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Abstract. There are important performance issues in secure wireless
networks, such as mobility, power, bandwidth, and bit error rate (BER),
that must be considered when designing a communication resume proto-
col. The efficiency of a secure session resume for a fast resume of secure
communication is a key point in secure connection development. In this
paper, a fast secure communication resume protocol using the initial-
ization vector (IV) count for a secure wireless network is presented and
evaluated against the efficiency of conventional resume protocols. Our
proposed secure session resume protocol is found to achieve better per-
formance, in terms of transmission traffic, consumed time, and BER,
than conventional resume protocols with the same security capabilities.

1 Introduction

The wireless transport layer security (WTLS) provides privacy, authentication,
and integrity in wireless application protocol (WAP) [1]. As the use of secure
wireless networks becomes more widespread, the necessity of security for these
networks is of increasing importance. However, in order to solve security issues in
secure wireless networks, the efficiency of security services must be taken into ac-
count. From the point of view of wireless environmental characteristics, research
on optimizing the security considerations of WTLS, such as low bandwidth, lim-
ited consumed power energy and memory processing capacity, and cryptography
restrictions, has been presented [2] [3] [4] [5]. Secure session exchange key proto-
col and security in wireless communications have been researched by Mohamad
Badra and Ahmed Serhrouchni [6], and by Mohammad Ghulam Rahman and
Hideki Imai [7]. Hea Suk Jo and Hee Yong Youn [8] examined a synchroniza-
tion protocol for authentication in wireless LANs, while Min Shiang Hwang et
al. [9] proposed an enhanced authentication key exchange protocol. However, in
terms of efficiency, the performance considerations for secure wireless networks,



such as mobility, power, bandwidth, and BER, are very important. Of particular
importance for a secure connection point is the efficiency of the secure session
resumme for the fast resume of secure communication.

In this paper, a protocol for fast secure session resume using IV count in
secure wireless networks is presented and its performance is evaluated against
that of conventional resume protocols. Results shows that the proposed protocol
achieves better performance in terms of transmission traffic, consumed time, and
BER than conventional resume protocols with the same security capabilities. Of
particular note is that the proposed protocol reduces consumed time by up to
60.6 %, compared with conventional protocols in a wireless network environment.

The remainder of this paper is organized as follows. In the next section,
detailed descriptions of the conventional full handshaking and session resume
protocol are given. In section 3, the proposed secure session resume protocol
is illustrated. Some performance considerations are presented in section 4, and
concluding remarks are provided in section 5.

2 Conventional Key Handshaking Protocol in WTLS

The WTLS protocol determines the session key handshaking mechanism for
secure services and transactions in secure wireless networks, and consists of the
following phases: the handshaking phase, the change cipher spec phase, and
the record protocol phase (RP) [3] [4] [5]. In the handshaking phase, all the
key techniques and security parameters, such as protocol version, cryptographic
algorithms, and the method of authentication, are established between the client
and the server. After the key handshaking phase is complete, the change cipher
spec phase is initiated. The change cipher spec phase handles the changing of
the cipher. Through the change cipher spec phase, both the client and the server
send the finished message, which is protected by a RP data unit that is applied by
the negotiated security suites [6] [7]. The RP phase is a layered protocol phase
that accepts raw data to be transmitted from the upper layer protocols. RP
compresses and encrypts the data to ensure data integrity and authentication. It
is also responsible for decrypting and decompressing data it receives and verifying
that it has not been altered. In terms of secure wireless networks, WTLS requires
fewer cryptographic computations, fewer resources, and less processing time than
the secure sockets layer (SSL) protocol [1] [3].

Secure communication necessitates the encryption of communication chan-
nels. To achieve this, a key handshaking protocol allows two or more users to
share a key or an IV. A conventional key handshaking protocol is illustrated
in Fig. 1. The client sends a client hello message that includes information
such as the version, session ID, acceptable cipher suites, and client random.
When the server receives the client hello message, it responds with a hello
message to the client and it also sends its certificate, key exchange, certificate
request, and server hello done message. After receiving the server hello done
message, the client responds by authenticating itself and sending its certificate.
Then, the client generates the premaster secret and sends its encryption data



Exus[Premaster Secret] encrypted with the server’s public key to the server.
The premaster secret is used to generate a master secret that is shared between
the client and the server.
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Fig. 1. Full handshaking process in WTLS protocol

The client then generates the master secret using the premaster secret, client
random, and server random. It also generates a sufficiently long key block using
the master secret, client random, and server random [1]. The generated key block
is hashed into a sequence of secure bytes, which are assigned to the message
authentication code (MAC) keys, session keys, and IVs. This is represented as
follows in Eq. (1) and Eq. (2).

