the corresponding properties that encompass the criteria for the selec-
tion of protocol components in order a reconfiguration procedure takes place. We are
working on this area and our future work will encompass the selection of protocol
components according to radio interface requirements.

5 Summary – Conclusions

Many of the modular approaches for protocol software systems have been intro-
duced the concept of module for protocol design, specification and implementation.
However, the concept of software module does not include the deployment informa-
tion. Including deployment information a software system can be dynamically recom-
posed, installed and updated. All these procedures have been considered as the recon-
figuration procedures of reconfigurable equipments [13]. We are envisioning a recon-
figurable protocol stack that can be dynamically recomposed, installed and updated
and for this reason we have introduced the protocol component concept.

References

1. Thomas Peter Plagemann “A Framework for Dynamic Protocol Configuration”, PhD Thesis,
Swiss Federal Institute of Technology Zurich, 1994.

2. Gerald J. Holzmann, “Design and Validation of Computer Protocols”, Bell Laboratories,
Prentice Hall, 1991.

3. L. Berlemann, A. Cassaigne, B. Walke, “Modular Link Layer Functions of a Generic Proto-
col Stack for Future Wireless Networks”, to appear in Proc. of Software Defined Radio-
Technical Conference, Phoenix USA, November 2004.

4. Object Management Group. UML 2.0 Superstructure Specification: Final Adopted Specifi-
cation. http://www.omg.org/docs/ptc /03-08-02.pdf (August 2003).

5. Object Management Group. UML 2.0 Infrastructure Specification: Final Adopted Specifica-
tion. http://www.omg.org/docs/ptc /03-09-15.pdf (December 2003).

6. Object Management Group. “Deployment and Configuration of Component-based Distrib-
uted Applications”: Working Draft, http://www.omg.org/docs/ptc /04-05-15.pdf, 2002-2003.

7. Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, Betty H.C. Cheng , “Composing Adap-
tive Software”, Computer, v.37 n.7, p56-64, July 2004.

8. A. Alonistioti, F. Foukalas, N. Houssos, “Reconfigurability management issues for the sup-
port of flexible service provision and reconfigurable protocols”, Software Defined Radio
Forum Technical Conference 2003 (SDR 2003), November 17-19, 2003, Orlando, Florida.

9. Object Management Group. “PIM and PSM for Software Radio Components”: Final
Adopted Specification , dtc/04-05-04.

10. C. Tschudin, “Flexible Protocol Stacks”, Proc.ACM SIGCOMM ’91, Zurich, Switcherland,
1991, pp. 197-204.

11. Matthias Jung and Ernst W. Biersack, “A Component-Based Architecture for Software
Communication Systems”, In Proceedings of IEEE ECBS, pages 36--44, Edinburgh, Scot-
land, April 2000.

12. Beyer, D.A.; Lewis, M.G., “A Packet Radio API”, Page(s): 1261-1265 vol.3.
13. “End-to-End Reconfigurability”, IP IST Project , http://e2r.motlabs.com/
14. Object Management Group. “CORBA Components ”: Working Draft, ptc/02-08-03, Sep-

tember 2002.
15. 3GPP TS 32600, “Telecommunication Management; Configuration Management (CM);

Concept and high-level requirements;(Release 6)”.

http://www.omg.org/docs/ptc
http://www.omg.org/docs/ptc
http://www.omg.org/docs/ptc /04-05-15.pdf

	2.2 Protocol Component: A case study
	3.1 Protocol Reconfiguration Management/Runtime Model
	4.2 Future work

