
Loosely-Coupled Integration of CSCW Systems

Roberta L. Gomes1, Guillermo J. Hoyos Rivera2, Jean Pierre Courtiat

LAAS-CNRS,
7, Avenue du Colonel Roche, 31077 Toulouse Cedex 4, France

{rgomes, ghoyos, courtiat}@laas.fr

As collaboration activities usually involve several people with different group
tasks and needs, they are rarely supported by a single CSCW technology. Then
different types of collaborative applications are usually applied in order to sup-
port group work. But in spite of being used to accomplish a common collabora-
tion task, these applications are executed independently without getting any ad-
vantage of each other. The integration of such applications would allow them to
dynamically interoperate, combining their different functionalities in a con-
trolled way. In order to achieve integration, we propose LEICA3, a loosely-
coupled integration environment which allows collaborative applications to in-
teract without loosing their autonomy. LEICA relies on Web services technol-
ogy, event notification system, and collaboration policies for controlling the in-
teractions between integrated applications.

1 Introduction

The increasing communication demands of geographically dispersed organizations
combined with the technological advances in networking have given rise to the devel-
opment of a great number of CSCW (Computer Supported Cooperative Work) sys-
tems. These systems aim to provide suitable forms of cooperation within a group of
users to perform collaborative activities.

As collaboration activities usually involve several people, with different group
tasks and needs, they are rarely supported by a single technology. Thus some CSCW
systems try to combine different functionalities in order to support collaboration into
a single environment. The main weakness of this approach is the challenge behind the
anticipation of all the requirements of cooperative situations. This way a CSCW sys-
tem is hardly suitable and sufficient for every collaborative activity.

As a result, current collaborative environments consist of a range of applications,
working side by side but independently, without really getting advantage of each
other. Allowing the integration of these applications could bring significant benefits
to users. An integrated collaboration environment would allow the different function-
alities of existing applications to be dynamically combined and controlled (enhancing
flexibility and tailoring possibilities).

1 Researcher supported by a scholarship from CNPq, Brazil.
2 Researcher supported by scholarship 70360 CONACyT/PROMEP, Mexico.
3 This research is partially supported by the European IST project Lab@Future.

In order to achieve the integration of existing CSCW systems avoiding dealing with
their low-level features, we propose LEICA, a "Loosely-coupled Environment for In-
tegrating Collaborative Applications". Relying on Web services technology [1] and an
event notification system (supporting the publish/subscribe paradigm [2]) different
collaborative applications can interoperate by exchanging information within the con-
text of a global SuperSession. The loosely-coupled approach proposed by LEICA
overcomes two problems usually related to integration environments: (i) it does not
require a true semantic integration of collaborative applications, (ii) once integrated to
the environment, collaborative applications keep their autonomy.

The definition of collaboration policies controls the interactions among integrated
applications, i.e. how the collaboration activity supported by one application will be
affected by information received from other applications. In practice, these applica-
tions interact through the notification of events which may lead to performing specific
action(s) in some of these applications.

The interaction degree among integrated applications depends obviously on the na-
ture of the events they are able to exchange, and actions they are able to perform.
Three main cases may be considered when integrating applications: a) open source
applications, b) API-based applications, and c) applications without any API. Integra-
tion of open source applications can achieve the tightest interaction degree, since any
internal event/action can be exported/performed; it might however imply great devel-
opment efforts. Integration of API-based applications is straightforward, and interac-
tion is limited to the provided API. Applications providing no API are constrained to
interact only through application start and stop actions. LEICA's integration approach
has been mainly driven by the second case (b). We believe that developers are cer-
tainly interested in creating specific and performable collaboration tools that can be
used either stand-alone or integrated with other applications (through a flexible API),
thus being able to get a great share of the market. This is for instance the case of
Skype™ [3], a successful example of communication tool that has recently released
its API.

