
A Spatial Programming Model for Real Global Smart
Space Applications

René Meier, Anthony Harrington, Thomas Termin and Vinny Cahill

Distributed Systems Group, Department of Computer Science
Trinity College Dublin, Ireland

{rene.meier, anthony.harrington, thomas.termin, vinny.cahill}@cs.tcd.ie

Abstract. Global smart spaces are intended to provide their inhabitants with
context-aware access to pervasive services and information relevant to large
geographical areas. Transportation is one obvious domain for such global smart
spaces since applications can be built to exploit the variety of sensor-rich
systems that have been deployed to support urban traffic control and highway
management as well as within individual vehicles. This paper presents a spatial
programming model designed to provide a standardised way to build context-
aware global smart space applications using information that is distributed
across independent (legacy, sensor-enabled, and embedded) systems by
exploiting the overlapping spatial and temporal attributes of the information
maintained by these systems. The spatial programming model is based on a
topographical approach to modelling space that enables systems to
independently define and use potentially overlapping spatial context in a
consistent manner and in contrast to topological approaches, in which
geographical relationships between objects are described explicitly. Moreover,
this approach facilitates the incremental construction of global smart spaces
since the underlying systems to be incorporated are largely decoupled. The
programming model has been evaluated by building a context-aware service for
multi-modal urban journey planning, as part of the development of an overall
architecture for intelligent transportation systems in Dublin.

1 Introduction

Global smart spaces extend the vision of pervasive computing, in which everyday
objects communicate and collaborate to provide information and services to users, to
large geographical areas [1]. They extend the notion of objects cooperating in a home
or an office to the level of towns, cities, and even countries by integrating a variety of
sensor-based and other systems to provide truly pervasive context-aware services.
Such global smart environments will be heterogeneous as they likely will comprise a
multitude of sensors, networks, and ultimately systems. They will provide access to
information and services ranging from pervasive access to personal and professional
information, to city-wide information systems [2, 3], to context-aware traveller
assistance [4, 5], to optimised urban traffic control [6]. Users moving in such sensor-
augmented spaces may use handheld devices, such as mobile phones and Personal
Digital Assistants (PDAs), or integrated devices, such as (vehicular) on-board

2

computers, to interact with these spaces and to use the services that they provide.
Embedded control systems may likewise exploit these spaces to offer context-aware
urban traffic control, such as public service vehicle priority.

Global smart spaces are on the verge of becoming a reality in the transportation
domain where very many heterogeneous sensor-rich systems have already been
deployed in towns and cities and along national road networks. Such a global smart
space might enable users to access information ranging from information on places of
interest, to prevailing road and weather conditions, to expected journey times, to up-
to-date public transport information. It might also enable suitably privileged users to
interact with the infrastructure, for example, to request a change to a traffic light or to
reserve a parking space.

Programming Global Smart Space Applications. The basis for the provision of
context-aware services and information to users will be the integration of the
individual systems associated with global smart spaces into comprehensive platforms.
This paper presents a programming model designed to provide a standardised way for
global smart space applications to access context information that is provided by
independent systems and related services. The spatial programming model supports a
topographical location model and provides access to distributed context information
based on (overlapping) temporal and spatial aspects. This enables applications to
exploit and act upon information from a variety of deployed (and novel) systems and
services as well as to share information between them. The spatial programming
model hides the complexity and diversity of the underlying systems and their data
sources and provides applications with a common view on the available information
and its context. For example, a service might use the spatial programming model to
retrieve public transport information, which might be provided by some underlying
system, and then access relevant weather information provided by another system
using the temporal and spatial context of this information.

The spatial programming model is part of the iTransIT framework for integrating
individual transportation systems and related services. The iTransIT framework has
been motivated by the needs of Dublin City and its multi-layered distributed
architecture has been designed to enable information integration and sharing across
independent Intelligent Transportation Systems (ITS) and pervasive context-aware
user services. It enables incremental integration of independent systems and services
over time while minimising the impact of such expansion as changes are local to the
new system. This software architecture for global smart spaces proposes a layered
data model to facilitate data exchange between systems and services with diverse data
sets, quality of service requirements, and functional organizations. Data layers are
defined within a common context model along the dimensions of space and time and
may be distributed across multiple systems. Individual systems maintain one or more
layers of the overall data model. This distribution of layers across a series of systems
effectively allows applications to access elements of a certain part of the model with a
specific quality of service. For example, a data layer might provide video streams
from traffic cameras while another layer might maintain city-wide parking
information provided by a car parking system. Applications may use the spatial
programming model to access either or both of these layers with the quality of service
of the respective information. This scenario also illustrates that systems may be
integrated gradually and with minimal impact on other systems. Each of these layers

3

might be integrated at a different time and the integration of one layer does not affect
the data captured in the other layer. An application using the spatial programming
model to access information from the video layer might eventually be updated to
access the car parking layer as well. The iTransIT framework has been developed in
cooperation with the Traffic Office of Dublin City Council (DCC) in the Republic of
Ireland. Detailed framework (and spatial programming model) requirements were
informed by a comprehensive audit of existing and planned future intelligent
transportation systems in the Dublin City area.

