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Abstract. Global smart spaces are intended to provide their inhabitants with 
context-aware access to pervasive services and information relevant to large 
geographical areas. Transportation is one obvious domain for such global smart 
spaces since applications can be built to exploit the variety of sensor-rich 
systems that have been deployed to support urban traffic control and highway 
management as well as within individual vehicles. This paper presents a spatial 
programming model designed to provide a standardised way to build context-
aware global smart space applications using information that is distributed 
across independent (legacy, sensor-enabled, and embedded) systems by 
exploiting the overlapping spatial and temporal attributes of the information 
maintained by these systems. The spatial programming model is based on a 
topographical approach to modelling space that enables systems to 
independently define and use potentially overlapping spatial context in a 
consistent manner and in contrast to topological approaches, in which 
geographical relationships between objects are described explicitly. Moreover, 
this approach facilitates the incremental construction of global smart spaces 
since the underlying systems to be incorporated are largely decoupled. The 
programming model has been evaluated by building a context-aware service for 
multi-modal urban journey planning, as part of the development of an overall 
architecture for intelligent transportation systems in Dublin. 

1 Introduction 

Global smart spaces extend the vision of pervasive computing, in which everyday 
objects communicate and collaborate to provide information and services to users, to 
large geographical areas [1]. They extend the notion of objects cooperating in a home 
or an office to the level of towns, cities, and even countries by integrating a variety of 
sensor-based and other systems to provide truly pervasive context-aware services. 
Such global smart environments will be heterogeneous as they likely will comprise a 
multitude of sensors, networks, and ultimately systems. They will provide access to 
information and services ranging from pervasive access to personal and professional 
information, to city-wide information systems [2, 3], to context-aware traveller 
assistance [4, 5], to optimised urban traffic control [6]. Users moving in such sensor-
augmented spaces may use handheld devices, such as mobile phones and Personal 
Digital Assistants (PDAs), or integrated devices, such as (vehicular) on-board 
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computers, to interact with these spaces and to use the services that they provide. 
Embedded control systems may likewise exploit these spaces to offer context-aware 
urban traffic control, such as public service vehicle priority. 

Global smart spaces are on the verge of becoming a reality in the transportation 
domain where very many heterogeneous sensor-rich systems have already been 
deployed in towns and cities and along national road networks. Such a global smart 
space might enable users to access information ranging from information on places of 
interest, to prevailing road and weather conditions, to expected journey times, to up-
to-date public transport information. It might also enable suitably privileged users to 
interact with the infrastructure, for example, to request a change to a traffic light or to 
reserve a parking space. 

Programming Global Smart Space Applications. The basis for the provision of 
context-aware services and information to users will be the integration of the 
individual systems associated with global smart spaces into comprehensive platforms. 
This paper presents a programming model designed to provide a standardised way for 
global smart space applications to access context information that is provided by 
independent systems and related services. The spatial programming model supports a 
topographical location model and provides access to distributed context information 
based on (overlapping) temporal and spatial aspects. This enables applications to 
exploit and act upon information from a variety of deployed (and novel) systems and 
services as well as to share information between them. The spatial programming 
model hides the complexity and diversity of the underlying systems and their data 
sources and provides applications with a common view on the available information 
and its context. For example, a service might use the spatial programming model to 
retrieve public transport information, which might be provided by some underlying 
system, and then access relevant weather information provided by another system 
using the temporal and spatial context of this information. 

