
Transformation of centralized software
components into distributed ones by code

refactoring

Abdelhak Seriai1, Gautier Bastide1, and Mourad Oussalah2

1 Ecole de Mines de Douai, 941 rue Charles Bourseul,
59508 Douai, France

{seriai, bastide}@ensm-douai.fr
2 LINA, université de Nantes, 2 rue de la Houssinière,

44322 Nantes, France
oussalah@lina.univ-nantes.fr

Abstract. Adapting software components to be used in a particular
application is a crucial issue in software component based technology.
In fact, software components can be used in contexts with characteris-
tics different from those envisaged when designing the component. Cen-
tralized or distributed deployment infrastructure can be one of these
assumptions. Thus, a component can be designed as a monolithic unit
to be deployed on a centralized infrastructure, nevertheless the used in-
frastructure needs the component to be distributed. In this paper, we
propose an approach allowing to transform a centralized software com-
ponent into a distributed one. Our technique is based on refactoring and
fragmentation of component source code.

KeyWords: software component, adaptation, restructuration, distribu-
tion, refactoring.

1 Introduction

Component-based software engineering (CBSE) focuses on reducing application
development costs by assembling reusable components like COTS (Commercial-
Off-The-Shelf). However, in many cases, existing components can not be used in
an ad-hoc way. In fact, using a software component in a different manner than
for which it was designed is a challenge because the new use context may be
inconsistent with assumptions made by the component. Deployment infrastruc-
ture may be one of these assumptions. For example, a software component may
be designed as a monolithic unit to be deployed on a centralized infrastructure
and, due to load balancing performance, security policy or other motivations,
this component has to be distributed. The solution consists in adapting this
component to its distributed use context.
Therefore, we propose in this paper, an approach aiming at transforming an
object-oriented monolithic and centralized software component by integrating
distribution facilities. Our approach is based on two transformations. The first

2 Abdelhak Seriai et al.

one consists in refactoring component structure in order to create a composite-
component (i.e. fragmented structure), while preserving component’s behaviour.
This transformation is achieved through a process composed of four stages. First,
following the available infrastructure, the needed distribution configuration is ex-
pressed in a declarative style. Next, the monolithic component is fragmented to
fulfil the distribution specification given during the first stage. After, compo-
nents generated as fragmentation result are assembled. Finally, the component
assembly is wrapped into a composite-component which is integrated into the
application.
The second transformation makes the generated composite-component distributed.
In fact, the refactoring process applied to a monolithic centralized component
generates a composite one but still with centralized constituents. So, in order to
create a distributed composite-component, we need to transform local compo-
sition links between its constituents into remote ones. Remote links reflect the
distributed configuration specified for the adapted component services.
We discuss the proposed approach in the rest of this paper as follows. In section
2, we present an example of experimentation that illustrates our approach. Sec-
tion 3 and 4 detail respectively, the refactoring process allowing to fragment a
component and next the integration of the distribution mechanisms. Section 5
reviews related works. Conclusion and future works are provided in section 6.

2 Example of illustration: a shared-diary component

In order to illustrate our purpose, we use throughout this paper an example
of a monolithic software component providing services of a shared-diary system
accessible to multiple users. It allows to store and consult the personal diaries of
each member of a group and it coordinates dependent events stored or generated
by these diaries. The shared-diary component provides the following services:

1. Managing personal diary. This includes authentication, consulting events
(e.g. meeting, activities, projects, etc.), querying the diary, etc. These ser-
vices are provided through the Diary interface.

2. Organizing a meeting. This includes services permitting to confirm the pos-
sibility to organize a meeting where the date and the list of the concerned
persons are given as parameters, services returning possible dates to organize
a meeting, etc. These services are provided through the Meeting interface.

3. Managing absence. This includes services permitting to verify the possibility
to add an absence event, to consult all the absence dates of one or some
persons, etc. These services are provided through the Absence interface.

4. Right management. This includes services concerning absence right attribu-
tion, service related to diary initialisation, etc. These services are provided
through the Right interface.

5. Updating the diary, the meeting dates, the absence dates and the absence
rights of a person. These services are provided, respectively, through Di-
aryUpdate, MeetingUpdate, AbsenceUpdate and RightUpdate interfaces.

Lecture Notes in Computer Science 3

We consider that this component is a monolithic and centralized one. Also, we
assume that, due to the considered load balancing policy, defined for the avail-
able deployment infrastructure, this component cannot be deployed on only one
host. So, our goal is to transform this component for deploying it on a distributed
infrastructure (Fig. 1). This result may be obtained by the fragmentation of
the shared-diary component into four new components called diary-manager,
database-manager, absence-manager and meeting-manager which may be de-
ployed on distinguished hosts.

Fig. 1. Transformation of the shared-diary component into a distributed one

3 From a monolithic component to a composite-
component

The first transformation to obtain a distributed component from a monolithic
centralized one consists in refactoring component code through the fragmenta-
tion of its structure. As we have mentioned it previously, the component refac-
toring process (Fig. 2) is based on four stages which are detailed below.

Fig. 2. Software component refactoring process

4 Abdelhak Seriai et al.

3.1 Specification of the transformation result

This first stage aims at indicating how services provided by the component to
be transformed are to be deployed on the available distributed infrastructure.
This is done by specifying for every provided service, its deployment host. This
operation is realized using a script defining components to be generated and for
each component, its provided interfaces. The script syntax3 is given bellow.