Realising Global Smart Space Applications. The proposed spatial programming
model has been implemented as part of a proof-of-concept architecture and data
model that captures a variety of real transportation information derived from systems
currently deployed in Dublin City. This programming model implementation has been
evaluated by building a pervasive service for multi-modal urban journey planning.
Such a smart traveller information service can be considered a canonical global smart
spaces application since it exploits information generated by a variety of underlying
heterogeneous systems in a context-aware manner. The evaluation is based on
transportation information relevant to and derived from a real urban environment and
demonstrates how our programming model enables application and eventually user
access to such pervasive context information. In general, it is expected that the
increased availability of re-usable information from a variety of independent systems
will enable higher-level policies to be translated more easily into real world actions
and will facilitate the emergence of novel transportation applications and truly
pervasive context-aware user services.

Organisation of this Paper. The remainder of this paper is structured as follows:
Section 2 surveys related work. Section 3 presents the spatial programming model and
section 4 describes how this programming model has been realised as part of a
framework for integrating independent transportation systems. Section 5 presents our
evaluation of this work outlining how the spatial programming model provides global
access to the context information required by a multi-modal traveller information
system. Finally, section 6 concludes this paper by summarising our work.

2 Related Work

Temporal, spatial and quality of service attributes represent types of meta-data that
may be integrated into a context model to provide more intelligent and focused use of
data [7]. This approach has been applied in the Nexus framework [8] which provides
a common context model infused with spatial information to build world models that
are distributed across spaces possessing rich context data sources, known as
Augmented Areas. The context model is presented as a global object-based ontology
for developing interoperable world models. This interoperability is ensured through
the use of a common but large data schema, the Standard Class Schema, to define
various world models. The authors have defined a simple spatial query language that
can be used to interact with objects representing an Augmented Area. An interface
known as an Augmented World model provides a federated global view on all
compliant local models. The focus of our work has been to develop a more

4

constrained yet expressive set of abstractions which are used to both facilitate data
modelling and to provide the basis for our spatial application programming interface.
Using such a constrained set of abstractions simplifies management and maintenance
in light of continuously evolving global smart spaces as novel systems are expected to
use combinations of existing abstractions.

Gaia [9] is a canonical example of a middleware infrastructure to enable active or
smart spaces in ubiquitous computing habitats that emphasises the notion of space
programmability. Gaia extends the notion of traditional operating systems to
ubiquitous computing environments by providing components such as the Context
File System and an event manager to track active space state information. Gaia
focuses on managing resources contained in physical spaces. User data and
applications are abstracted into a user virtual space and can be mapped dynamically to
the resources located in the current environment. Applications developed for a Gaia
active space use a comprehensive set of services at runtime. The iTransIT framework
adopts a different approach in that it uses a set of context abstractions exposed
through the spatial programming model to provide an interface to a global smart space
populated by heterogeneous systems. Aside from calls to the spatial application
programming interface, systems may operate independently of the iTransIT
framework.

Smart Messages [10] is a lightweight architecture similar to mobile agents that
aims to make Space a first-order programming construct and describes a space-aware
programming model for outdoor distributed embedded systems called Spatial
Programming. In this model, content or services provided by nodes are accessed using
spatial references. These are defined as {space:tag} pairs that are mapped to systems
embedded in the physical space. These spatial references are used by various
applications to transparently access network resources in a similar fashion to physical
memory access using variable names in conventional systems. Our approach to
accessing information in a global smart space is more generic compared to this
{space:tag}-based naming scheme in that information can be located using multiple
context dimensions including space and time as well as any functional aspect of the
information. Information can be shared and integrated by exploiting combinations of
these aspects and by exploiting overlapping context.

3 The Spatial Application Programming Model

The spatial programming model provides a standardised way for global smart space
applications to access and use information and context that is distributed across
independent systems and related services. The spatial programming model provides
common access to such distributed information based on overlapping context thereby
enabling applications to exploit and act upon information from a variety of systems
and services as well as to share information between them.

5

3.1 Abstracting Information and Context

The spatial programming model uses a small set of predefined types for composing
information and context, in which context is any information that can be used to
characterise the situation of an information element [11], to ensure interoperability
between data sets captured across distributed systems. These types are used to model
data sets and their context according to the different roles data sets can assume in a
global smart space as spatial objects. Spatial objects represent information as a series
of parameters and context as attributes. Such types are central to providing
applications with a common view on the wide range of information and the associated
context that might be available in a global smart space. They hide the complexity and
diversity of the independent systems and data sources comprising global spaces and
represent the hooks for information integration through overlapping context such as
space and time.