The spatial programming model is part of the iTransIT framework for integrating 
individual transportation systems and related services. The iTransIT framework has 
been motivated by the needs of Dublin City and its multi-layered distributed 
architecture has been designed to enable information integration and sharing across 
independent Intelligent Transportation Systems (ITS) and pervasive context-aware 
user services. It enables incremental integration of independent systems and services 
over time while minimising the impact of such expansion as changes are local to the 
new system. This software architecture for global smart spaces proposes a layered 
data model to facilitate data exchange between systems and services with diverse data 
sets, quality of service requirements, and functional organizations. Data layers are 
defined within a common context model along the dimensions of space and time and 
may be distributed across multiple systems. Individual systems maintain one or more 
layers of the overall data model. This distribution of layers across a series of systems 
effectively allows applications to access elements of a certain part of the model with a 
specific quality of service. For example, a data layer might provide video streams 
from traffic cameras while another layer might maintain city-wide parking 
information provided by a car parking system. Applications may use the spatial 
programming model to access either or both of these layers with the quality of service 
of the respective information. This scenario also illustrates that systems may be 
integrated gradually and with minimal impact on other systems. Each of these layers 
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might be integrated at a different time and the integration of one layer does not affect 
the data captured in the other layer. An application using the spatial programming 
model to access information from the video layer might eventually be updated to 
access the car parking layer as well. The iTransIT framework has been developed in 
cooperation with the Traffic Office of Dublin City Council (DCC) in the Republic of 
Ireland. Detailed framework (and spatial programming model) requirements were 
informed by a comprehensive audit of existing and planned future intelligent 
transportation systems in the Dublin City area.  

Realising Global Smart Space Applications. The proposed spatial programming 
model has been implemented as part of a proof-of-concept architecture and data 
model that captures a variety of real transportation information derived from systems 
currently deployed in Dublin City. This programming model implementation has been 
evaluated by building a pervasive service for multi-modal urban journey planning. 
Such a smart traveller information service can be considered a canonical global smart 
spaces application since it exploits information generated by a variety of underlying 
heterogeneous systems in a context-aware manner. The evaluation is based on 
transportation information relevant to and derived from a real urban environment and 
demonstrates how our programming model enables application and eventually user 
access to such pervasive context information. In general, it is expected that the 
increased availability of re-usable information from a variety of independent systems 
will enable higher-level policies to be translated more easily into real world actions 
and will facilitate the emergence of novel transportation applications and truly 
pervasive context-aware user services. 

Organisation of this Paper. The remainder of this paper is structured as follows: 
Section 2 surveys related work. Section 3 presents the spatial programming model and 
section 4 describes how this programming model has been realised as part of a 
framework for integrating independent transportation systems. Section 5 presents our 
evaluation of this work outlining how the spatial programming model provides global 
access to the context information required by a multi-modal traveller information 
system. Finally, section 6 concludes this paper by summarising our work. 

2 Related Work 

Temporal, spatial and quality of service attributes represent types of meta-data that 
may be integrated into a context model to provide more intelligent and focused use of 
data [7]. This approach has been applied in the Nexus framework [8] which provides 
a common context model infused with spatial information to build world models that 
are distributed across spaces possessing rich context data sources, known as 
Augmented Areas. The context model is presented as a global object-based ontology 
for developing interoperable world models. This interoperability is ensured through 
the use of a common but large data schema, the Standard Class Schema, to define 
various world models. The authors have defined a simple spatial query language that 
can be used to interact with objects representing an Augmented Area. An interface 
known as an Augmented World model provides a federated global view on all 
compliant local models. The focus of our work has been to develop a more 
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constrained yet expressive set of abstractions which are used to both facilitate data 
modelling and to provide the basis for our spatial application programming interface. 
Using such a constrained set of abstractions simplifies management and maintenance 
in light of continuously evolving global smart spaces as novel systems are expected to 
use combinations of existing abstractions. 

Gaia [9] is a canonical example of a middleware infrastructure to enable active or 
smart spaces in ubiquitous computing habitats that emphasises the notion of space 
programmability. Gaia extends the notion of traditional operating systems to 
ubiquitous computing environments by providing components such as the Context 
File System and an event manager to track active space state information. Gaia 
focuses on managing resources contained in physical spaces. User data and 
applications are abstracted into a user virtual space and can be mapped dynamically to 
the resources located in the current environment. Applications developed for a Gaia 
active space use a comprehensive set of services at runtime. The iTransIT framework 
adopts a different approach in that it uses a set of context abstractions exposed 
through the spatial programming model to provide an interface to a global smart space 
populated by heterogeneous systems. Aside from calls to the spatial application 
programming interface, systems may operate independently of the iTransIT 
framework. 

