
Intelligent Dependability Services for Overlay
Networks

Barry Porter, Geoff Coulson, and Daniel Hughes

Computing Department, Lancaster University, Lancaster, UK
(barry.porter,geoff,hughesdr)@comp.lancs.ac.uk

Abstract. Application-level overlays have emerged as a useful means of
offering network services that are not supported by the underlying physi-
cal network. Most overlays employ proprietary dependability mechanisms
to render them more resilient to node failure; but the use of proprietary
approaches leads to duplication of effort during development and adds
design complexity. In this paper we propose generic dependability ser-
vices which simplify the design of overlays. Our services are fully de-
centralized and are configurable to take advantage of current network
conditions, which can enable us to make better repairs following failures.

1 Introduction

Overlay networks are application-level distributed systems, architecturally situ-
ated between the network (e.g. the IP layer) and the end-user application. They
typically provide specialised virtual network topologies (e.g. trees or rings), or
application-specific services (e.g. application-level multicast or ad-hoc routing)
which are outside the scope of the underlying network. Their use is increasingly
common and the types of overlays in use is increasingly diverse [1–6].

As overlays become more widely deployed, their dependability becomes an
ever more critical issue. In current practice, every overlay implements its own
dependability mechanisms. For example, Chord [7] employs backup links and
data replication, and Overcast [8] uses a specialised tree-repair strategy, both
of which are intended to provide resilience in a single environment consisting of
end-user hosts. In our present work, we seek to add dependability to overlay net-
works as a generic service which can operate in multiple environments including
that of ‘overlay deployment environments’, which are becoming more common
[9–11]. Our primary goal is to address fault tolerance issues in a systematic and
re-usable manner, and thus to both simplify and enhance the design and de-
ployment of dependable overlays. An associated, more general goal is to explore
autonomic dependability in large scale overlay-based distributed systems, where
self-configuring services can make intelligent decisions at runtime.

This paper presents an approach to providing generic dependability services
to overlay networks, which can benefit from multiple configurations to intelli-
gently provide redundancy and enact repairs in an overlay, taking into account
the current environmental conditions in which the overlay is operating. In doing



2 Barry Porter, Geoff Coulson, and Daniel Hughes

so, we argue that our services can improve the quality of repairs made to an
overlay following failures, and present preliminary results in support of this.

The rest of this paper is organized as follows: In section 2 we examine sev-
eral overlays and their proprietary fault-tolerance mechanisms. In section 3 we
introduce our general approach to building dependability services, and in sec-
tion 4 we present our initial results from evaluating our approach in an overlay
deployment environment. Finally, section 5 discusses related work, and section
6 presents concluding remarks and aspirations for future work.

2 Analysis of Dependability in Overlay Networks

Our general observation is that while most overlays provide resilience in the face
of node failure, the mechanisms used are targeted at a single environment, where
each overlay node resides on an end-user host in an Internet-like environment. As
a result, the approach taken by many overlays to repair themselves is to remove
the failed nodes from the overlay and to attempt to continue to provide the
same service without them. This causes a cumulative degradation of the overlay’s
functioning over repeated failures, as more nodes are lost. We also observe that
the physical capabilities of an overlay’s hosting nodes are typically not taken into
account, which can further tend to degrade the functioning of the overlay. A final
observation is that as overlays become more widely deployed and used in more
demanding application areas, dependability becomes an increasingly pressing
concern. For example, overlay dependability is crucial in Grid environments due
to the large volumes of data that are typically handled [12].

To demonstrate that these limitations pervade a wide range of overlay types
we now look in more detail at DHT overlays (in section 2.1), content dissemina-
tion overlays (in section 2.2) and flooding overlays (in section 2.3).

2.1 DHT overlays

The general purpose of this class of overlay is to provide an efficient and scalable
“key-based routing” facility in which a message can be routed in O(log N) hops
(where N is the total number of nodes in the overlay) to a target node that is
designated by a given key. In Chord [7], for example, all the nodes are organ-
ised as a logical ring. Chord nodes each maintain a so-called finger list—a list
of increasingly distant nodes around the ring. This is used for O(log N) rout-
ing towards a target node. Chord nodes also store the IDs of their immediate
“successor” and “predecessor” nodes in the ring so they can still make O(N)
progress at times when the finger list is incomplete. One use of Chord is as a dis-
tributed data repository. In such an application, a data item which is submitted
for storage in the repository is stored at the node whose ID is closest to a hash
of the data. Pastry [1] works in a similar way to Chord, as does Tapestry [3],
although the latter is organised as a mesh rather than a ring. Another popular
DHT overlay, CAN [13], is organised such that nodes have zones of responsibility
in a distributed coordinate space.