Developing such types is non trivial for any programming model for significant
systems and is especially complex for global smart spaces due to the scale and
multitude of inter-relationships that exist between sensors, systems, services, users,
and their data sets. Lehman et al. [8] suggest an exhaustive ontology for defining how
context information can be shared between applications in augmented areas.
However, based on our experience with a real global smart space in the transportation
domain, we have found that a relatively small number of types suffices to decompose
a global smart space domain model. Using a small set of (coarse-grain) types rather
than attempting to model the entire world in detail simplifies management and
maintenance in light of continuously evolving spaces. Novel systems or services are
expected to be modelled using combinations of existing types whereas an exhaustive
model might have to be expanded to capture the specific characteristics of novel
systems.

The types for modelling information and context as spatial objects currently
supported by the spatial programming model are summarized in Fig. 1. They have
been designed as a series of abstract object types and include three main types for
modelling global information, which are real world, system and data object, as well
as types for modelling context.

Spatial Object

Identification Object Location Object System Object Real World Object Data Object

Actuator Object Sensor Object
Fig. 1. Information and context abstractions.

The three information types model the different roles that objects can assume
within the spatial programming model. System objects represent general information
describing software components, including systems and services, while real world
objects represent physical entities. In a transportation smart space for example, system
objects might capture operational status from a car parking system or from a journey

6

time estimation service whereas real world objects might model roads and junctions.
Sensor and actuator objects are specialisations of real world objects and are used for
modelling explicit infrastructural entities for example, detector loops and variable
message signs of a car parking system. Data objects model any static or dynamic
information from systems or services and might be used to model car parking opening
times and rates charged. Based on an audit of deployed (and planned) transportation
systems and services in the Dublin City area [12], we found that these categories of
information types are sufficient to cover possible data sets in such a global smart
space. Novel information can be integrated using spatial objects composing sets of
parameters that model such data sets.

The main context type of the spatial programming model is the location object.
Location objects are based on a topographical location model that uses geometry to
model the space occupied or covered by an infrastructural element, a system or a
service. The spatial programming model also supports temporal context. Temporal
context is modelled implicitly, i.e., incorporated in other information types, rather
than explicitly as a specific object. This enables information objects to include date
and time attributes for representing their temporal context such as creation time and
temporal validity. And finally, identification objects provide a type for logical
identity, for example, to identify the name of a system or a service.

3.2 Modelling Space

The spatial programming model supports a topographical approach to modelling
space. The relevant spatial context of sensors, systems, services and even users is
modelled as a geometric shape. Individual shapes are defined by a sequence of
coordinates based on a chosen, well-known coordinate system. These shapes
explicitly represent spatial context derived form the real world. They may reflect the
physical appearances of spatial objects modelling occupied space or may describe
areas of interest that specify the regions covered by services. For example, a city-wide
car parking system might use the spatial model to define the physical locations
occupied by its car parks whereas a road weather service might use the spatial model
to outline the locations occupied by weather stations as well as the areas to which
reports from individual stations apply.

Using a topographical approach to modelling space enables systems, services, and
applications to independently define and use potentially overlapping spatial context in
a consistent manner. Unlike topological approaches [13], in which geographical
relationships between spatial objects are described explicitly, topographical models
define relationships between spatial objects implicitly and without explicit
interactions between objects. The relations between spatial objects (and ultimately
systems and users) are defined by the position of their respective shape within the
common coordinate system. This is particularly significant in global smart spaces
where multitudes of independent systems are distributed over large geographical areas
and direct communication across systems may be limited or expensive. Applications
using the spatial model can exploit these implicit relations to link diverse information
together for a user specific purpose. They may access spatially related information for
example, by means of exploiting the distance between shapes or by exploiting

7

containment and intersection relations. This might for example enable a vehicle-based
information system to retrieve the exact locations of car parking facilities within a
certain distance from its current location.

The spatial programming model supports the model for defining geometric shapes
defined by the OpenGIS standard [14]. Spatial objects can be represented by
geometry types ranging from a point, to a line, to a polygon, to combinations of
polygons. Points might be used to define the location of a specific traffic signal or an
individual user. Individual polygons might represent the spatial context of a car park
or an area of interest whereas a series of (overlapping) polygons might be used to
compose a spatial model of a transportation network comprising roads, lanes, and
intersections.

As mentioned above, these geometric shapes are specified using a common
coordinate system. The selection of such a system depends on the domain of the
global smart space for which the spatial programming model is being realised.
Coordinates derived from third party location sensors, such as Global Positioning
System (GPS) receivers, are mapped onto the chosen reference system if they are
based on another system. For example, GPS coordinates may need be converted into a
regional reference system chosen for a specific space. The Irish national grid
reference system, a system of geographic grid references commonly used in Ireland,
has been chosen as the coordinate system in our prototype.

