
Transformation Composition Modelling Framework

Jon Oldevik

SINTEF Information and Communication Technology
Forskningsveien 1, 0373 OSLO, NORWAY

jon.oldevik at sintef.no
http://www.sintef.no

Abstract. When applying transformation technologies in an enterprise, there
will be a need for supporting compositions of different kinds of transformations
to support a development process. An example is a chain of transformations
that supports a process of going from requirements to use cases, from use cases
to a PIM architecture model, further to a platform specific model and finally
implementation code. Some transformation steps may also involve human in-
tervention, e.g. in a refinement of the PSM model, or a detailing of the use case
model. This work in progress paper investigates how the atomic transformation
viewpoint can be enhanced with support for transformation compositions, to
support model driven enterprise process needs. This is done by introducing a
modelling framework for composed transformations, based on a hierarchy of
transformation types, some of which represent simple atomic transformations,
others that represent complex transformations.

1 Introduction

Model transformation is an essential ingredient in model-driven development. In
order to support the automation of system development, standards for transformation
is emerging in the model-driven development community, driven by the Object Man-
agement Group (OMG). The forthcoming transformation standards such as the OMG
MOF Query/View/Transformation (QVT)[1] is a good baseline for leveraging the
model driven processes of enterprises. When applied in real use, needs will emerge to
support the development scenarios in an enterprise, which is often complex and in-
volves a set of integrated modelling, transformation, and validation tasks. An example
development process, involving specification of requirements, use cases, architecture
models, platform specific models and generation of code, will potentially involve a
number of automated or manual transformation tasks, as well as analysis tasks such as
model consistency checks.

This paper investigates how to support compositions of transformations that pro-
vide the needs that might occur in a model driven development scenario using UML 2
modelling techniques.

2 Transformation Composition Modelling Strategy

The transformation composition modelling strategy aims to support the construction
of complex transformations that uses other atomic transformations. Assumedly, for a
given enterprise, there will exist a number of defined transformations, which do sim-
ple or complicated transformation from a single domain to another.

These transformations might be combined to support parts of, or a complete, de-
velopment process for the enterprise. The basis for the transformation modelling
strategy is a number of transformation types which allows transformations to be com-
bined. A transformation can involve for example a model to model transformation
using QVT (or other transformation technology), a model refinement, which is done
manually, and model to text transformations.

Doing a transformation in itself might not always be sufficient. A transformation
imposes relationships that should be maintained and checked. Changes to models
might require transformations to be reapplied. Resulting models might need to be
check for consistency and validity. These kinds of analysis activities may also be part
of a broader transformation framework.

2.1 Transformation Types

The heart of the transformation framework is the transformation types, which define
transformation types with different natures. A GenericTransformation represents the
common aspects of all types of transformation (Figure 1).

Figure 1 Generic Transformation Structure

A GenericTransformation defines the overall structure and behaviour of all transfor-
mations. It is associated with a set of source and target metamodels. It has a transfor-
mation metamodel and a transformation model. During runtime, it consumes input
(which may be a model) and produces output (which also may be a model).

The input and output provided by a GenericTransformation can be of different
kind. They may be models, in case of a model to model transformation. Each of them
may also be some kind of text (e.g. code), in case of a model to text or text to model
transformation.

Figure 2 Execution structure of a GenericTransformation

The GenericTransformation is specialised into different types of transformations,
each of which has a special purpose. The framework is open for additional extensions
that provide tailored transformation types (Figure 3).

Figure 3 Transformation Types Hierarchy

The transformation hierarchy defines the following specialisations:
- ModelTransformation, which represents automatic transformations involving

models either as source or target or both.
- Model2ModelTransformation, which represents a transformation where involving

models as both source and target of the transformation. It may include several
source or target models.

- SimpleModel2ModelTransformation, which is a special case of
Model2ModelTransformation, represents model transformations with only one
source and one target model.

- Model2TextTransformation, which represents a transformation from a set of
source models to text output.

- Text2ModelTransformation, which represents a transformation from a text to a set
of models.

- ManualTransformation, which represents transformations that involves human
intervention (i.e. not supported by transformation tools), e.g. manual refinement
of a model.

- UserGuidedTransformation, a special kind of manual transformation which is
guided by user advice (input), but is executed by a tool.

- ComplexTransformation, which represents more complex transformations (Figure
4)

Figure 4 Complex Transformation Types

The ComplexTransformation represents transformations that involve several simpler
(atomic) transformation tasks. Two types of complex transformations are identified:
- ParallellTransformation, which represents transformations where the referenced

transformations can/must be executed in parallel. A parallel transformation refer-
ences two or more transformations, which are part of the parallel semantics.

- SequentialTransformation, which represents transformations where the referenced
transformations must be executed in sequence. A sequential transformation refer-
ences one or more transformation, which are part of the sequential semantics.