Intelligent Dependability Services for Overlay Networks 3

Despite their differences, all the above-mentioned overlays have a similar
approach to dependability. In particular, when used as a data repository, they
increase availability of the data by replicating data items on the n nodes whose
ID is “closest” to the hash of a stored piece of data. The response to a node
failure is to update the links in the routing tables of the affected nodes to reflect
the change, and also to restore the number of replicants of data items stored at
the failed node by copying them to further nodes.

The general disadvantage of this approach is that the self-repair algorithm
permanently increases the load on the surviving nodes and reduces the total
amount of redundancy in the overlay, as the same volume of data is redundantly
stored at less hosts. We also observe that the physical resources of a node are
generally not taken into account in DHT overlays; a node is given an ID and is
expected to be able to store all data hashed to that ID. This expectation may
be not be workable in a highly heterogeneous system that includes a significant
number of poorly-resourced hosts.

2.2 Content dissemination overlays

Content dissemination overlays [14, 15, 4] deliver streaming content to multiple
users in a scalable manner. They are typically organised as a tree with the sender
at the root. Each non-root node receives data from its parent, and forwards it
to each of its children using a point-to-point link.

TBCP [14] is a good representative of this class of overlay. TBCP builds
a single rooted tree, and new nodes join the tree by first contacting the root
node on a published or well-known address. The root node decides if it wants to
accommodate the joining node as one of its direct children; if not, it forwards
the join request to its most suitable child. This process recurses until the joining
node finds a place in the tree. For performance reasons, TBCP attempts to
build a tree that reflects the structure of the underlying IP network—i.e. the
nodes contained in each sub-tree should tend to share IP-level locality. Decisions
about whether to accept a node as a direct child or to pass it on are made on
this basis. Another approach to maintaining a close correspondence between an
overlay multicast tree and the underlying IP topology is to employ a network
metric such as round trip time between nodes [4].

In terms of dependability, if a node fails, the default response in many such
overlays is for all the nodes below the failure point to re-join via the root of the
tree. The drawback of this is that the resultant bottleneck can cause traffic to
be significantly disrupted during the (possibly extensive) re-building phase. One
possible optimisation is to have each node record a “backup parent” [15]; but this
also has complications: if the child of a failed node re-locates to a backup parent,
it brings the entire sub-tree below it, which can result in a poorly balanced tree.
Another approach is to simply assign the grandparent as the backup parent [8].
This keeps the tree balanced, but can increase the out-degree of the new parent,
which may in the future place additional strain on that node potentially beyond
its capacity [15]. The key points are that in each approach there is additional



4 Barry Porter, Geoff Coulson, and Daniel Hughes

stress on some parts of the rest of the tree as a result of the failure, and that
this is cumulative over multiple repairs.

In addition, when attaching a new node to an overlay, current schemes tend
not to take into account the characteristics (e.g. in terms of processing power
and link speed) of the underlying host machine: if a tree is built on top of hosts
with greatly differing capabilities, it may not perform with adequate quality of
service (QoS). In an extreme case, for example, if a low power PDA, or a PC
with a dialup connection, is given many children it would have difficulty sending
data out to all of these at a sufficient rate.

2.3 Flooding overlays

This simple type of overlay is typically used to locate and acquire resources
in a distributed environment. Messages are flooded to a (subset of a) node’s
neighbours, and the neighbours pass these messages onto their neighbours etc.
This continues until either the target resource is located, the edge of the overlay
is reached, or a maximum hop-count that messages are permitted to travel is
reached. Unlike DHTs, queries in flooding overlays typically only reach a subset
of the overlay’s nodes (termed the “search horizon”), which means that there
are no guarantees about locating resources that exist in the overlay.