3.3 Modelling Data

The spatial programming model defines a set of types for modelling the different roles
spatial objects (and the context information they represent) can assume within a
global smart space. Systems and services model their data using these types and a
particular system may use and combine several types to accurately capture the roles of
individual data sets. The example shown in Fig. 2, illustrates how a road weather
system might use a system object to model general system data and a set of sensor
objects to model individual weather stations. Each weather station comprises a
location and an identification object and includes a data object that captures the actual
measurements.

Spatial objects must specialise at
least one of our types for modelling
information and context. However,
depending on their role, they may
derive from several types. Table 1
summarises how these types can be
combined outlining the semantics for
composing information and context
into spatial objects. As outlined in the
real world object row, Table 1 shows
that a real world object must comprise
a location and an identification object
and that it may include a set of data
objects and a set of other real world

SensorObject
(from contextabstractions)

SystemObject
(from contextabstractions)

LocationObject
(from contextabstractions)

IdentificationObject
(from contextabstractions)

RealWorldObject
(from contextabstractions)

1

1

1

1

1

1

1

1

WeatherData

WeatherStation

1

1

1

1
DataObject

(from contextabstractions)

SensorObject
(from contextabstractions)

SystemObject
(from contextabstractions)

DataObject
(from contextabstractions)

LocationObject
(from contextabstractions)

IdentificationObject
(from contextabstractions)

RealWorldObject
(from contextabstractions)

1

1

1

1

1

1

1

1

WeatherData

WeatherStation

11

SensorObject
(from contextabstractions)

SystemObject
(from contextabstractions)

DataObject
(from contextabstractions)

SensorObject
(from contextabstractions)

SystemObject
(from contextabstractions)

DataObject
(from contextabstractions)

LocationObject
(from contextabstractions)

IdentificationObject
(from contextabstractions)

RealWorldObject
(from contextabstractions)

1

1

1

1

1

1

1

1

WeatherData

WeatherStation

1

1

1

1

LocationObject
(from contextabstractions)

IdentificationObject
(from contextabstractions)

RealWorldObject
(from contextabstractions)

1

1

1

1

1

1

1

1

WeatherData

WeatherStation

11

RoadWeatherSystem

1..n

1

1..n

1

Fig. 2. Modeling a road weather system.

8

objects. The compulsory containment of a location object is a reflection of the fact
that real world objects are expected to model the physical space they occupy. In
contrast, system and data objects may or may not comprise a location object and such
a location object is probably modelling the space to which a system’s or data object’s
information applies. Note that sensor and actuator objects are specialisations of real
world objects that share the same composition semantics.

Table 1. The semantics for composing information and context types.

 System
Object

Real World
(Sensor,

Actuator)
Object

Data
Object

Location
Object

Identification
Object

System Object 0..n 0..n 0..n 0..1 0..1
Real World
(Sensor, Actuator)
Object

0 0..n 0..n 1 1

Data Object 0 0 0..n 0..1 0..1

3.4 Modelling Temporal Context

In addition to supporting spatial context, the spatial programming model also supports
context along the dimension of time. The temporal relations between spatial objects
are defined by a set of attributes. This set of attributes has been derived from our
study of the transportation infrastructure in Dublin City [12] and are summarised in
Table 2. The data object type includes these attributes and spatial objects model their
temporal context by deriving from this type. Data objects also include a
ConfidenceLevel attribute for modelling the accuracy of the captured data.

Table 2. Temporal context attributes of data object types.

Attribute Name Description
CreationDate Time of data object creation
LastModificationDate Time the data object was last updated
RetrievalLatency Expected latency for retrieving the captured data
ExpectedLifetime Expected duration to the next data object update
ConfidenceLevel Level of confidence in the accuracy of the captured data

Applications may exploit temporal relations between spatial objects in the same
way as they exploit spatial relations to link diverse information together for a user-
specific purpose. They may access temporally related information, for example, by
means of correlating modification time. Significantly, applications may exploit
context along a combination of the spatial and temporal dimension. This might enable
a road-user information system to use the location and time of an accident to retrieve
the prevailing weather conditions at the accident site and subsequently to advice
drivers of similarly dangerous road conditions.

9

3.5 Using the Spatial Model

Systems use spatial objects to model their contextual information and implement the
spatial application programming interface to provide pervasive access to these
objects. Each system models the subset of the spatial objects that is relevant to its
respective purpose and context-aware applications exploit the spatial application
programming interface to integrate and share information in a common way
regardless of the specifics of the system implementing a particular part of the spatial
model.