Smart Messages [10] is a lightweight architecture similar to mobile agents that 
aims to make Space a first-order programming construct and describes a space-aware 
programming model for outdoor distributed embedded systems called Spatial 
Programming. In this model, content or services provided by nodes are accessed using 
spatial references. These are defined as {space:tag} pairs that are mapped to systems 
embedded in the physical space. These spatial references are used by various 
applications to transparently access network resources in a similar fashion to physical 
memory access using variable names in conventional systems. Our approach to 
accessing information in a global smart space is more generic compared to this 
{space:tag}-based naming scheme in that information can be located using multiple 
context dimensions including space and time as well as any functional aspect of the 
information. Information can be shared and integrated by exploiting combinations of 
these aspects and by exploiting overlapping context. 

3 The Spatial Application Programming Model 

The spatial programming model provides a standardised way for global smart space 
applications to access and use information and context that is distributed across 
independent systems and related services. The spatial programming model provides 
common access to such distributed information based on overlapping context thereby 
enabling applications to exploit and act upon information from a variety of systems 
and services as well as to share information between them. 
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3.1 Abstracting Information and Context 

The spatial programming model uses a small set of predefined types for composing 
information and context, in which context is any information that can be used to 
characterise the situation of an information element [11], to ensure interoperability 
between data sets captured across distributed systems. These types are used to model 
data sets and their context according to the different roles data sets can assume in a 
global smart space as spatial objects. Spatial objects represent information as a series 
of parameters and context as attributes. Such types are central to providing 
applications with a common view on the wide range of information and the associated 
context that might be available in a global smart space. They hide the complexity and 
diversity of the independent systems and data sources comprising global spaces and 
represent the hooks for information integration through overlapping context such as 
space and time. 

Developing such types is non trivial for any programming model for significant 
systems and is especially complex for global smart spaces due to the scale and 
multitude of inter-relationships that exist between sensors, systems, services, users, 
and their data sets. Lehman et al. [8] suggest an exhaustive ontology for defining how 
context information can be shared between applications in augmented areas. 
However, based on our experience with a real global smart space in the transportation 
domain, we have found that a relatively small number of types suffices to decompose 
a global smart space domain model. Using a small set of (coarse-grain) types rather 
than attempting to model the entire world in detail simplifies management and 
maintenance in light of continuously evolving spaces. Novel systems or services are 
expected to be modelled using combinations of existing types whereas an exhaustive 
model might have to be expanded to capture the specific characteristics of novel 
systems. 

The types for modelling information and context as spatial objects currently 
supported by the spatial programming model are summarized in Fig. 1. They have 
been designed as a series of abstract object types and include three main types for 
modelling global information, which are real world, system and data object, as well 
as types for modelling context. 

Spatial Object 

Identification Object Location Object System Object Real World Object Data Object 

Actuator Object Sensor Object  
Fig. 1. Information and context abstractions. 

The three information types model the different roles that objects can assume 
within the spatial programming model. System objects represent general information 
describing software components, including systems and services, while real world 
objects represent physical entities. In a transportation smart space for example, system 
objects might capture operational status from a car parking system or from a journey 
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time estimation service whereas real world objects might model roads and junctions. 
Sensor and actuator objects are specialisations of real world objects and are used for 
modelling explicit infrastructural entities for example, detector loops and variable 
message signs of a car parking system. Data objects model any static or dynamic 
information from systems or services and might be used to model car parking opening 
times and rates charged. Based on an audit of deployed (and planned) transportation 
systems and services in the Dublin City area [12], we found that these categories of 
information types are sufficient to cover possible data sets in such a global smart 
space. Novel information can be integrated using spatial objects composing sets of 
parameters that model such data sets. 

The main context type of the spatial programming model is the location object. 
Location objects are based on a topographical location model that uses geometry to 
model the space occupied or covered by an infrastructural element, a system or a 
service. The spatial programming model also supports temporal context. Temporal 
context is modelled implicitly, i.e., incorporated in other information types, rather 
than explicitly as a specific object. This enables information objects to include date 
and time attributes for representing their temporal context such as creation time and 
temporal validity. And finally, identification objects provide a type for logical 
identity, for example, to identify the name of a system or a service. 