Master Secret = Pseudo Random Function(Premaster Secret, (1)
"Master Secret", Client Random + Server Random)

Key Block = Pseudo Random Function(Master Secret, (2)
"Key Expansion”, Client Random + Server Random)

The client sends a change cipher spec message and proceeds directly to the
finished message in order to verify that the key exchange and authentication
process were successful. The server also generates MAC secrets, session keys,
and IVs using the key block. Then it sends the finished message to the client.
Finally, secure communication over the secure connection is established using
session keys and IVs.



2.1 Protocol for Secure Session Resume Using Premaster Secret

After completion of the conventional full handshaking protocol shown in Fig. 1,
a secure communication between client and server is established. However, data
frame loss occurs because of bit slips, channel loss, reflection, and diffraction in
the communication channel. If a data frame is lost, the output of the decryptor
will be unintelligible for the receiver and a session resume will be required. The
aim of the session resume is to ensure that the encryptor and decryptor have the
same internal state at a certain time. An internal state different from all previous
sessions has to be chosen to prevent the reuse of session keys or IVs [10] [11] [12].

To overcome the problems caused by these data frame losses, resume pro-
tocols for secure communication have been suggested. Such protocols can be
achieved by one of two methods: 1) premaster secret regeneration and retrans-
mission, which results in a new master secret and new key block, or 2) random
regeneration and retransmission, in which random is only used to change the
key block in each secure session resume.
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Fig. 2. Conventional protocol for secure session resume using premaster secret

Fig. 2 shows a protocol for a secure session resume using premaster secret
regeneration and retransmission. In this protocol, a new premaster secret is gen-
erated and sent in each session resume, and thus it results in the generation of a
new master secret and new key block. Therefore, new session keys and new IVs
are generated for every session resume. However, since a new premaster secret
is generated and sent in each secure communication resume, this method has
disadvantages such as a large computation load, time delay (including channel
delay), and BER. This protocol is executed as follows. First, secure communi-



cation between the client and server is performed for time At, and then data
frame loss occurs. After the server realizes the data frame loss, it requests a new
premaster secret for session resume. The client generates a new premaster secret
and sends Exps[Premaster Secret]. The client then generates a new master
secret using the new premaster secret and the original random cached in the
initial hello message stage, and generates a new key block using the new master
secret and original random. Thus, the result is the generation of new session
keys and new IVs.

New Master Secret = Pseudo Random Function(New Premaster (3)
Secret, " Master Secret”, Original Client Random +

Original Server Random)

New Key Block = Pseudo Random Function(New Master Secret, (4)
"Key Ezpansion”, Original Client Random +

Original Server Random)

The client then sends the finished message to the server. The server generates
a new master secret and a new key block, and then also sends the finished
message to the client. After the session resume time Ad shown in Fig. 2, secure
communication is reinitiated.

2.2 Protocol for Secure Session Resume Using Random Value

On the other hand, the protocol for a secure communication resume using ran-
dom regeneration and retransmission is shown in Fig. 3. In this protocol, a new
random is generated and sent in each secure session resume, which results in
the generation of a new key block in each session resume. As with premaster se-
cret regeneration and retransmission, this protocol also suffers from time delay,
including channel delay, and a large BER.

Secure communication is performed for time At, and then data frame loss
occurs. After realizing the data frame loss, the server requests a new random
for session resume. The client generates a new random and includes it in a hello
message. After the server receives the hello message from the client, it sends
its own hello message that includes its new random. The server also generates
a new key block using the new random and cached original master secret, and
then generates new session keys and new IVs. This means that a resumed session
will use the same master secret as the previous one. Note that, although the
same master secret is used, new random values are exchanged in the secure
communication resume. These new randoms are taken into account in the new
key block generation, which means that each secure connection starts up with
different key materials: new session keys and new IVs.