As shown below, the operations of the spatial application programming interface
provide a means for applications to manage, locate and access spatial objects. A set of
operations is available for locating spatial objects using geometric queries or queries
based on parameters of objects. Geometric queries are based on a geometry class that
defines OpenGIS shapes including points and polygons. Parameter-based queries use
the container class outlined below to describe the parameter and attribute values of
spatial objects. The parameter class includes native data values and may include the
relevant temporal attributes of data objects. This class can be used in connections with
queries but may also be used to access the typed parameter and attribute values of
spatial objects. The spatial application programming interface enables applications to
locate spatial objects using a variety of queries ranging from selection based on a
parameter value, to selection based on temporal context, to selection based on spatial
context, to combinations of these. For example, a weather station may be selected
using the value of a measurement, the temporal occurrence of a measurement or the
location of the station. Such queries may identify zero, one or more objects. For
example, selecting the bus stops of a certain bus route in a particular area might
identify multiple suitable stops. Spatial objects are uniquely identified within a given
system by a type and identifier pair. These pairs are typically the result of some
selection operation and may be used to either retrieve or update the parameters of
spatial objects. An application might use bus stop and identifier pairs to retrieve the
addresses and timetables of previously located stops.

Significantly, the spatial programming model enables a federation of independent
systems to model their respective information and context locally as spatial objects.
Each of these systems implements the spatial application programming interface to
provide access to its respective set of spatial objects. This enables applications to use,
share, locate and correlate these distributed objects using a common set of context
operations irrespective of the complexities of the systems accommodating the objects
and without the need for an overall close integration of the systems. This mapping of
the spatial model and its programming interface onto individual systems therefore
provides for truly pervasive context-aware applications and services in global and
heterogeneous environments.
interface S_API {
 void insert(String elementType, OrderedParameterValues parValues);
 void remove(String elementType, int id);
 int[] select(String elementType, Geometry loc);
 int[] select(String elementType, String parName, Parameter parValue);
 int[] select(String elementType, Geometry loc, String parName,
 Parameter parValue);
 int[] select(String elementType);
 ElementTypeAndId[] select(Geometry loc);
 Geometry select(String elementType, int id);

10

 void update(String elementType, int id, String parName[],
 Parameter parValues[]);
 Parameter[] retrieve(String elementType, int id, String parName[]);
}

class Parameter{
 Calendar creationDate;
 Calendar modificationDate;
 Long retrievalLatency;
 Long expectedLifetime;
 Double confidenceLevel;
 String parameterValue;

 Integer getIntegerParameterValue();
 Double getDoubleParameterValue();
 String getStringParameterValue();
 Calendar getDateParameterValue();
…
}

4 The iTransIT Framework

The spatial programming model has been realised as part of a framework and a data
model for integrating independent intelligent transportation systems. As illustrated in
Fig. 3, the iTransIT architecture structures legacy systems, iTransIT systems, and
context-aware end-user applications into three tiers. These tiers define the
relationships between systems and applications and provide a scalable approach for
integrating systems and their context information as individual components can be
added to a specific tier without direct consequences to the components in the
remaining tiers. The relationships between systems and applications can be
characterized according to the interaction paradigms that describe the possible
information flows between legacy and iTransIT systems.

4.1 Architecture Tiers

The legacy tier provides for the integration of legacy systems and describes existing
as well as future transportation systems that have not been developed to conform to
the iTransIT system architecture and layered data model. Such legacy systems often
feature a form of persistent data storage and might include systems for traffic and
motorway management that have commonly been deployed in many urban
environments.

The purpose of the iTransIT tier is to integrate transportation systems that model
spatial objects and implement the spatial application programming interface. This tier
therefore comprises a federation of transportation systems that implement the spatial
data model. The data model is distributed across these iTransIT systems, with each
system implementing the subset of the overall model that is relevant to its operation.
iTransIT systems maintain their individual information, which is often gathered by
sensors or provided to actuators, by populating the relevant part of the spatial data

11

model. However, some of the information maintained in an iTransIT system specific
part of the data model may actually be provided by underlying legacy systems. Most
significantly, traffic information captured in this tier is maintained with its temporal
and spatial context; persistently stored data is geo-coded typically by systems
exploiting a database with spatial extension.

The systems that may exist in
the iTransIT tier can be classified
according to the paradigms they
exploit when interacting with other
legacy or iTransIT systems. Such
iTransIT systems may be purpose
built and therefore optimized to
accommodate application or user-
specific requirements or may be
general purpose. As shown in Fig.
3, the framework may incorporate a
general-purpose iTransIT
Management system. The iTransIT
Management system is the
canonical application of this
domain and is expected to
implement a major part of the
spatial data model. It typically
serves as a main repository for geo-
coded data generated and used by
connected legacy and iTransIT systems.

The application tier includes value added services that provide context-aware user
access to and interaction with traffic information. These services use the distributed
data model and the associated context to access information potentially provided by
multiple systems and might include a wide range of interactive (Internet-based) and
embedded control services ranging from monitoring of live and historical traffic
information to the display of road network maps.