The paper is structured as follows. Section 2 presents related work regarding the
integration of existing CSCW systems. Section 3 overviews the general integration
approach proposed by LEICA. Section 4 describes how a SuperSession is configured
and explains how to specify collaboration policies. Section 5 presents the LEICA's ar-
chitecture and how to integrate applications in practice. Section 6 draws some conclu-
sions and presents directions of future work.

2 Related Work

In [4], Dewan addresses basic issues in interoperating heterogeneous CSCW systems
that concurrently manipulate the same artifacts. However, it does not regard the inter-
operation of CSCW systems that, despite being involved in the same collaborative
tasks, do not deal with the same artifacts (e.g. videoconference and shared white-
board).

In [5] authors propose an integrative framework based on a three-level model: on-

tological, coordination and user interface. An internal knowledge of the collaborative
application is needed so that its functionalities can be mapped into the three-level
model in order to achieve integration. Accordingly, the integration of third party ap-
plications becomes a complex (even impossible) task.

 In [6] authors present the CVW, a prototype collaborative computing environment
defining a place-based system for integrating document and meeting-centric tools.
Basic freeware collaborative applications have already been integrated, and new, spe-
cial-purpose tools can be integrated, but the integration process is not straightforward
– tools must be designed against a place-based API.

Systems like AREA [7] and NESSIE [8] have tried to propose a loosely-coupled
integration for supporting cross-application awareness. Like LEICA, these systems
are based on the exchange of activity relevant events. However these environments
just aim to provide users with a common awareness of the whole collaboration activ-
ity. They do not provide any means for defining how an application should react when
events are notified by other applications.

Another proposal also based on a loosely-coupled approach is presented in [9].
The authors define a framework where Web services are used to wrap collaborative
applications in order to integrate them. Since they leverage open Internet standards,
Web services overcome the interoperability issues usually associated with more gen-
eral integration solutions like CORBA [10], DCOM [11] and EJB [12]. Besides, they
are simpler to design, develop, maintain and use. Web services based integration is
quite flexible, as it is built on a loose coupling between applications.

One of the drawbacks related to the Web services wrapping approach (in particular
to the use of SOAP [13]) is that it represents an additional tier causing some overhead
in processing exchanged messages [14,15]. Besides, depending on the architecture of
the existing collaborative applications, the complete wrapping of these applications as
Web services may imply great development efforts or even applications redesign.

Therefore, unlike the approach employed in [9], and following the recommenda-
tions of [14] and [15], we decided to use Web services for coarse-grained operations
only. Thus, LEICA applies Web services as an initial mechanism for (i) registering
newly integrated applications, (ii) setting and (iii) starting up collaborative sessions.
Then, a different infrastructure is used to implement the event notification system in
charge of interconnecting the collaborative applications during the execution of an in-
tegrated collaborative session. An overview of the proposed integration approach is
presented in the following section.

3 General Integration Approach

The integration of a collaborative application to LEICA is achieved by attaching a
Wrapper to this application1. This Wrapper comprises a Web services interface allow-

1 Wrappers are attached to servers of client/server and multi-server applications, and to the

peers of peer-to-peer (P2P) applications.

ing the collaborative application to register itself with LEICA1 as an integrated appli-
cation. Through its Web services ports, the integrated application can interact with the
Session Configuration Service (fig. 1).

Session
Configuration

Service

SuperSession
Configuration E

vent N
otification S

ystem

Web Services
Interface

Collaboration

Policies

Wrapper

Collaborative
Application

Master Server

Wrapper

Collaborative
Application

Server

Integrated
Applications
Integrated

Applications

P2P
Collaborative
Application

P2P
Proxy Wrapper

Fig. 1. LEICA general integration framework

The Session Configuration Service is a Web service used for (i) configuring new
global SuperSessions and (ii) starting up SuperSessions. A SuperSession is an inte-
grated collaborative session holding the whole collaboration activity. Within the con-
text of a global SuperSession, different specificSessions can exist. A specificSession is
then a conventional collaborative session defined within the context of one collabora-
tive application (e.g. a videoconference session, a whiteboard session, etc.).