3.2 Modelling Space 

The spatial programming model supports a topographical approach to modelling 
space. The relevant spatial context of sensors, systems, services and even users is 
modelled as a geometric shape. Individual shapes are defined by a sequence of 
coordinates based on a chosen, well-known coordinate system. These shapes 
explicitly represent spatial context derived form the real world. They may reflect the 
physical appearances of spatial objects modelling occupied space or may describe 
areas of interest that specify the regions covered by services. For example, a city-wide 
car parking system might use the spatial model to define the physical locations 
occupied by its car parks whereas a road weather service might use the spatial model 
to outline the locations occupied by weather stations as well as the areas to which 
reports from individual stations apply. 

Using a topographical approach to modelling space enables systems, services, and 
applications to independently define and use potentially overlapping spatial context in 
a consistent manner. Unlike topological approaches [13], in which geographical 
relationships between spatial objects are described explicitly, topographical models 
define relationships between spatial objects implicitly and without explicit 
interactions between objects. The relations between spatial objects (and ultimately 
systems and users) are defined by the position of their respective shape within the 
common coordinate system. This is particularly significant in global smart spaces 
where multitudes of independent systems are distributed over large geographical areas 
and direct communication across systems may be limited or expensive. Applications 
using the spatial model can exploit these implicit relations to link diverse information 
together for a user specific purpose. They may access spatially related information for 
example, by means of exploiting the distance between shapes or by exploiting 
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containment and intersection relations. This might for example enable a vehicle-based 
information system to retrieve the exact locations of car parking facilities within a 
certain distance from its current location. 

The spatial programming model supports the model for defining geometric shapes 
defined by the OpenGIS standard [14]. Spatial objects can be represented by 
geometry types ranging from a point, to a line, to a polygon, to combinations of 
polygons. Points might be used to define the location of a specific traffic signal or an 
individual user. Individual polygons might represent the spatial context of a car park 
or an area of interest whereas a series of (overlapping) polygons might be used to 
compose a spatial model of a transportation network comprising roads, lanes, and 
intersections. 

As mentioned above, these geometric shapes are specified using a common 
coordinate system. The selection of such a system depends on the domain of the 
global smart space for which the spatial programming model is being realised. 
Coordinates derived from third party location sensors, such as Global Positioning 
System (GPS) receivers, are mapped onto the chosen reference system if they are 
based on another system. For example, GPS coordinates may need be converted into a 
regional reference system chosen for a specific space. The Irish national grid 
reference system, a system of geographic grid references commonly used in Ireland, 
has been chosen as the coordinate system in our prototype. 

3.3 Modelling Data 

The spatial programming model defines a set of types for modelling the different roles 
spatial objects (and the context information they represent) can assume within a 
global smart space. Systems and services model their data using these types and a 
particular system may use and combine several types to accurately capture the roles of 
individual data sets. The example shown in Fig. 2, illustrates how a road weather 
system might use a system object to model general system data and a set of sensor 
objects to model individual weather stations. Each weather station comprises a 
location and an identification object and includes a data object that captures the actual 
measurements. 

 

Spatial objects must specialise at 
least one of our types for modelling 
information and context. However, 
depending on their role, they may 
derive from several types. Table 1 
summarises how these types can be 
combined outlining the semantics for 
composing information and context 
into spatial objects. As outlined in the 
real world object row, Table 1 shows 
that a real world object must comprise 
a location and an identification object 
and that it may include a set of data 
objects and a set of other real world 
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Fig. 2. Modeling a road weather system. 
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objects. The compulsory containment of a location object is a reflection of the fact 
that real world objects are expected to model the physical space they occupy. In 
contrast, system and data objects may or may not comprise a location object and such 
a location object is probably modelling the space to which a system’s or data object’s 
information applies. Note that sensor and actuator objects are specialisations of real 
world objects that share the same composition semantics. 

Table 1. The semantics for composing information and context types. 

 System 
Object 

Real World 
(Sensor, 

Actuator) 
Object 

Data  
Object 

Location 
Object 

Identification  
Object 

System Object 0..n 0..n 0..n 0..1 0..1 
Real World 
(Sensor, Actuator) 
Object 

0 0..n 0..n 1 1 

Data Object 0 0 0..n 0..1 0..1 

3.4 Modelling Temporal Context 

In addition to supporting spatial context, the spatial programming model also supports 
context along the dimension of time. The temporal relations between spatial objects 
are defined by a set of attributes. This set of attributes has been derived from our 
study of the transportation infrastructure in Dublin City [12] and are summarised in 
Table 2. The data object type includes these attributes and spatial objects model their 
temporal context by deriving from this type. Data objects also include a 
ConfidenceLevel attribute for modelling the accuracy of the captured data. 