Early flooding overlays such as Gnutella v0.4 [16] made no provision at all
for dependability because it was assumed that resources would naturally be
replicated over multiple nodes, and that flooding would likely locate a suitable
copy. Version 0.6 of Gnutella, however, adds the notion of “super-peers” to the
architecture in an attempt to enhance scalability. In v0.6, end-user computers
are viewed as “leaf-peers” that do not directly engage in flooding. Instead, each
leaf-peer attaches to a super-peer which manages a number of leaf-peers and
maintains a list of resources held by these. This architecture reduces the number
of nodes that engage in flooding and therefore increases the search horizon. As a
side effect, however, it impacts dependability [17] in that the failure of a super-
peer requires the leaf-peers it was supporting to locate another active super-peer.
Furthermore, as the number of super-peers drops, the load on the remaining ones
clearly increases, which tends toward the emergence of bottlenecks in the overlay.

3 Approach

3.1 Overview

Architecturally, we use a “Dependability Service” component, which can load
and configure sub-services which address an area of dependability. An instance
of the dependability service component and its sub-services resides alongside
each overlay node, as shown in figure 1. Each service internally uses only ‘soft
state’ (i.e. state that can be re-built from instantiation simply by existing in
the environment), so that services are inherently self-repairing. Currently, our
design uses three major sub-services: i) a backup service, ii) a failure detection
service and iii) a recovery service.



Intelligent Dependability Services for Overlay Networks 5

Fig. 1. The dependability services, horizontally composed with an overlay node

Before discussing each of these services, we first introduce the concept of
accessinfo and nodestate records. In order to externally manage an overlay, we
first elected to create a specification of what constitutes an overlay. Rather than
providing fully transparent services, we are interested in taking the application-
specific needs of each overlay into account, and in order to do this we needed to
create a certain ‘model’ to which an overlay must conform.

Our overlay model has two basic ‘types’: Accessinfo records and nodestate
records. An accessinfo record represents an overlay node’s ID, or a neighbour
link to another node in the overlay. Each overlay node will therefore have one
accessinfo record giving its logical node ID, and a collection of records provid-
ing its list of neighbours. Accessinfos are expected to have ‘context’ (such as
‘NodeID’, ‘child’ or ‘successor’) included in them, though the internal structure
of accessinfo records is unknown to the services, and entirely the decision of the
overlay. They are named as such because they represent not only a way to store
the structure of the overlay on a per-node basis, but they also allow service in-
stances on neighbouring nodes to communicate with each other by passing to
their overlay node an accessinfo record and a message to deliver to the service
at the target node, thus exposing the structure of the overlay to the services.

Nodestate records represent any other state that is required by the overlay
to be persistent across failures, such as resources in Chord or resource indices
at Gnutella super-peers1. Again, their constitution is the choice of the overlay;
our services simply know that they represent ‘extra state’ of a node that is
not directly related to the overlay’s core structure. We use both of these typed,
‘black-box’ objects to generalize overlays sufficiently for what we need to achieve,
while still allowing significant room for specialization by overlays of their needs
by filling in the black boxes in ways uniquely appropriate to them.

Our general approach to dependability centres on decentralization, config-
urability and intelligent self-configuration. We now discuss the three services
mentioned above, outlining available configuration options in each.

3.2 Backup service

The backup service is used to redundantly store accessinfo and nodestate
records belonging to an overlay node in case that node fails. This data is stored
on one or more appropriate backup hosts in the overlay (other than the host of

1 Note overlays are not required to have nodestate; some overlays like simple multicast
trees have only structural data, which is captured in full by accessinfo records



6 Barry Porter, Geoff Coulson, and Daniel Hughes

the origin overlay node), and constitutes everything about a node that is needed
to make repairs should it fail.

Our current implementation uses a simple ‘push’ variant where overlay nodes
notify the backup service when neighbours or other overlay state is added or
removed at that node. The local backup service at a node then transmits the
collection of accessinfo and nodestate records to other nodes. In terms of
configurability, the backup service can store more or less complete backup copies
of each node on different hosts, providing a simple way to increase or decrease
the amount of redundancy in the overlay.