During the SuperSession configuration process, the Session Configuration Service
dynamically contacts each integrated collaborative application in order to request: (i)
which specific data is required to create specificSessions for this respective applica-
tion (e.g. a videoconference tool might need an IP multicast address); and (ii) which
kind of events it can notify, and action requests it can receive. This second informa-
tion will be used during the collaboration policies definition process.

Collaboration policies are a set of rules following a condition/action model. These
rules define how collaborative applications might react when events coming from
other collaborative applications are notified. In other words, collaboration policies are
the mechanism allowing to determine how an application should react when receiving
information (events) notified by other applications.

Once a SuperSession has been configured, the Session Configuration Service can
finally start it. To do so, firstly it contacts each integrated collaborative application
requesting them to create the specificSessions defined in this SuperSession. Then,
these collaborative applications are interconnected through an event notification ser-
vice (as previously explained, from this point Web services are not used anymore).

As collaboration activities progress, collaborative applications exchange event noti-
fications in a peer-to-peer fashion. Meanwhile, Wrappers are in charge of managing
the collaboration policies. When the Wrapper of a collaborative application receives
event notifications, it verifies if the notified events enable any policy rule concerning

1 Except for P2P applications, which use a P2P Proxy in order to register themselves.

this collaborative application. If so, the Wrapper sends action requests to the respec-
tive application. Note that LEICA is not intended to support low-level physical events
(e.g. mouse click/scrolling) or high frequency synchronization events (e.g. current po-
sition of moving objects). It aims to support activity relevant events that carry some
semantics.

In the next section we detail the SuperSession configuration process, explaining
how to specify the collaboration policies of a SuperSession.

4 SuperSession Configuration

In order to create a SuperSession, a two steps configuration process is carried out: (i)
Session Management configuration and (ii) Collaboration Policies configuration.

4.1 Session Management Configuration

In the first configuration step, all data necessary to define the main elements of a Su-
perSession are provided. Two groups of information have to be specified:
• General Session Management information (GSMinfo). It carries management in-

formation such as scheduling, membership and general user roles.
• Integrated Applications information (IAinfo). It defines the list of integrated ap-

plications to be used during this SuperSession. For each collaborative application,
a list of specificSessions is defined, where specific data required by this applica-
tion for creating sessions is provided (e.g. a videoconference application will be
provided with an IP multicast address).

4.2 Collaboration Policies Configuration

The second step of the SuperSession configuration process deals with the specifica-
tion of collaboration policies. As briefly described in section 3, these policies are re-
sponsible for linking the collaboration activities supported by different specificSes-
sions in the context of the global SuperSession. This is carried out through a set of
policy rules, basically allowing the association of n event notifications to the execu-
tion of m actions (under certain conditions).

In order to specify the policy rules, a collaboration policies editor might be used.
Policy rules are then created through the composition of GUI components, called pol-
icy widgets. Once the collaboration policies are created, the respective XML data is
generated which is appended to the SuperSession configuration file. The rules' seman-
tics associated with the XML syntax has been defined using the RT-Lotos formal de-
scription technique [16]. This semantics is implemented by a sub-module of the
Wrapper.

Figure 2 illustrates the policy widgets used to create policy rules. These widgets can
be connected through their connection points. The basic composition rules are: (i) pol-

icy rules are read from left to right; (ii) only widgets without any connection point on
their left can appear on the left end of a policy rule; (iii) only widgets without any
connection point on their right can appear on the right end of a policy rule.

Type

Event
Parameters

Event Predicate

From

Latest Earliest

Type

Action
Parameters

To

Action

connection points

Fig. 2. Policy widgets

The Event widget represents an event notification. Each Event is associated with a
collaborative application (field "From") and has a type (field "Type"). In the "Event
Parameters" area it is possible to define matching patterns (filters) for parameters'
values. The Action widget represents an action execution request. Each Action is as-
sociated with a collaborative application (field "To") and has a type (field "Type"). In
the "Action Parameters" area, all the required parameters for this action type are
specified. Note that all event and action types (and their parameters) are well-known
since they are provided by each integrated application.