Table 2. Temporal context attributes of data object types. 

Attribute Name Description 
CreationDate Time of data object creation 
LastModificationDate Time the data object was last updated 
RetrievalLatency Expected latency for retrieving the captured data 
ExpectedLifetime Expected duration to the next data object update 
ConfidenceLevel Level of confidence in the accuracy of the captured data 

Applications may exploit temporal relations between spatial objects in the same 
way as they exploit spatial relations to link diverse information together for a user-
specific purpose. They may access temporally related information, for example, by 
means of correlating modification time. Significantly, applications may exploit 
context along a combination of the spatial and temporal dimension. This might enable 
a road-user information system to use the location and time of an accident to retrieve 
the prevailing weather conditions at the accident site and subsequently to advice 
drivers of similarly dangerous road conditions. 
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3.5 Using the Spatial Model 

Systems use spatial objects to model their contextual information and implement the 
spatial application programming interface to provide pervasive access to these 
objects. Each system models the subset of the spatial objects that is relevant to its 
respective purpose and context-aware applications exploit the spatial application 
programming interface to integrate and share information in a common way 
regardless of the specifics of the system implementing a particular part of the spatial 
model. 

As shown below, the operations of the spatial application programming interface 
provide a means for applications to manage, locate and access spatial objects. A set of 
operations is available for locating spatial objects using geometric queries or queries 
based on parameters of objects. Geometric queries are based on a geometry class that 
defines OpenGIS shapes including points and polygons. Parameter-based queries use 
the container class outlined below to describe the parameter and attribute values of 
spatial objects. The parameter class includes native data values and may include the 
relevant temporal attributes of data objects. This class can be used in connections with 
queries but may also be used to access the typed parameter and attribute values of 
spatial objects. The spatial application programming interface enables applications to 
locate spatial objects using a variety of queries ranging from selection based on a 
parameter value, to selection based on temporal context, to selection based on spatial 
context, to combinations of these. For example, a weather station may be selected 
using the value of a measurement, the temporal occurrence of a measurement or the 
location of the station. Such queries may identify zero, one or more objects. For 
example, selecting the bus stops of a certain bus route in a particular area might 
identify multiple suitable stops. Spatial objects are uniquely identified within a given 
system by a type and identifier pair. These pairs are typically the result of some 
selection operation and may be used to either retrieve or update the parameters of 
spatial objects. An application might use bus stop and identifier pairs to retrieve the 
addresses and timetables of previously located stops. 

Significantly, the spatial programming model enables a federation of independent 
systems to model their respective information and context locally as spatial objects. 
Each of these systems implements the spatial application programming interface to 
provide access to its respective set of spatial objects. This enables applications to use, 
share, locate and correlate these distributed objects using a common set of context 
operations irrespective of the complexities of the systems accommodating the objects 
and without the need for an overall close integration of the systems. This mapping of 
the spatial model and its programming interface onto individual systems therefore 
provides for truly pervasive context-aware applications and services in global and 
heterogeneous environments. 
interface S_API { 
  void insert(String elementType, OrderedParameterValues parValues); 
  void remove(String elementType, int id); 
  int[] select(String elementType, Geometry loc); 
  int[] select(String elementType, String parName, Parameter parValue); 
  int[] select(String elementType, Geometry loc, String parName, 
               Parameter parValue); 
  int[] select(String elementType); 
  ElementTypeAndId[] select(Geometry loc); 
  Geometry select(String elementType, int id); 
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  void update(String elementType, int id, String parName[], 
              Parameter parValues[]); 
  Parameter[] retrieve(String elementType, int id, String parName[]); 
} 

class Parameter{ 
  Calendar creationDate; 
  Calendar modificationDate; 
  Long retrievalLatency; 
  Long expectedLifetime; 
  Double confidenceLevel; 
  String parameterValue; 

  Integer getIntegerParameterValue(); 
  Double getDoubleParameterValue(); 
  String getStringParameterValue(); 
  Calendar getDateParameterValue(); 
… 
} 