New Key Block = Pseudo Random Function(Original Master  (5)
Secret, "Key Expansion”, New Client Random +

New Server Randomn)
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Fig. 3. Conventional protocol for secure session resume using random value

Finally, the server sends the finished message to the client. The server gener-
ates a new key block, resulting in new session keys and new IVs, and then it also
sends the finished message to the client. After session resume time Ad shown in
Fig. 3, secure communication is reinitiated.

3 Proposed Secure Communication Resume Protocol
Using IV Count

3.1 Protocol for Proposed Secure Session Resume Using IV Count

To overcome the problems inherent in conventional secure communication re-
sume protocols and to reinitiate secure communication much faster than they
allow, we propose a new, efficient, and secure communication resume protocol
that uses an IV count value.

Fig. 4 shows the proposed secure communication resume protocol, in which
a count value of IV is sent to generate the new IVs in each secure session. After
realizing the data frame loss, the server requests a new count value of IV for
session resume. The client sends a new count value IV and generates new IVs
using the count value. That is, the count value is used to generate new message
protection materials, which means that each secure connection starts up with
different IVs. Therefore, a resumed session will use the same session keys as the
previous session. Note that, although the same session keys are used, new IVs
are used in the secure communication resume. The client sends the change cipher
spec and finished message to the server. The server generates new IVs using the
received count value, and then sends the change cipher spec and finished message
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Fig. 4. Proposed protocol for secure session resume using IV count

to the client. The client and server finally have the new IVs after session resume
time Ad as shown in Fig. 4 and as represented in Eq. (6).

a=a +v, 1<y<2Voize g (6)

Here, « is the value of IV in each session and ag represents the value of the
original IV. v is a count value in each session resume and is increased by a value
of one for every session resume.

3.2 Security Analysis

Security problems regarding attacks against the WAP WTLS were surveyed by
Markku Juhani Saarinen [5], and it has been found that many of the changes
that were made by the WAP Forum have led to increased security problems [1].
In this paper, to determine the key refresh period for secure session resume,
the key refresh concept, which is referred by the WAP forum, was used and
the condition of low bound was derived to avoid collisions from the birthday
paradox [13].

An internal state different from all previous sessions has to be chosen, to
prevent the reuse of session keys or IVs. If two n bit ciphertexts, C; and C}, are
arbitrarily chosen from ciphertext block C = (Cy, Cs, ..., Cy), and provided
that the input plaintext P = (P, P», ..., Py) in the cipher block chaining
(CBC) mode [13] are equal, the following Eq. (7) is given.

Ci = Ex(P;®Cim1) = Ex(P;©Cjm1) = Cj (7)
PeCiy = Folii, PoP =Ci19C



Also, if the two ciphertexts, C; and Cj, in cipher feed back (CFB) mode [13]
are equal and if the two key stream blocks, O; and Oj, in output feed back
(OFB) mode [13] are also equal, these are represented as follows in Eq. (8).

Ex(Ci) = Piy1® Ciy1 = Py & Cj1 = Ek(C)) (8)
Pii1® Py = Cip1 ©Cj4a
0i = Ex(0i_)) = P& C; = P, C; = Ex(O;_1) = O,
P; @Pj =C;® Cj

In other words, we acquire the information of plaintexts from the known
ciphertexts. Therefore, the new keys are calculated and updated after a proper
period to overcome the problematic plaintexts information issue. This key refresh
period is computed using the birthday paradox. The number of pairs generated
with ciphertext block C' = (C4, Cs, ..., Cay) is M (M —1)/2, and the probability
of at least one coincidence is shown in Eq. (9).

P:l—(l—i>
2n

M(M-_1) M(M —1)
1l -—e ¥l v —
2n+1

M(M-1)

1 —2"x POES
(- ) o

M(M-1)
)

X

where n bit is the block size used in the block cipher. If M is about 2*/2, then
at least one coincidence is found. By the birthday paradox, for strong collision
resistance and a well-designed block cipher function with n bit input block size,
it must hold that finding any pair (z,y) 3 f(x) = f(y), takes 2*/? trials. In the
birthday bound, this means that even a perfect n bit block cipher function will
start to exhibit collisions when the number of inputs nears the birthday bound
27/2_ Then, if coincidence exists, the problem of the plaintexts information issue
occurs. Consequently, a new key is generated and updated before encrypting the
27/* input plaintext blocks. For example, in the case of DES, the maximum key
refresh period is 2'6(264/4) plaintext blocks.