Figure 3 shows a simple collaboration policy rule associating directly one action
with one event. This policy rule is enabled when the specified event is notified. It
specifies that: if the application "CA1" notifies an Event of type "T1" with parameter
"a:M*" (a string starting by "M"), then an action request of type "T2" must be sent to
application "CA2". The '%' character is a reference operator, indicating that the Ac-
tion's parameters "d" and "y" have their values copied from the Event's parameters "b"
and "c".

Type: T1
a:M*
b:
c:

From: CA1
Type: T2
To: CA2

d:%1.b
y:%1.c

1

Fig. 3. A simple collaboration policy rule

A Predicate widget allows the association of conditions to enable policy rules. A
Predicate can appear alone or attached to every policy widget but an Action. It con-
tains a predicate that is specified in Java™ language syntax. Predicates can impose
time constraints, as well as conditions based on the current SuperSession state. When
a Predicate is attached to an Event (or to a Latest) it can also reference the parameters
of the respective Event (or the parameters of the Events connected to the Latest).

The Earliest and Latest widgets allow the composition of different Events for the
specification of a policy rule. When Events are grouped through an Earliest, the pol-
icy rule is enabled when one of the specified Events is notified. When Events are
grouped through a Latest, the policy rule is enabled after all events have been noti-
fied.

Figure 4 shows two examples of policy rules using Latest and Earliest widgets. In
the left example, the policy rule is enabled when both specified events are notified
(for the first one, the attached Predicate must be evaluated to true). Then the Predi-
cate associated with the Latest widget is also evaluated. If it is true, then the two
specified action requests are sent. In the right example, there is an Event and a Predi-
cate grouped through an Earliest. Policy rules like this one aim at waiting the fulfill-
ment of certain conditions to be enabled (e.g. regarding the SuperSession state); how-
ever if a particular event is notified before this condition is satisfied, then the policy
rule is also enabled.

Type: T1
From: CA1

Type: T3
To: CA3

Type: T4
To: CA4

Type: T1
From: CA2

a:M*
c:

n:

y:%1.a

x:%2.n

1

2

Type: T1
From: CA1

a:M*
c:

1

Fig. 4. Policy rules using Latest and Earliest

An upcoming problem is related to the fact of having more than one Event in the
same policy rule. Thus, an automatic sequence number is attributed to each Event in
order to be used as identifier while referencing event parameters. Another constraint
related to event parameters referencing appears when Events are grouped through an
Earliest. As it defines a non-deterministic behavior (there is no way of knowing
which of the Events will enable the policy rule) parameters from Events of different
types grouped through an Earliest can not be referenced by a Predicate attached to
this Earliest.

As illustrated in figure 5, different Earliest and Latest widgets can be combined in
order to create compound rules.

Type: T1
From: CA1

Type: T2
From: CA2

Type: T2
To: CA2

Type: T2
To: CA3

a:M*
b:>10
c:

n:
t:

Type: T1
From: CA1

a:N*
c:
m:

x: %3.m

y: %3.c

1

2

3

Type: T3
To: CA2

n: %3.c

Fig. 5. A compound collaboration policy rule

5 LEICA's Architecture

Following the integration framework presented in section 3, we describe here the
LEICA's architecture and different implementation aspects of a prototype currently
under development. Java™ has been chosen as underlying technology for implemen-
tation. To precisely describe each architecture component, let us consider the five
necessary steps to achieve the execution of a SuperSession.

5.1 Integrating a Collaborative Application

CSCW systems may present different distribution architectures, varying from central-
ized to replicated architectures. Centralized architectures are usually implemented ac-
cording to the client/server or multi-server approaches. Replicated architectures are
mainly implemented following the P2P approach. These three different approaches
are considered to determine how to integrate collaborative applications to LEICA.