4.2 Common Spatial Data Model

The spatial data model, common to all iTransIT systems, is comprised of a set of
potentially distributed layers and represents the central component of these systems.
As shown in Fig. 4, individual iTransIT systems implement one or more of these
layers (or parts of layers) and maintain the static, dynamic, live, or historical traffic
data available in a particular layer. For example, a system might implement a data
layer describing the current weather conditions while another layer capturing
intersection-based traffic volumes might be maintained by a different system.

The spatial application programming interface exposes this layered data model to
other iTransIT systems or indeed user services. Remote access to this interface may
be enabled through widely used communication technologies and query languages
based on CORBA and Web Services.

Data Flow

Application
Tier

(User
Services)

iTransIT
Tier

(iTransIT
Systems)

Legacy
Tier

(Legacy
Systems)

Geo-Data

Traffic Data

Mgmt.
System

Fig. 3. iTransIT ITS architecture framework
overview.

12

Some of the information captured in
data model layers may be generated or
used by legacy systems. Such
information is mapped to a legacy
system through data flows. These
flows can be described using a set of
flow classes, including event, stream,
request/response, configuration and
alarm flows, based on the
characteristics and requirements of
communication links provided by the
KAREN framework architecture [15].
Using these descriptions, individual
iTransIT systems implement interfaces
that map specific legacy data to their
data layers. This approach enables the
use of communication technologies
that can address the requirements of particular systems and their respective data
flows. The objective of an iTransIT system might be to handle a certain data subset
efficiently and to provide specific guarantees for the delivery of the data. For
example, an iTransIT system may employ real-time communication technology to
connect to a legacy system that is capable of supporting strong delivery guarantees.

5 Assessment

This section evaluates the
spatial programming model for
global smart space applications
proposed in this paper. The
main objective of the
experiments has been to assess
the feasibility of our
programming model providing
access to information generated
by a variety of heterogeneous
systems in a context-aware
manner. The assessed
transportation application
scenario demonstrates that our
programming model enables
application and eventually user access to pervasive context information derived from
a real urban environment through correlation of overlapping spatial context. This
evaluation therefore demonstrates that using a spatial programming model enables the
integration of individual systems associated with a global smart space into a

iTransIT System

Legacy System Legacy System

User Service

Mapping

User Service

Spatial-API

Common Data Model

Data Model Part

iTransIT System

Legacy System

Mapping

Data Model Part

Data Flow

Fig. 4. iTransIT system architecture and common
data model.

Fig. 5. Spatial objects modeling public transport
information.

DataObject

CreationDate : Date
LastModificationDate : Date
RetrievalLatency : Long
ExpectedLifetime : Long
ConfidenceLevel : Double

(from contextabstractions)

Route:
Junction id[]

BusTimeTable
Day : String
Time : Double[]

BusStop
Address : String

Bus
Capacity : Integer
Utilisation : String
TimeToNextStop : Double

Route
Name : String
Route : String[]

1..n

1

1..n

1

1
1

1
1

0..n

1

0..n

1

LocationObject

Easting : Double[]
Northing : Double[]
Description : String

(from contextabstractions)

IdentificationObject

Name : String
Description : String
idTag : Integer
id : String

(from contextabstractions)
RealWorldObject

(from contextabstractions)

1

1

1

1

1

1

1

1

13

comprehensive platform for the provision of context-aware services and information
to users.

The application scenario has been derived from the requirements of a smart
traveller information service enabling travellers to plan journeys involving multiple
forms of transportation including walking, public transport, cycling, and private
vehicles thereby bridging the coordination gap between these modes of transportation
by suggesting journey routes according to traveller preference and availability of
transportation means. Such a service can be considered a canonical global smart
spaces application since it exploits context information generated by a variety of
independent systems. The scenario has been assessed using a prototypical
implementation of an iTransIT Management system as a platform for pervasive
services. This Management system implements the spatial application programming
interface and uses spatial objects to model information concerning a range of
transportation systems currently deployed in Dublin City. The system includes global
context layers modelling the road network comprising intersections, roads, lanes,
traffic counts, traffic volumes, and congestions levels as well as the public transport
network consisting of bus routes, stops, lanes, timetables and bus locations. It also
includes system context layers modelling parking information and road weather data.
These layers integrate data provided by a range of real legacy systems including the
main traffic management system, a public transport information service, a congestion
level application, a road weather service and a car parking information system. Fig. 5
shows a small set of the spatial objects modelling these layers that have been
implemented as relational tables in a MySQL database with spatial extension. The
information from these spatial objects has been provided by the traffic management
system, the public transport information service and by a journey time monitoring
system.

5.1 The Evaluation Scenario

The evaluation scenario includes a tourist using the context-aware traveller
information service to locate public transport stations within walking distance of her
current location. The tourist has just visited The Book of Kells museum at Trinity
College Dublin and is about to leave campus through the Nassau Street gate. She
remembers that she used the number 15 bus to travel from her hotel to the city centre
and would therefore like to locate nearby bus stops of this route.