In future work, we intend to make the backup service self-configuring, so that
it can increase or reduce the amount of redundancy in the overlay according to
observed regional stability of networks and hosts. Additionally, backups should
ideally be stored at the most stable hosts in the overlay with the most free
resources. We also seek to take advantage of the way our overlay model allows
individual handling of accessinfo and nodestate records, such that we only
alter existing backups to add new ‘fragments’ of data about a node instead of
re-saving the full collection of these each time a change is made.

3.3 Failure detection service

The failure detection service is used to detect node failures in a decentralised
manner. The service is currently implemented in the form of an overlay that
is used to monitor the nodes of one or more “target” overlays that require de-
pendability. Having detected a failed node, an instance of the failure detection
service informs the recovery service instance(s) on the neighbour(s) of that failed
node. A number of overlay types could be used for failure detection, with various
protocols, but our current implementation makes use of gossip protocols [18].

Because distributed failure detection is already a well-researched area in its
own right, we do not pursue this aspect of the dependability service in this paper.

3.4 Recovery service

The general behaviour of a recovery service component is, on learning of the
failure of a neighbouring node from the failure detection service, to create a
strategy to repair the overlay. We currently use two different methods to achieve
this; i) recovering failed nodes on alternative hosts, and ii) adapting the overlay
to perform the same duties without the failed nodes.

When recovering failed nodes on alternative hosts, the service first discovers
suitable hosts (i.e. with sufficient free resources), then instantiates new overlay
nodes on those hosts, and injects backed up data into each, essentially re-creating
each failed node. At nodes that neighboured these failed nodes, accessinfo
records are manipulated by the service so that they point to the newly restored
node(s). This is the most transparent method of repair, as the overlay structure
does not change, but clearly requires the availability of suitable alternative hosts
and the ability to locate them. We return to this issue in section 4.1.



Intelligent Dependability Services for Overlay Networks 7

When adapting the structure of the overlay to operate without the failed
nodes, the service needs to know how to perform the adaptation; that is, what
the structural and behavioural rules of the overlay are. We can use various levels
of interaction with the overlay in order to acquire such information when a repair
needs to be made, but we present the most generic approach here which requires
least interaction with the overlay. It uses the observation that several types of
overlay can be structurally repaired using the same procedure, by adding all
outward-pointing ‘perimeter’ connections from the failed section of overlay (i.e.
neighbour links from failed nodes to neighbouring live ones) to one selected
live neighbour of the failed section, and adjusting connections at all other live
neighbours of the failed section to point to that same selected neighbour. Any
recovered nodestate is also inserted into the selected node.

Using either of the above repair ‘styles’, or a combination of both, it is nec-
essary to select a coordinator to actually carry out the repair. To do this, the
nodes neighbouring (or ‘bordering’) a failed node or failed section of overlay
discover each other by locating the backup of a failed neighbour, extracting its
neighbours, and testing each for failure, then recursing the procedure, until each
link terminates (transitively) in a node reported to be alive. These nodes then
communicate with each other, using an agreement algorithm to select one of
them as the repair coordinator. We do not have space to present the algorithm
in detail here, but interested readers are referred to [19]. Briefly, its properties
include that only the nodes bordering a failed section (or single failed node) of
overlay are involved in its repair, limiting the effort of repair to the affected area
of overlay. This is because recovery service instances are initially only concerned
with the failure of their direct neighbours, expanding their area of concern as
they discover additional connected failed nodes. The algorithm is resilient to
further node failures while repairs are taking place, and is also able to select the
repair coordinator based on dynamically-acquired data at the time of the failure,
such as free resources on each border node and their network latencies.

4 Evaluation

4.1 Gridkit: Overlays as part of middleware services

The environment on which we focus for our evaluation is an overlay deploy-
ment environment called Gridkit [10], which is a middleware service supporting
communication-based Grid systems in diverse networks. Gridkit and its over-
lay networks are constructed from software components, and overlay networks
are used as a substrate for ‘interaction types’ requested by an application (e.g.
multicast, publish-subscribe), operating in a heterogeneous Grid-like environ-
ment. The architecture of overlay nodes is specified into a control, state and
forwarder component, allowing overlays to be composed in a ‘stack’ to provide
advanced services (a typical example is using Scribe [2] atop Pastry for publish-
subscribe style communication), where messages travel up and down the stack
(e.g. between forwarder components). More details on Gridkit are available in
the literature [10].