When integrating client/server or multi-server collaborative applications, a Server
Wrapper must be added to the servers. In the case of a P2P collaborative application,
a P2P Wrapper is used. As shown in figure 6, the difference between these two Wrap-
pers deals with the Web services interface, not present in the second case. Since P2P
applications are usually dynamically executed in the users' hosts when they get con-
nected, they cannot be permanently available as Web services. To overcome this
problem, a P2P Proxy is used.

Connector

W
S

In

te
rf

ac
e

Session
Manager

E
vent

N
otification
Interface

Session
Manager

E
vent

N
otification
Interface

P2P Wrapper

P
2P

 P
ro

xy

In
te

rf
ac

e

Application Interface

Connector

Application Interface

Server Wrapper

Fig. 6. The LEICA Wrappers

The Wrapper is a Java component to be tied to the collaborative application
through an Application Interface. This last is an abstract class to be extended in order
to implement the communication interface with the collaborative application itself 1.
Through this interface the collaborative application notifies the Wrapper of "what is
happening" inside its collaboration context (i.e. make event notifications), and re-
ceives all specificSessions set up and action requests.

The Session Manager implements the core functionalities of the Wrapper. It is in
charge of (i) receiving and handling specificSession configuration data; (ii) managing
the collaboration policies as it receives event notifications; and (iii) sending event no-
tifications to other collaborative applications.

1 JNI (Java™ Native Interface) is used for integrating non Java based collaborative applica-

tions.

5.2 Registering a Newly Integrated Application

To register with LEICA, as illustrated in figure 7, the Wrapper publishes its services
in a Private UDDI Registry [17]. In multi-server applications, a Master Server is des-
ignated to register the application. In P2P applications, registering is made through
the P2P Proxy.

P2P
Wrapper

Private
UDDI

Registry

P2P
Collaborative
Application

Client/Server
Applications
Client/Server
Applications

Multi-Server
Applications
Multi-Server
Applications

P2P
Applications

P2P
Applications

publish

publis
h

pu
bl

is
h

registryP2P
Proxy

Collaborative
Application

Server
Server

Wrapper

Collaborative
Application

Server
Server

Wrapper

Collaborative
Application

Master Server
Server

Wrapper

Server
Wrapper

Collaborative
Application

Server

Fig. 7. Registering collaborative applications to LEICA

For implementing the UDDI Registry, we use jUDDI [18], a Java implementation
that complies with UDDI 2.0. Wrapper's WS Interface and the P2P Proxy use
UDDI4J [19] (Java API for UDDI interaction) to interact with the UDDI Registry.

5.3 Creating SuperSessions

Figure 8 schematizes the necessary steps for creating a new SuperSession.

Private
UDDI

Registry

P2P
Proxy

Collaborative
Application

Server
Server

Wrapper

Collaborative
Application

Server
Server

Wrapper

Collaborative
Application

Master Server
MServer
Wrapper

Session
Configuration

Service

Web
Browser P

or
ta

l

Sessions
Directory

2

4

3

1 Multi-Server
Applications
Multi-Server
Applications

Client/Server
Applications
Client/Server
Applications

P2P ApplicationsP2P Applications
Server

Wrapper

Collaborative
Application

Serverfin
d

HTTP SOAP

SOAP
SOAPS

O
A

P

Fig. 8. Configuration of new SuperSessions

1. A Web portal is used to access the Session Configuration Service and start the
creation process.

2. The Session Configuration Service accesses the Private UDDI Registry to find out
which are the integrated collaborative applications.

3. The Session Configuration Service contacts integrated applications to get informa-
tion about which specific data are needed for configuring specificSessions, and
which kind of events it can notify and action requests it can treat. Based on this in-
formation, GSMinfo, IAinfo and collaboration policies can be defined.

4. The SuperSession configuration file is finally generated and stored.

To implement all these Web services interactions, we use Apache Jakarta Tomcat
5.0 and Apache SOAP 2.3.1.