4 The iTransIT Framework 

The spatial programming model has been realised as part of a framework and a data 
model for integrating independent intelligent transportation systems. As illustrated in 
Fig. 3, the iTransIT architecture structures legacy systems, iTransIT systems, and 
context-aware end-user applications into three tiers. These tiers define the 
relationships between systems and applications and provide a scalable approach for 
integrating systems and their context information as individual components can be 
added to a specific tier without direct consequences to the components in the 
remaining tiers. The relationships between systems and applications can be 
characterized according to the interaction paradigms that describe the possible 
information flows between legacy and iTransIT systems. 

4.1 Architecture Tiers 

The legacy tier provides for the integration of legacy systems and describes existing 
as well as future transportation systems that have not been developed to conform to 
the iTransIT system architecture and layered data model. Such legacy systems often 
feature a form of persistent data storage and might include systems for traffic and 
motorway management that have commonly been deployed in many urban 
environments. 

The purpose of the iTransIT tier is to integrate transportation systems that model 
spatial objects and implement the spatial application programming interface. This tier 
therefore comprises a federation of transportation systems that implement the spatial 
data model. The data model is distributed across these iTransIT systems, with each 
system implementing the subset of the overall model that is relevant to its operation. 
iTransIT systems maintain their individual information, which is often gathered by 
sensors or provided to actuators, by populating the relevant part of the spatial data 
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model. However, some of the information maintained in an iTransIT system specific 
part of the data model may actually be provided by underlying legacy systems. Most 
significantly, traffic information captured in this tier is maintained with its temporal 
and spatial context; persistently stored data is geo-coded typically by systems 
exploiting a database with spatial extension. 

 

The systems that may exist in 
the iTransIT tier can be classified 
according to the paradigms they 
exploit when interacting with other 
legacy or iTransIT systems. Such 
iTransIT systems may be purpose 
built and therefore optimized to 
accommodate application or user-
specific requirements or may be 
general purpose. As shown in Fig. 
3, the framework may incorporate a 
general-purpose iTransIT 
Management system. The iTransIT 
Management system is the 
canonical application of this 
domain and is expected to 
implement a major part of the 
spatial data model. It typically 
serves as a main repository for geo-
coded data generated and used by 
connected legacy and iTransIT systems. 

The application tier includes value added services that provide context-aware user 
access to and interaction with traffic information. These services use the distributed 
data model and the associated context to access information potentially provided by 
multiple systems and might include a wide range of interactive (Internet-based) and 
embedded control services ranging from monitoring of live and historical traffic 
information to the display of road network maps. 

4.2 Common Spatial Data Model 

The spatial data model, common to all iTransIT systems, is comprised of a set of 
potentially distributed layers and represents the central component of these systems. 
As shown in Fig. 4, individual iTransIT systems implement one or more of these 
layers (or parts of layers) and maintain the static, dynamic, live, or historical traffic 
data available in a particular layer. For example, a system might implement a data 
layer describing the current weather conditions while another layer capturing 
intersection-based traffic volumes might be maintained by a different system. 

 

The spatial application programming interface exposes this layered data model to 
other iTransIT systems or indeed user services. Remote access to this interface may 
be enabled through widely used communication technologies and query languages 
based on CORBA and Web Services. 

Data Flow

Application
Tier

(User 
Services)

iTransIT
Tier

(iTransIT 
Systems)

Legacy
Tier

(Legacy 
Systems)

Geo-Data 

Traffic Data 

Mgmt.
System 

Fig. 3. iTransIT ITS architecture framework 
overview. 
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Some of the information captured in 
data model layers may be generated or 
used by legacy systems. Such 
information is mapped to a legacy 
system through data flows. These 
flows can be described using a set of 
flow classes, including event, stream, 
request/response, configuration and 
alarm flows, based on the 
characteristics and requirements of 
communication links provided by the 
KAREN framework architecture [15]. 
Using these descriptions, individual 
iTransIT systems implement interfaces 
that map specific legacy data to their 
data layers. This approach enables the 
use of communication technologies 
that can address the requirements of particular systems and their respective data 
flows. The objective of an iTransIT system might be to handle a certain data subset 
efficiently and to provide specific guarantees for the delivery of the data. For 
example, an iTransIT system may employ real-time communication technology to 
connect to a legacy system that is capable of supporting strong delivery guarantees. 