8 Barry Porter, Geoff Coulson, and Daniel Hughes

For our dependability services, we are particularly interested in two aspects
of the environment that Gridkit operates in; its heterogeneity, where hosts of
massively variable capabilities are connected together in a suitable overlay, and
its altruistic nature. This latter aspect can be harnessed by Gridkit’s resource
discovery framework, a service capable of discovering Gridkit-enabled hosts in
the network with specified types and levels of resources.

When our recovery service is used in such an environment, it can switch
between the structural adaptation and node restoration repair styles as available
Gridkit hosts and resources dictate. This is a powerful ability, meaning that the
overlay may not need to ‘degrade’ at all following a failure, as failed nodes can be
restored on alternative Gridkit hosts, maintaining (if possible) a constant node
(and host) population through failures. If suitable hosts are not available, the
recovery service can simply employ structural adaptation to repair the overlay
as normal.

We now present results from a Gridkit-like environment which show how this
kind of intelligent, configurable repair can be beneficial in practice. We employ
the following criteria in evaluating the dependability service:

– ongoing memory use refers to the average ongoing memory load on the hosts
used by the overlay;

– average request handling load refers to the average number of user requests
handled by a host per second;

– average recovery time refers to the time taken to recover failed node from
the time of detection of the failure;

– messaging overhead refers to the total amount of maintenance-related overlay
traffic per unit time.

In the following, we first, in section 4.2 present a detailed quantitative analy-
sis of the dependability service in comparison to the proprietary dependability
mechanisms supported by the Chord DHT. Then, in section 4.3, we offer a more
general qualitative analysis.

4.2 Comparison with Chord’s dependability mechanisms

To perform this evaluation, we developed Java software that emulates a set of
hosts as operating system processes and inter-host links as IPC calls. We then
ported the backup and recovery services (using only the node restoration repair
style) to this environment. Failures are simulated in terms of a script and notified
to overlay nodes running on the simulated hosts as if by the failure detection
service. On top of this, we developed two Chord implementations: one is standard
Chord [7], and the other is a modified Chord that replaces Chord’s proprietary
dependability mechanisms with our dependability APIs.

Our experimental Chord configurations employed a successor list size of 2,
and an identifier space size of 8. We used ring sizes of 12 nodes, but included
17 ‘Gridkit’ hosts, each of which was capable of hosting an arbitrary number
of nodes; initially 12 hosts supported a single node each, and the others were



Intelligent Dependability Services for Overlay Networks 9

idle2. The rings were used to store a set of 60 different data files. Each of these,
which were of identical size, was hashed to a key and stored on the node closest
to that key. Although the assignment of files to nodes was ‘random’, the same
assignment was used for each experimental run. Each node duplicated its state
on one additional node—in the standard Chord case, through replication; in the
modified Chord case, via the backup service. In each run of the experiment, we
observed the effects of failing 7 hosts, one every 10 seconds. This resulted in the
standard Chord version being left with 5 nodes at the end of the run, and the
modified version being left with 12 (as the 7 failed nodes were recovered by the
dependability service). The file data was injected into the ring at time T+20, and
the first failure occurred at T+42. All the results presented below are averaged
over all hosts used by the overlay in question (n.b. obviously by the end of the
standard Chord runs there were only 5 hosts in use; whereas there were 10 by
the end of the modified Chord runs).

In terms of ongoing memory use, figure 2 (a) shows the average memory load
on the overlay’s hosts. It can be seen that, in the case of standard Chord, the load
increases steadily from the time of the first host failure (at time T+42). However,
in the case of modified Chord, because the total load is spread over more available
hosts, the average load is much smaller. Note that the slight increases at times
68 and 91 are due to the fact that a host is from that point supporting 2 nodes
(as mentioned, there are 12 nodes but only 10 hosts in use at the end of the
run). Note also that between times 26 and 42 (which is a failure free period)
modified Chord consumes slightly more memory than standard Chord. This is
due to the overhead of storing backups in a generic fashion. In conclusion, this
experiment confirms that modified Chord in the face of node failure can spread
the load over a wider range of hosts than standard Chord and thus reduces host
memory overload and consequent service degradation.