She uses a handheld device with wireless service access to enter her query into the
traveller information service, providing bus route number 15 and 5 minutes walking
distance from her current location as parameters. The service uses coordinates derived
from its GPS receiver (converted into Irish national grid coordinates) and an average
pedestrian pace of 1.36m/s [16] to define the geometric shape of the search area. The
service then uses the spatial application programming interface as outlined below to
access the relevant context information.
1 int[] busStopId = sapi.select("BusStop", searchArea);
 for (int i = 0; i < busStopId.length; i++) {
2 Parameter busStopName=sapi.retrieve("BusStop", busStopId[i],"Name");
3 Geometry busStopLocation = sapi.select(“BusStop”, busStopId[i]);
4 Parameter linkToRoute = sapi.retrieve("BusStop", busStopId[i],

14

 "route_autoId");
 int routeId = linkToRoute.getIntegerValue();
5 Parameter routeName = sapi.retrieve("Route", routeId, "Name");
6 if (routeName.getStringValue().equals(“15-outbound”)) ||
 (routeName.getStringValue().equals(“15-inbound”)) {
7 //use results
 }
 }

The service might use a geometric query to locate all spatial objects representing
bus stops in the given search area (1) and retrieve the parameters and attributes of
these objects that describe the names and locations of specific bus stops (2, 3). The
service then proceeds to identify the spatial objects that describe the routes associated
with these bus stops. These “links” to route objects are modelled as parameters that
can be retrieved from bus stop objects (4). They are subsequently used to retrieve the
names of the bus stop routes (5) and information related to the previously indicated
bus route (6) can then be used to advise the user (7). The results of such a scenario for
locating bus stops within walking distance can be found in Table 3. Bus stops for both
city centre-bound and suburb-bound stops have been retrieved since the user did not
specify her preferences. Naturally, a traveller information service would display this
information as an overlay to a map of Dublin City rather than in table form. Such an
overlay might include the bus stop names and the headings of buses. This might
further assist the user in locating and eventually walking to a convenient bus stop.

Table 3. Locating public transport stations within walking distance.

Bus Stop Name Route Name Bus Stop Location
(Irish national grid coordinates)

Kildare Street 15-outbound (316230.8575, 233593.6385)
Dawson Street Upper 15-inbound (316063.4310, 233792.1260)
Dawson Street Lower 15-inbound (316036.3947, 233612.0083)
Suffolk Street 15-inbound (315924.9190, 233981.6965)
Nassau Street 15-outbound (316202.2930, 233883.7390)
College Green 15-outbound (316038.3422, 234186.3123)

This application scenario demonstrates how a context-aware user service might use
the spatial programming model to locate real-world entities in a given area of interest
and how it might exploit explicit associations between spatial objects. Similar queries
can be used by a range of related scenarios. For example, after selecting a bus stop,
the user might wish to see the relevant timetable for the next hour or might wish to
use the address of her hotel to locate a convenient stop near her destination and to
display the route the bus will take. Other related scenarios might include retrieving
the congestion levels along the route in order to get an indication of whether the bus is
likely to be on time. Such a scenario might also be of interest to someone travelling
by car to the airport or to work. These related scenarios have been implemented but
due to space limitations are not describe in further detail.

This assessment is based on scenarios that access information integrated in the
spatial model through a single spatial application programming interface. However, a
context-aware user service may concurrently use multiple spatial application
programming interfaces to access spatial objects in a similar way. The overlapping
context of such distributed spatial objects may be used similarly to correlate objects.
For example, the location of a bus stop available from one spatial application

15

programming interface might be used to locate nearby train stations through another
interface.

6 Summary and Conclusions

This paper presented a programming model for global smart space applications to
access context information provided by independent systems and related services. The
spatial programming model uses a small set of predefined types to model distributed
context information as spatial objects. This provides a common view on such
information and enables applications to exploit, act upon and share information based
on overlapping temporal and spatial aspects. The spatial programming model supports
a topographical location model in which spatial context derived form the real world is
explicitly represented by shapes that reflect occupied space or describe areas of
interest. This enables systems distributed over large geographical areas to
independently define and use spatial context in a consistent manner.

The spatial programming model is part of the iTransIT framework for global smart
spaces in the transportation domain that has been motivated by the needs of Dublin
City. The multi-layered distributed iTransIT architecture enables incremental
integration of independent systems and services over time while minimising the
impact of such expansion as changes are local to the new system. The distributed data
model, in which individual systems maintain one or more layers of the overall data
model, facilitates data exchange between systems and services with diverse contextual
data sets and functional organizations.

The evaluation of the spatial programming model is based on a prototypical
implementation of an iTransIT management system that uses spatial objects to model
real information relevant to and derived from a range of transportation systems
currently deployed in Dublin City. The assessed scenario demonstrated that our
programming model enables application and eventually user access to pervasive
context information concerning a real urban environment through correlation of
overlapping spatial context. This evaluation therefore demonstrates that using a
spatial programming model enables the integration of individual systems associated
with a global smart space into a comprehensive platform for the provision of truly
pervasive context-aware services and information to users.