TKey Refresh — 2n/4 (10)

Table 1 shows the relation of collision probability and block size in the bound
of the birthday paradox.

On the other hand, IV resets after 2/V'5*¢, The probability of IV reset within
the 2""/4 key refresh period is as small as the IV size is large, while the probability
of its reset is as large as the IV size is small. For instance, if an IV size is 8
bytes, it resets after 264. This means that 8 bytes IV do not reset within the
216 key refresh period, namely, 264/ input plaintext blocks in 64 bits block size.
Therefore, if data frame loss occurs within the key refresh period, and if then a
secure session resume is required, we have only to generate and update a new IV
for every session resume instead of a new key generation. In addition, we have
only to generate and update new keys at the time of key refreshing.



Table 1. Result of collision probability and input/output block size

Block Size (n)| Number of Input Block (M) |Probability (P)

28 1.77 x 1071
64 bits 216(264/4 key refresh period) | 1.16 x 10710
232 4.99 x 107!
216 6.31 x 107%°
128 bits  [23%(2'%*/4) key kefresh keriod)| 2.71 x 1072°
264 4.99 x 107!

4 Performance Consideration

In this paper, to prove the efficiency of the proposed protocol, we compared
and analyzed the transmission message size and the consumed time for session
resume of our proposed protocol with conventional protocols. The performance
of the proposed session resume protocol has also been evaluated in terms of BER.

Table 2 shows a comparison of the transmission procedure and message sizes
according to each protocol for secure session resume: CLT is the client, SVR is
the server, the Change Cipher Spec/Finished message is CCS/F, V is WTLS
version, and SID is session ID, R is random, and SI is a security association such
as key exchange suit, cipher suit, compression method, etc.

Table 2. Comparison of Ad and transmission message size according to each protocol

Protocol for Resume|Steps| Ad |Transmissi0n Message Size
Premaster Secret 20 bytes
Premaster Secret 3 CLT CCS/F 13 bytes
SVR CCS/F 13 bytes
[V, R, SID, SI] CLT Hello 30 bytes
Random 4 |[V, R, SID, SI] SVR Hello 30 bytes
CLT CCS/F 13 bytes
SVR CCS/F 13 bytes
IV Count Value 8 bytes
Proposed 3 CLT CCS/F 13 bytes
SVR CCS/F 13 bytes

As shown in Table 2, in the premaster secret protocol, the transmission mes-
sages consist of the premaster secret, client change cipher spec/finished message,
and server change cipher spec/finished message. The transmission size of these



messages is about 46 bytes. In the case of random protocol, the transmission
messages are about 86 bytes in size and are composed of the client hello mes-
sage, server hello message, client change cipher spec/finished message, and server
change cipher spec/finished message. However, in the proposed protocol, the
transmission messages are composed only of the count value of IV, client change
cipher spec/finished message, and server change cipher spec/finished message
and their size is about 34 bytes. This Table shows that our proposed session
resume protocol allows the establishment of secure sessions in an economic way,
as it has fewer transmission message flows and smaller sizes than either the pre-
master secret or the random protocol. This can be particularly advantageous in
wireless networks where the radio bandwidth is bottlenecked.

To evaluate the efficiency of secure session resume protocol, the consume
time needed for each protocol must also be considered. The results of the con-
sumed time for session resume are shown in Table 3. For 2G and 3G in a bearer
service environment, each protocol is serviced by 100bps (9.6Kbps), i.e., a min-
imum(maximum) bandwidth environment of 2G, and 14.4Kbps (384Kbps), i.e.,
a minimum(maximum) bandwidth environment of 3G. Here, T1 are the trans-
mission bits at each 1 iteration, TC1 are the transmission bits at each 1 iteration
with 50 % redundancy channel coding, and TC3 are the transmission bits at 3
iterations with 50 % redundancy channel coding.