We evaluated average request handling load by counting the number of re-
quests arriving in each second at each host. A single designated node generated
requests for a random selection of 15 of the 60 files stored in the ring at a rate
of 15 requests per second. Figure 2 (b) shows that the average request handling
load is similar for the two cases until T+42, when the first host failure occurs.
From this point onward, in the case of standard Chord, a constant number of
requests is being handled by a shrinking number of hosts—therefore the request
handling load steadily climbs. In the case of modified Chord, however, the num-
ber of hosts stays around the same so that the request handling load is roughly
constant (again the slight increase is due to two hosts supporting two nodes).
In conclusion, this experiment confirms that our approach can maintain the re-
quest handling patterns of the original ring topology across node failures, and
therefore reduce bottlenecks. Note, incidentally, that request handling load does
not translate directly to average request latency, because network latency must
also be taken into account in this. In fact, standard Chord will tend to a lower
average network latency as failures occur, simply because there are fewer nodes

2 The nature of our criteria is independent of the size of the Chord ring involved, so
there is no loss of generality in using such a “small” ring.



10 Barry Porter, Geoff Coulson, and Daniel Hughes

Fig. 2. Average memory load (a) and requests per second (b) at hosts used by the
overlay.

left in the ring. However, our approach will increasingly “win” as the ring be-
comes more loaded with data—as this happens, the per-host request handling
load will progressively overshadow the effects of network latency.

We evaluated average recovery time in modified Chord simply by measuring
the average latency between failure detection and recovery completion. This
was measured as 179ms. In standard Chord, of course, nodes are not recovered:
instead the predecessor of the failed node simply re-designates the failed node’s
successor as its successor; therefore recovery time is negligible. Thus the standard
Chord time is close to 0ms. Essentially, we are paying “up front” for later pay-
offs in terms of improved memory use and reduced request handling load. This
tradeoff is increasingly in our favour as more failures occur—recovery time in our
approach is constant (and quite small) for each failure, while the degradation
caused by compensating for the loss of a node in standard Chord is cumulative
as failures increase.

Finally, we measured overlay messaging overhead in terms of the numbers
of overlay maintenance-related messages. More specifically, we totalled the byte
count of these per second and divided by the number of hosts involved. The
results are shown in figure 3. It can be seen that there is a small start-up cost
incurred by modified Chord between time 0 and the time of the data injection
(at T+20). This is due to backups being taken as the ring is built; it tails off
as the ring stabilises. Following data injection, both cases suffer a spike; this
is larger in the case of modified Chord, again due to the overhead of creating
generic backups. Subsequently, however, modified Chord fares slightly better
than standard Chord—except transiently when failures occur. The reason for the
higher ambient overhead of standard Chord is the need to continuously maintain



Intelligent Dependability Services for Overlay Networks 11

the successor list; modified Chord does not have this requirement, although it
does need to maintain the Chord finger table as this is an inherent part of the
operation of the overlay. In conclusion, the recovery “spikes” are traded off for a
generally improved level of service in terms of messaging overhead. As above, the
overhead is transient while the adverse effects of not restoring nodes is permanent
and cumulative.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Time (s)

B
y

te
s

 s
e

n
t 

a
n

d
 r

e
c

e
iv

e
d

Standard

Modified

Fig. 3. Average number of overlay maintenance-related bytes per second per host.

To summarise, repeated failures in Chord using its proprietary dependability
approach lead to reduced overall redundancy in the overlay, and more stress
being put on other nodes in the long term to compensate for the failures. By
restoring failed nodes in Gridkit where possible, we maintain the structure and
integrity of the overlay across failures, and the benefit of this grows progressively
with the amount of data stored in the ring and number of node failures.

4.3 Qualitative evaluation

We now extrapolate from the DHT-specific arguments above to the other overlay
classes mentioned in section 2.