The goal of the ComplexTransformation types is to be able to construct useful
composite transformations, which basically invokes already existing, well-defined
transformations.

2.2 Building Composite Transformations

The composition of transformations requires that there already exists some reusable
transformations to compose from. An assumption is taken that a library of existing
transformation is readily available. These are described in terms of simple UML 2
activities, which consume input and produces output. The transformations are repre-
sented as activity nodes, with input objects (models and metamodels) and output
models. Object Flows are used to model the flow of models and metamodels used by
the transformation. Activity Parameters denote the consumed and produced input by a
transformation.

Figure 5 depicts two transformations; a model to model transformation, going from
a Use Case model to a Platform Independent Model (PIM); a manual transformation,
refining a PIM model. The transformation themselves are not detailed. They are ref-
erences, and can be e.g. a QVT specification.

Figure 6 depicts an example of a composition. It is a SequentialTransformation,
which contains references to the transformations defined in Figure 5, plus an addi-
tional PIM2PSM transformation, and a parallel transformation containing two text
transformations. Each of the referenced transformations may themselves be more
composites, thus allowing for arbitrary complexity of transformations.

Figure 5 Use Cases to Platform Independent Architecture Model (PIM)

Figure 6 Composite Transformation – Use Case through Text

The process of executing a complex transformation is basically an orchestration task,
i.e. making sure that each transformation is executed in its rightful order. In addition,
transformation processes may require different kinds of analysis to be done as part of
the process. Analysis tasks are also a necessary part of model-driven development
chains. Thus, specific tasks handling various pre-defined or tailored analysis of mod-
els or text, should have its place in a modelling and transformation framework. This
includes aspects such as model conformance, model completeness, traceability, vali-
dation, and other analysis tasks relevant for the models or text artefacts consumed or
produced. This could be incorporated at a modelling level to support a more holistic
model-driven approach.

2.3 Relationship with QVT

The forthcoming QVT language [1] can be used to specify complex transformations
in its lexical notation. It also supports composition of transformations through various
reuse mechanisms, such as extension or black-box reuse of transformation libraries.

Given a set of basic transformations that stands on their own, it is possible to cre-
ate a composite transformation, e.g. through the access mechanism of QVT.

transformation UC2PSM (in ucm : UseCaseMM, out psm: PSM):
access transformation UC2PIM (in ucm : UceCaseMM, out pim : PIM);
access transformation PIM2PSM (in pim : PIM, out psm: PSM);
main () {
 var pimResult := UC2PIM(ucm).transform();
 psm := PIM2PSm(pimResult).transform();
}

Combined with control constructs (like conditional branches), structured transforma-
tion compositions can be created. The graphical QVT syntax might be used for simi-
lar constructions, although the current graphical notation is tuned towards specifying
relations between the concepts of a single transformation. A UML2-oriented ap-
proach with composite activities (or even composite structures) can leverage specifi-
cation of higher-order transformations.

3 Related work

In [2], a framework for composition of transformation is proposed, which defines a
pattern for composite transformation and a lexical language for defining composites,
which handles configuration (execution ordering) of transformation components. This
framework does not propose any UML 2 coupling or relate to QVT. In [3], the side
transformation pattern is introduced to provide a means of describing combinations of
reusable transformations with particular focus of coping with application-specific
metamodel incompatibilities. The approach uses the graphical UMLX notation, re-
sembling the graphical QVT notation. Within web service orchestration, choreogra-
phy and composition [4], a lot relevant of work and technology exist that is pertinent
for describing reusable compositions of transformations, such as the Business Process
Modelling Notation (BPMN), the Business Process Execution Language (BPEL).

4 Summary and conclusion

This work in progress paper has described ongoing work in the ModelWare project
(IST Project 511731)*, concerning how to handle complex structures of transforma-
tions, using a model-based approach for composition of atomic transformations. The
continuation of the work will focus on elaborating the modelling framework and
support it with tools which are integrated with standards like QVT.

References
1. QVT-Merge Group, Revised submission for MOF 2.0 Query/Views/Transformations

RFP version 2.0, OMG document id ad/2005-03-02, http://www.omg.org/cgi-
bin/apps/doc?ad/05-03-02.pdf

2. Raphaël Marvie, A Transformation Composition Framework for Model Driven Engineer-
ing, LIFL 2004n10, November 2004

3. Willink, Harris, 2004, The Side Transformation Pattern, paper at the Software Evolution
through Transformations (SETra) 2004

4. Peltz C., Web Service Orchestration and Choreography, Web Service Journal Feature,
July 2003

* MODELWARE is a project co-funded by the European Commission under the "Information Society Technologies"

Sixth Framework Programme (2002-2006). Information included in this document reflects only the author’s views. The
European Community is not liable for any use that may be made of the information contained herein.