5.4 Running SuperSessions

Figure 9 illustrates how a SuperSession is started.

1. A Web portal is used to start a SuperSession.
2. The SuperSession configuration file is retrieved and parsed. The collaborative ap-

plications to be used in this SuperSession are identified.
3. The Session Configuration Service contacts integrated applications to set up

specificSessions and to send them the collaboration policies of this SuperSession.
4. The Server Wrappers of each collaborative application are interconnected through

the Event Notification System. From this point, Web services are not used anymore.

Web
Browser P

or
ta

l

1

Collaborative
Application

Server
Server

Wrapper

Collaborative
Application

Server
Server

Wrapper

Collaborative
Application

Master Server
Server

WrapperServer
Wrapper

Collaborative
Application

Server

Collab. Application ACollab. Application A

Server
Wrapper

Collaborative
Application

Server
Collab.
Application B
Collab.
Application B

Collab.
Application C

Collab.
Application C

Event Notification System

SOAPHTTP

SOAP

SOAP

S
O

A
P

4

3

Session
Configuration

Service

Sessions
Directory

2

Fig. 9. Starting up a SuperSession

In order to implement the event notification system keeping the loosely-coupled
nature of LEICA, the publish/subscribe paradigm [2] has been chosen. Pub-
lish/subscribe interaction scheme is well-adapted to loosely-coupled environments. In
general, subscribers register their interest in patterns of events and then asynchro-
nously receive events matching these patterns, regardless of the events' publishers.

Each Wrapper analyses the collaboration policies in order to discover: which type
of events it needs to publish, and which type of events it needs to subscribe to. A
Wrapper just needs to publish Events that could enable policy rules, and subscribe to
Events that could enable a policy rule defining Actions to its associated application.

In order to implement the publish/subscribe paradigm for notifying events, we use
Scribe [20], a Java based large-scale, peer-to-peer, topic-based publish/subscribe in-
frastructure. Scribe also provides efficient application level multicast.

5.5 Connecting to a SuperSession

In order to connect to a SuperSession, a LClient application is executed. Figure 10
shows how the connection of a new user is treated.

1. The LClient contacts the Session Configuration Service and it receives the
GSMinfo, IAinfo and collaboration policies defined to the chosen SuperSession.

2. The LClient plays the role of a local launch point for P2P and client applications.
As it needs to execute the collaboration policies in order to know when P2P/client
applications must be launched, it joins the event notification system to receive
event notifications.

3. Suppose that, initially, this user is to be connected just to two specificSessions,
concerning the collaborative applications "B" and "D". Then, the LClient runs the
client application "B" and the P2P application "D".

4. The Wrapper of the P2P application "D" connects to the event notification system
and executes the same publishing/subscribing process described in the previous
subsection.

Session
Configuration

Service

Sessions
Directory

4

1

Collaborative
Application

Server
Server

Wrapper

Collaborative
Application

Server
Server

Wrapper

Collaborative
Application

Master Server
Server

Wrapper
Server

Wrapper

Collaborative
Application

Server

Collab. Application ACollab. Application A

Server
Wrapper

Collaborative
Application

Server

Collab.
Application B

Collab.
Application B

Collab.
Application C

Collab.
Application C

2

Event Notification System

User host

LClient

P2P
Wrapper

P2P
Collaborative
Application

Collab. Application DCollab. Application D

3

Collaborative
Application

Client

Collab.
Application B

Collab.
Application B

SOAP

Fig. 10. User connection to a SuperSession

LClient is a Java application using Apache SOAP 2.3 to contact the Session Con-
figuration System, and Scribe's classes to connect to the event notification system.

6 Conclusions and Future Work

This paper has presented LEICA, a loosely-coupled environment for integrating col-
laborative applications. Existing collaborative applications can be loosely integrated
using Web Services as integration technology. In the context of a SuperSession, a
global collaboration activity is supported where different integrated applications are
used in a parallel and coordinated way. Based on the specification of collaboration
policies, LEICA defines applications' behavior in response to event notifications.