First, consider content dissemination overlays such as TBCP. In such over-
lays, the ongoing memory use and request handling load criteria are not applica-
ble as the purpose of the overlay is simply to forward “live” data. The main
difference relates to the average recovery time criterion. There are basically two
cases depending on the tree repair strategy used. First, consider the “rejoin at
root” strategy (see section 2.2). Here, the node restoration approach avoids two



12 Barry Porter, Geoff Coulson, and Daniel Hughes

pathologies: i) overloading of the (bottleneck) root node; and ii) long outages in
cases where the failed node has many descendents. Second, consider the “backup
parent” strategy. Here, our approach can avoid the pathology of structural degra-
dation. In particular, it avoids stressing the backup parent which might have to
deal with a larger number of children than it is equipped for; and it avoids situa-
tions in which the tree may become unbalanced if a large subtree is moved from
one branch to another. These pathologies can be avoided by recovering the failed
node on an alternative host and re-integrating it into the overlay in the same
logical position, removing the need for any re-configuration of the tree. There
is a trade-off involved in all of these situations. For simple cases (e.g. where the
failed node has few descendents), the proprietary methods may be faster; the
benefit of restoring nodes becomes particularly apparent in large trees.

Second, consider flooding overlays such as Gnutella v0.6. In terms of ongoing
memory use, request handling load, and maintenance-related messaging over-
head, the benefits are similar to those seen in the Chord case—as super-peers
fail, rather than their memory use and request handling load burdening other
surviving super-peers, the failed nodes are simply restored on alternate hosts
when possible. The corresponding drawbacks are also similar to the Chord case.
The main difference between the Chord and Gnutella cases is in terms of recovery
time (for super-peers). In standard Gnutella v0.6, leaf nodes that were attached
to a failed super-peer must locate an alternative super-peer, which may in some
cases require the intervention of the user. In a dependability service enhanced
Gnutella, however, leaf nodes would be automatically informed of the location
of the recovered super-peer.

5 Related work

Classic work on fault-tolerance services for distributed applications has focused
on management ‘frameworks’ [20, 21]; these often have hierarchical arrangements
with various dedicated ‘managers’ (usually replicated for fault-tolerance) to re-
cover from failures. In contrast, we seek to develop entirely decentralized ser-
vices which are horizontally composed with the application, affording us scala-
bility and enhanced service resilience, and removing reliance on administrated
infrastructure to host our services.

The Resilient Overlay Network project [22] highlights the usefulness of over-
lays to improve levels of service beyond those of the physical network, but RON
is aimed at providing dependable communications over the Internet using an
overlay and does not address the failure of overlay nodes themselves. While our
approach can also be used to provide dependable communications by introducing
dependability to a target overlay network, it is more general and focuses not only
on the overlay surviving, but also on any data in the overlay being persistent.

There are some overlays such as Narada [23], and some simple flooding over-
lays (e.g. Gnutella v0.4), that employ dependability mechanisms which do not
degrade over multiple recovery operations, and which do take account of host
resources. However, the number of such overlays is sufficiently small that our ap-



Intelligent Dependability Services for Overlay Networks 13

proach is still very widely applicable; moreover the overlay-specific dependability
techniques of these overlays are generally not suitable for overlays of different
types. We are not aware of any work except ours that is aimed specifically at
making overlays themselves dependable in a generic way.

Finally, our work is related to general trends in autonomic computing re-
search [24] in that it is decentralized, using relatively lightweight components
distributed throughout an overlay to monitor and manage it, and our services
are self-configuring.

6 Conclusions

The heart of our proposal is to offer dependability to overlays in the form of
generic services, which intelligently configure as appropriate to an overlay’s en-
vironment. We have presented an example using an overlay deployment environ-
ment, where intelligent selection of a repair strategy can improve the performance
of an overlay following multiple failures. The generalization and extension of ex-
isting overlay dependability mechanisms as external services allows commonly
applicable standards of fault-tolerance across a wide range of overlays, and we
have shown that the price of such genericity is not prohibitively high.

We currently have implemented both node restoration and structural adap-
tation repair styles in our recovery service, and have basic implementations of
our failure detection and backup services.

In our future work, we intend to bring similar intelligence to our backup
service, taking advantage of our overlay model to store only changes to an over-
lay node’s accessinfo or nodestate records, and storing backups at the most
suitable (i.e. highly resourced and stable) nodes, as well as varying the amount
of redundancy used depending on the relative stability of the overlay.

We are also interested in helping to deal with network heterogeneity; as we
discussed in section 2, many of today’s overlays are not good at distributing
load according to the resources of their members’ hosts, and we believe that an
additional service can address this issue by re-distributing load appropriately.