5 Assessment 

This section evaluates the 
spatial programming model for 
global smart space applications 
proposed in this paper. The 
main objective of the 
experiments has been to assess 
the feasibility of our 
programming model providing 
access to information generated 
by a variety of heterogeneous 
systems in a context-aware 
manner. The assessed 
transportation application 
scenario demonstrates that our 
programming model enables 
application and eventually user access to pervasive context information derived from 
a real urban environment through correlation of overlapping spatial context. This 
evaluation therefore demonstrates that using a spatial programming model enables the 
integration of individual systems associated with a global smart space into a 

iTransIT System 

Legacy System Legacy System

User Service 

Mapping 

User Service 

Spatial-API 

Common Data Model 

Data Model Part 

iTransIT System 

Legacy System 

Mapping 

Data Model Part 

Data Flow 

Fig. 4. iTransIT system architecture and common 
data model. 

Fig. 5. Spatial objects modeling public transport 
information.
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RealWorldObject

(from contextabstractions)

1

1

1

1

1

1

1

1
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comprehensive platform for the provision of context-aware services and information 
to users. 

 

The application scenario has been derived from the requirements of a smart 
traveller information service enabling travellers to plan journeys involving multiple 
forms of transportation including walking, public transport, cycling, and private 
vehicles thereby bridging the coordination gap between these modes of transportation 
by suggesting journey routes according to traveller preference and availability of 
transportation means. Such a service can be considered a canonical global smart 
spaces application since it exploits context information generated by a variety of 
independent systems. The scenario has been assessed using a prototypical 
implementation of an iTransIT Management system as a platform for pervasive 
services. This Management system implements the spatial application programming 
interface and uses spatial objects to model information concerning a range of 
transportation systems currently deployed in Dublin City. The system includes global 
context layers modelling the road network comprising intersections, roads, lanes, 
traffic counts, traffic volumes, and congestions levels as well as the public transport 
network consisting of bus routes, stops, lanes, timetables and bus locations. It also 
includes system context layers modelling parking information and road weather data. 
These layers integrate data provided by a range of real legacy systems including the 
main traffic management system, a public transport information service, a congestion 
level application, a road weather service and a car parking information system. Fig. 5 
shows a small set of the spatial objects modelling these layers that have been 
implemented as relational tables in a MySQL database with spatial extension. The 
information from these spatial objects has been provided by the traffic management 
system, the public transport information service and by a journey time monitoring 
system. 

5.1 The Evaluation Scenario 

The evaluation scenario includes a tourist using the context-aware traveller 
information service to locate public transport stations within walking distance of her 
current location. The tourist has just visited The Book of Kells museum at Trinity 
College Dublin and is about to leave campus through the Nassau Street gate. She 
remembers that she used the number 15 bus to travel from her hotel to the city centre 
and would therefore like to locate nearby bus stops of this route. 

She uses a handheld device with wireless service access to enter her query into the 
traveller information service, providing bus route number 15 and 5 minutes walking 
distance from her current location as parameters. The service uses coordinates derived 
from its GPS receiver (converted into Irish national grid coordinates) and an average 
pedestrian pace of 1.36m/s [16] to define the geometric shape of the search area. The 
service then uses the spatial application programming interface as outlined below to 
access the relevant context information. 
1 int[] busStopId = sapi.select("BusStop", searchArea); 
  for (int i = 0; i < busStopId.length; i++) { 
2   Parameter busStopName=sapi.retrieve("BusStop", busStopId[i],"Name"); 
3   Geometry busStopLocation = sapi.select(“BusStop”, busStopId[i]); 
4   Parameter linkToRoute = sapi.retrieve("BusStop", busStopId[i], 
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                                          "route_autoId"); 
    int routeId = linkToRoute.getIntegerValue(); 
5   Parameter routeName = sapi.retrieve("Route", routeId, "Name"); 
6   if (routeName.getStringValue().equals(“15-outbound”)) || 
       (routeName.getStringValue().equals(“15-inbound”)) { 
7     //use results 
    } 
  } 