Table 3. Consumed time to reopen secure session

Protocol for Resume |2G at 100bps|2G at 9.6Kbps|3G at 14.4Kbps|3G at 384Kbps

T1 3.7 sec 38 ms 25 ms 1 ms
Premaster Secret|TC1 7.4 sec 76 ms 51 ms 2 ms
TC3| 22.1 sec 230 ms 153 ms 5 ms
T1 6.9 sec 70 ms 47 ms 1.7 ms
Random TC1 13.7 sec 140 ms 95 ms 3.5 ms
TC3| 41.3 sec 430 ms 280 ms 10.7 ms
T1 2.7 sec 28 ms 18 ms 0.7 ms
Proposed TC1 5.4 sec 56 ms 30 ms 1 ms
TC3| 16.3 sec 170 ms 113 ms 4.2 ms

In the TC1 environment, 2G at 100bps, if the protocol used for session resume
is the premaster secret protocol, the consumed time for session resume is about
7.4 sec. In the case of random protocol, the consumed time is even higher about
13.7 sec. In the proposed protocol, however, the consumed time is only about
5.4 sec, proving that this protocol provides a faster secure session resume than
the other resume protocols.

Table 4 shows results of BER in 3G according to the number of session
resumes using the consumed time in Table 3. When computing the BER for



1 session resume number per hour in the TC1 environment, the BERs in each
protocol are provided: 5.03 x 10~7 in premaster secret protocol, 9.72 x 10~7 in
random protocol, and 2.78 x 10~ 7 in the proposed protocol. This means that the
proposed protocol reduces BER by over 45 % when compared with the premaster
secret, protocol, and by about 72 % when compared with the random protocol.
We can also see that BERs increases as the number of session resumes increases,
and also that when the proposed protocol is used, the BERs are small than when
the premaster secret or random protocol is used.

Table 4. BER according to the number of session resumes (per hour)

Protocol for Resume | 1 | 2 | 4 | 6 | £8

T1 |2.78 x 1077(5.56 x 1077{1.11 x 1076]1.67 x 107%|2.22 x 10~
Premaster Secret|TC1[5.03 x 1077|1.11 x 1075(2.22 x 107%|3.33 x 1075]4.44 x 10~°
TC3|1.26 x 1075(2.78 x 107°%{5.55 x 1075(8.33 x 107%|1.11 x 1073
T1 [4.72 x 10779.44 x 1077|1.89 x 107%(2.83 x 107°(3.78 x 10™°
Random TC1(9.72 x 1077(1.94 x 107%(3.89 x 1076(5.83 x 107¢|7.78 x 107
TC3(2.97 x 107%(5.94 x 107°%1.19 x 1075|1.78 x 107°|2.38 x 105
T1 {1.94 x 1077(3.89 x 1077(7.78 x 1077|1.16 x 107°%|1.56 x 1076
Proposed  |TC1|2.78 x 1077|5.56 x 10~ 7[1.11 x 10~ %|1.67 x 107°(2.22 x 10~°
TC3|1.17 x 1075(2.33 x 107%{4.67 x 1075|7.00 x 107%]9.33 x 1076

Fig. 5 shows a BER at the T1 environment shown in Table 4, demonstrating
that the BERs from the proposed protocol are smaller than those from the
premaster secret and random protocols.
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Fig. 5. BER at T1 environment in 384Kbps according to the number of session resumes



5 Conclusion

Most security research in secure wireless networks is focused on secured rout-
ing and transmitting in the network. However, because of the security issues in
secure wireless networks, we suggest that the efficiency of security services is
also an important issue. In this paper, a fast and secure communication resume
protocol using IV count for wireless networks is presented and evaluated against
the efficiency of conventional resume protocols. During the secure session resume
phases, we manage to reduce transferring traffic and thus also reduce the band-
width on wireless networks. Moreover, our enhanced proposed protocol is able to
reduce the consumed time or cryptographic load and the computations in order
to reopen secure sessions quickly.

Therefore, this proposed secure session resume protocol provides a fast re-
sume of secure communications, while having the same security capabilities as
other protocols and reducing the transferring traffic, consumed time, and BER
in a WTLS protocol environment. In particular, this protocol reduces consumed
time by up to 60.6 % when compared with conventional protocols.
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