References

1. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. Lecture Notes in Computer Science
2218 (2001) 329

2. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: SCRIBE: A large-scale
and decentralized application-level multicast infrastructure. IEEE Journal on Se-
lected Areas in communications (JSAC) (2002)

3. Zhao, B.Y., Kubiatowicz, J.D., Joseph, A.D.: Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141, UC
Berkeley (2001)

4. Pendarakis, D., Shi, S., Verma, D., Waldvogel, M.: ALMI: An application level
multicast infrastructure. In: 3rd USNIX Symposium on Internet Technologies and
Systems (USITS ’01), San Francisco, CA, USA (2001) 49–60



14 Barry Porter, Geoff Coulson, and Daniel Hughes

5. Chawathe, Y., McCanne, S., Brewer, E.A.: RMX: Reliable multicast for heteroge-
neous networks. In: INFOCOM, Tel Aviv, Israel, IEEE (2000) 795–804

6. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A distributed anonymous
information storage and retrieval system. Lecture Notes in Computer Science 2009
(2001) 46

7. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: Proceedings of
the 2001 conference on applications, technologies, architectures, and protocols for
computer communications, ACM Press (2001) 149–160

8. Jannotti, J., Gifford, D.K., Johnson, K.L., Kaashoek, M.F., O’Toole, Jr., J.W.:
Overcast: Reliable multicasting with an overlay network. In: Proceedings of the
Fourth Symposium on Operating System Design and Implementation (OSDI).
(2000) 197–212

9. Touch, J.: Dynamic internet overlay deployment and management using the x-
bone. In: ICNP ’00: Proceedings of the 2000 International Conference on Network
Protocols, Washington, DC, USA, IEEE Computer Society (2000) 59

10. Grace, P., Coulson, G., Blair, G., Mathy, L., Yeung, W.K., Cai, W., Duce, D.,
Cooper, C.: GRIDKIT: Pluggable overlay networks for grid computing. In: DOA
’04: Proceedings of Distributed Objects and Applications, Cyprus (2004)

11. Li, B., Guo, J., Wang, M.: iOverlay: A lightweight middleware infrastructure
for overlay application implementations. In: Proceedings of IFIP/ACM/USENIX
Middleware, Toronto, Canada (2004)

12. Pallickara, S., Fox, G.: NaradaBrokering: A distributed middleware framework and
architecture for enabling durable peer-to-peer grids. In: Middleware. (2003) 41–61

13. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content
addressable network. Technical Report TR-00-010, UC Berkeley, Berkeley, CA
(2000)

14. Mathy, L., Canonico, R., Hutchison, D.: An overlay tree building control protocol.
Lecture Notes in Computer Science 2233 (2001) 76

15. Yang, M., Fei, Z.: A proactive approach to reconstructing overlay multicast trees.
In: IEEE INFOCOM, Hong Kong (2004)

16. URL: (http://rfc-gnutella.sourceforge.net/developer/stable/index.html)
17. Yang, B., Garcia-Molina, H.: Designing a super-peer network. In: Proceedings of

the 19th International Conference on Data Engineering, Bangalore, India (2003)
18. Renesse, R.V., Minsky, Y., Hayden, M.: A gossip-style failure detection service.

Technical Report TR98-1687, Cornell University (1998)
19. Porter, B., Täıani, F., Coulson, G.: Generalizing repair for overlay networks. Tech-

nical Report PTC–06–01, Lancaster University (2006)
20. Marzullo, K., Cooper, R., Wood, M.D., Birman, K.P.: Tools for distributed appli-

cation management. IEEE Computer 24:8 (1991) 42–51
21. Bagchi, S., Whisnant, K., Kalbarczyk, Z., Iyer, R.K.: The chameleon infrastructure

for adaptive, software implemented fault tolerance. In: Symposium on Reliable
Distributed Systems. (1998) 261–267

22. Andersen, D.G., Balakrishnan, H., Kaashoek, M.F., Morris, R.: Resilient overlay
networks. In: Symposium on Operating Systems Principles. (2001) 131–145

23. Chu, Y.H., Rao, S.G., Zhang, H.: A case for end system multicast. In: Measurement
and Modeling of Computer Systems. (2000) 1–12

24. Ganek, A., Corbi, T.: The dawning of the autonomic computing era. IBM Systems
Journal 42:1 (2003) 5–19