The service might use a geometric query to locate all spatial objects representing 
bus stops in the given search area (1) and retrieve the parameters and attributes of 
these objects that describe the names and locations of specific bus stops (2, 3). The 
service then proceeds to identify the spatial objects that describe the routes associated 
with these bus stops. These “links” to route objects are modelled as parameters that 
can be retrieved from bus stop objects (4). They are subsequently used to retrieve the 
names of the bus stop routes (5) and information related to the previously indicated 
bus route (6) can then be used to advise the user (7). The results of such a scenario for 
locating bus stops within walking distance can be found in Table 3. Bus stops for both 
city centre-bound and suburb-bound stops have been retrieved since the user did not 
specify her preferences. Naturally, a traveller information service would display this 
information as an overlay to a map of Dublin City rather than in table form. Such an 
overlay might include the bus stop names and the headings of buses. This might 
further assist the user in locating and eventually walking to a convenient bus stop. 

Table 3. Locating public transport stations within walking distance. 

Bus Stop Name Route Name Bus Stop Location 
(Irish national grid coordinates) 

Kildare Street 15-outbound (316230.8575, 233593.6385) 
Dawson Street Upper 15-inbound (316063.4310, 233792.1260) 
Dawson Street Lower 15-inbound (316036.3947, 233612.0083) 
Suffolk Street 15-inbound (315924.9190, 233981.6965) 
Nassau Street 15-outbound (316202.2930, 233883.7390) 
College Green 15-outbound (316038.3422, 234186.3123) 

This application scenario demonstrates how a context-aware user service might use 
the spatial programming model to locate real-world entities in a given area of interest 
and how it might exploit explicit associations between spatial objects. Similar queries 
can be used by a range of related scenarios. For example, after selecting a bus stop, 
the user might wish to see the relevant timetable for the next hour or might wish to 
use the address of her hotel to locate a convenient stop near her destination and to 
display the route the bus will take. Other related scenarios might include retrieving 
the congestion levels along the route in order to get an indication of whether the bus is 
likely to be on time. Such a scenario might also be of interest to someone travelling 
by car to the airport or to work. These related scenarios have been implemented but 
due to space limitations are not describe in further detail. 

This assessment is based on scenarios that access information integrated in the 
spatial model through a single spatial application programming interface. However, a 
context-aware user service may concurrently use multiple spatial application 
programming interfaces to access spatial objects in a similar way. The overlapping 
context of such distributed spatial objects may be used similarly to correlate objects. 
For example, the location of a bus stop available from one spatial application 
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programming interface might be used to locate nearby train stations through another 
interface. 

 

6 Summary and Conclusions 

This paper presented a programming model for global smart space applications to 
access context information provided by independent systems and related services. The 
spatial programming model uses a small set of predefined types to model distributed 
context information as spatial objects. This provides a common view on such 
information and enables applications to exploit, act upon and share information based 
on overlapping temporal and spatial aspects. The spatial programming model supports 
a topographical location model in which spatial context derived form the real world is 
explicitly represented by shapes that reflect occupied space or describe areas of 
interest. This enables systems distributed over large geographical areas to 
independently define and use spatial context in a consistent manner. 

The spatial programming model is part of the iTransIT framework for global smart 
spaces in the transportation domain that has been motivated by the needs of Dublin 
City. The multi-layered distributed iTransIT architecture enables incremental 
integration of independent systems and services over time while minimising the 
impact of such expansion as changes are local to the new system. The distributed data 
model, in which individual systems maintain one or more layers of the overall data 
model, facilitates data exchange between systems and services with diverse contextual 
data sets and functional organizations. 

The evaluation of the spatial programming model is based on a prototypical 
implementation of an iTransIT management system that uses spatial objects to model 
real information relevant to and derived from a range of transportation systems 
currently deployed in Dublin City. The assessed scenario demonstrated that our 
programming model enables application and eventually user access to pervasive 
context information concerning a real urban environment through correlation of 
overlapping spatial context. This evaluation therefore demonstrates that using a 
spatial programming model enables the integration of individual systems associated 
with a global smart space into a comprehensive platform for the provision of truly 
pervasive context-aware services and information to users. 
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