Acknowledgements. The work described in this paper was supported by the
Dublin City Council in Ireland.

References

[1] A. Dearle, G. Kirby, R. Morrison, A. McCarthy, K. Mullen, Y. Yang, R. Connor, P.
Welen, and A. Wilson, "Architectural Support for Global Smart Spaces," in Proceedings of
the 4th International Conference on Mobile Data Management (MDM 2003), LNCS 2574.
Melbourne, Australia: Springer-Verlag, 2003, pp. 153-164.

[2] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and C. Efstratiou, "Experiences of
Developing and Deploying a Context-aware Tourist Guide: The GUIDE Project," in

16

Proceedings of the Sixth Annual International Conference on Mobile Computing and
Networking (MobiCom 2000). Boston, Massachusetts, USA: ACM Press, 2000, pp. 20-31.

[3] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper, and M. Pinkerton,
"Cyberguide: A Mobile Context-Aware Tour Guide," ACM Wireless Networks, vol. 3, pp.
421-433, 1997.

[4] T. Sivaharan, G. Blair, A. Friday, M. Wu, H. Duran-Limon, P. Okanda, and C.-F.
Sørensen, "Cooperating Sentient Vehicles for Next Generation Automobiles," presented at
The First ACM International Workshop on Applications of Mobile Embedded Systems
(WAMES'04), Boston, Massachusetts, USA, 2004.

[5] J. Kjeldskov, S. Howard, J. Murphy, J. Carroll, F. Vetere, and C. Graham, "Designing
TramMateña Context-Aware Mobile System Supporting Use of Public Transportation," in
Proceedings of the 2003 Conference on Designing for User Experiences. San Francisco,
California, USA: ACM Press, 2003, pp. 1-4.

[6] J. Dowling, R. Cunningham, A. Harrington, E. Curran, and V. Cahill, "Emergent
Consensus in Decentralised Systems using Collaborative Reinforcement Learning," in
Post-Proceedings of SELF-STAR: International Workshop on Self-* Properties in
Complex Information Systems, LNCS 3460: Springer-Verlag, 2005, pp. 63-80.

[7] N. Honle, U. Kappeler, D. Nicklaus, T. Schwarz, and M. Grossmann, "Benefits of
Integrating Meta Data into a Context Model," in Proceedings of the Third IEEE
International Conference on Pervasive Computing and Communications Workshops. Pisa,
Italy, 2004, pp. 25-29.

[8] O. Lehmann, M. Bauer, C. Becker, and D. Nicklas, "From Home to World - Supporting
Context-aware Applications through World Models," in Proceedings of Second IEEE
International Conference on Pervasive Computing and Communications (Percom'04).
Orlando, Florida: IEEE Computer Society, 2004, pp. 297-308.

[9] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R. Campbell, and K. Nahrstedt, "Gaia:
A Middleware Infrastructure to Enable Active Spaces," IEEE Pervasive Computing, vol. 1,
pp. 74-83, 2002.

[10] C. Borcea, C. Intanagonwiwat, P. Kang, U. Kramer, and L. Iftode, " Spatial Programming
using Smart Messages: Design and Implementation," in Proceedings of the Twenty-Fourth
IEEE International Conference on Distributed Computing Systems (ICDCS'04). Tokyo,
Japan, 2004, pp. 690-699.

[11] A. Dey and G. Abowd, "Towards a Better Understanding of Context and Context-
Awareness," in Workshop on The What, Who, Where, When, and How of Context-
Awareness, as part of the 2000 Conference on Human Factors in Computing Systems (CHI
2000). The Hague, The Netherlands, 2000.

[12] R. Meier, A. Harrington, and V. Cahill, "Audit of ITS Applications and Services in Dublin
City," Trinity College, Dublin, Ireland, Dublin City Council iTransIT Deliverable, August
2004.

[13] M. Bauer, C. Becker, and K. Rothermel, "Location Models from the Perspective of
Context-Aware Applications and Mobile Ad Hoc Networks," Personal and Ubiquitous
Computing, vol. 6, pp. 322-328, 2002.

[14] Open GIS Consortium Inc, "OpenGIS Simple Features Specification for SQL, Revision
1.1," OpenGIS Project Document 99-049, 1999.

[15] R. A. P. Bossom, "European ITS Framework Architecture - Communication Architecture,
Annex 1: Supporting Information for Communications Analysis," vol. D3.3: European
Communities, 2000.

[16] T. F. Fugger, B. C. Randles, A. C. Stein, W. C. Whiting, and B. Gallagher, "Analysis of
Pedestrian Gait and Perception–Reaction at Signal-Controlled Crosswalk Intersections,"
National Research Council, Washington, D.C, USA, Transportation Research Record 1705
TRB 00-1439, 2000.