The current prototype implementation confirms the fact that open source collabora-
tive applications achieve richer interaction levels since we have all the needed flexi-
bility for binding Wrappers to applications. However, as new software applications
are increasingly coming out of the box with API specifications (sometimes based on
Web services), their integration tends to be straightforward.

Regarding Web services, an important effort has been deployed in order to propose
solutions for optimizing the transmission and/or wire format of SOAP messages. In
this perspective, the current event notification system of the LEICA could also be-
come a Web services-based system without the performance problem actually inher-
ent to SOAP.

Concerning the definition of collaboration policies, no verification of policies' con-
sistency conciseness has yet been performed. Possible solutions based on the use of

formal techniques description to guarantee policies' consistency will be studied in a
near future.

References

1. Web Services Activity (2005): http://www.w3.org/2002/ws/
2. Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A.-M.: The many faces of

publish/subscribe. ACM Computing Surveys, Vol.35. ACM press (2003) 114-131
3. Skype website. http://www.skype.com/
4. Dewan, P.,: An experiment in interoperating heterogeneous collaborative systems. 6th

European Conference on Computer Supported Cooperative Work, Copenhagen, Denmark.
Kluwer Academic Publishers (1999)

5. Iqbal, R., James, A., Gatward, R.: A practical solution to the integration of collaborative
applications in academic environment. 5th International Workshop on Collaborative Editing
Systems, hosted by the ECSCW'03, Helsinki, Finland (2003)

6. Spellman, P. J., Mosier, J. N., Deus, L. M., Carlson, J. A.: Collaborative virtual workspace.
International ACM SIGGROUP Conference of Supporting Group Work. ACM Press, Phoe-
nix (1997) 197-203

7. Fuchs, L.: AREA: a cross-application notification service for groupware. 6th European Con-
ference on Computer Supported Cooperative Work, Copenhagen, Denmark. Kluwer
Academic Publishers (1999)

8. Prinz, W.: NESSIE: an awareness environment for cooperative settings. 6th European
Conference on Computer Supported Cooperative Work, Copenhagen, Denmark. Kluwer
Academic Publishers (1999)

9. Fox, G. et al.,: A Web services framework for collaboration and videoconferencing.
Workshop on Advanced Collaborative Environments, Seattle, Washington (2003)

10. Orfali, R., Harkey, D.: Client/server programming with Java and CORBA. Wiley,
NewYork (1998)

11. Distributed Component Object Model (DCOM) (2005): http://www.microsoft.com
12. Roman, E., Ambler S.W.: Jewell T Mastering Enterprise, JavaBeans. Wiley, NewYork

(2001)
13. W3C (2004): Simple Object Access Protocol (SOAP). http://www.w3.org/TR/soap
14. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services (chapter 5). In: Web

Services – Concepts, Architectures and Applications, Springer-Verlag (2004)
15. Chiu, K., Govindaraju, M. Bramley, R.: Investigating the limits of SOAP performance for

scientific computing. 11th IEEE International Symposium on High Performance Distributed
Computing. IEEE press (2002)

16. Courtiat, J.P., Santos, C.A.S, Lohr, C., Benaceur, O.: Experience with RT-LOTOS,a tempo-
ral extension of the LOTOS formal description technique. Computer Communications,
Vol.23, Num.12, July (2000) 1104-1123

17. W3C (2005): Universal Description, Discovery, and Integration (UDDI)
http://www.uddi.org.

18. Apache (2005): jUDDI webpage. http://ws.apache.org/juddi/
19. IBM (2005): UDDI4J webpage. http://www.uddi4j.org/
20. Castro, M., Druschel, P., Kermarrec, A.-M., Rowstron, A.: Scribe: A large-scale and

decentralized application-level multicast infrastructure. IEEE Journal on Selected Areas in
Communications (JSAC), Vol. 20, Num. 8. IEEE press (2002)