StructuAdapt (CompToAdapt,

{CompDef = <{PortDef={[||] InterfaceDef}+ }+?>,<host?> }*)

To illustrate this, let us reconsider our example of the shared-diary application,
the goal of this component transformation is to reorganize services provided
by this one in four new generated components (e.g. Diary-Manager, DataBase-
Manager, Absence-Manager, Meeting-Manager). The Diary-Manager compo-
nent (provided interfaces: Diary and DiaryUpdate) will be deployed on the local
site whereas the DataBase-Manager component (provided interfaces: Right and
RightUpdate), Absence-Manager component (provided interfaces: Absence and
AbsenceUpdate) and Meeting-Manager component (provided interfaces: Meet-
ing and MeetingUpdate) are deployed respectively on site1, site2 and site3. The
script allowing to obtain the needed structure is the following:

StructuAdapt (Shared-Diary,

{Diary-Manager=<{P-Diary=Diary,DiaryUpdate}>}

{DataBase-Manager=<{DB=Right, RightUpdate}>,<site1>}

{Absence-Manager=<{P-Absence=Absence,AbsenceUpdate}>,<site2>}

{Meeting-Manager=<{P-Meeting=Meeting,MeetingUpdate}>,<site3>}

)

3.2 Component fragmentation

Specification done during the previous stage is used to refactor component struc-
ture. Component refactoring consists in fragmenting this component into a set
of new generated components, while guaranteeing the component integrity and
coherence. This stage is based on component code analysis.

Fragmentation control: Component code refactoring must be realized with-
out any change on this component’s behaviour. Thus, two criteria must be
checked: integrity of generated components and coherence of their respective
states.

3 Symbols ” + ”, ” ∗ ” indicate respectively one or more and zero or more elements.
”{}” symbolizes a set of elements. When an interface is defined in several gener-
ated components, symbol ”||” associated with the interface name indicates that this
interface must be that which is used by the rest of the application.

Lecture Notes in Computer Science 5

– Generated component integrity. The implementation of each component to
be generated must be guaranteed to be sound. The soundness of this code4

implies that it must be syntactically and semantically correct (i.e. code must
be conform to the corresponding object-oriented grammatical and semantic
language rules), complete (i.e. dependent code elements must be accessible
one to the others) and coherent (i.e. the behaviour corresponding to a gen-
erated component must be conform to the matching local behaviour in the
monolithic component).

– Generated component coherence. The outside behaviour made by the gener-
ated components must be the same as the monolithic component’s behaviour.
That implies that local behaviours of generated components must be coher-
ent, the ones compared to the others. This requires that local behaviours
corresponding respectively to the generated components which are semanti-
cally related to other behaviours in other components must be identified to
ensure their correlation.

Code analysis and fragmentation: The fragmentation which aims at gen-
erating new software components is realized by analysing the monolithic com-
ponent source-code, determining for each new component to be generated its
corresponding code, separating these codes, one from the others, and deter-
mining existing dependencies between them. These steps are mainly based on
building, for each component to generate, its SBDG (i.e. Structural and Be-
havioural Dependency Graph). A SBDG is a graph where nodes are structural
elements and arcs are the different forms of dependencies existing between these
elements. Structural elements may be external (e.g. ports, interfaces, implemen-
tation class and methods matched with services provided by these interfaces) or
internal (e.g. internal methods and inner classes) ones. Dependencies between
structural elements are of two types: structural and behavioural dependencies.
Structural dependencies correspond to composition relationships between struc-
tural elements. Thus, a software component is structurally dependent of its ports;
a port is structurally dependent of its interfaces, etc. Behavioural dependencies
represent method calls defined in a method code. It should be noted that the
polymorphism property related to an object-oriented code does not allow to
identify, by a static analysis and in a deterministic way, all existing behavioural
links between methods. Thus, we insert in a SBDG all possible behavioural links
existing between these structural elements (i.e. methods).
Once, the SBDG corresponding to a component to be generated is built, the
code of each one of its structural elements is generated. These codes are con-
nected between them in order to reflect the existing structural links between
their corresponding structural elements. All the generated code represents the
first version of a new component source-code. The next version of the generated
component source-code transforms behavioural links existing between methods

4 Proof of the satisfaction of these soundness criteria by the proposed refactoring
approach is out of this paper scope.

6 Abdelhak Seriai et al.

defined respectively by two different SBDG on composition links between the
corresponding components (see Sect. 3.3).
For example, figure 3 shows a part of the SBDG corresponding to the Meeting-
Manager and Absence-Manager components. As the checking meeting method is
linked to the is absent method (i.e. the checking meeting method of the Meeting
interface calls the is absent method of the Absence interface) which is contained
in another interface, it is needed to create a behavioural link between the Meeting
and Absence interfaces.

Fig. 3. A part of the Shared-diary component SBDG

3.3 Assembly of the new generated components

The fragmentation stage generates unconnected components providing each one
a sub-set from the initial component services. However, these services are not
independents one from the others. In fact, they are linked through behavioural
or resource sharing dependencies which are materialized through connections
between generated components.

Connecting components via behavioural-dependency interfaces: Com-
ponents generated by fragmentation are connected using behavioural-dependency
interfaces. These interfaces are used to materialize behavioural-dependencies
between generated components according to the SBDG graph. Behavioural-
dependency interfaces defined by a generated component are:

Lecture Notes in Computer Science 7

– Interfaces defining required behavioural-dependency services. These inter-
faces allow a component service to access all needed elements (i.e. methods)
which are contained in other generated component implementations.

– Interfaces defining provided behavioural-dependency services. These services
are those provided by this component and which are required by other com-
ponents to assuring some of their services.

Connecting components via resource-sharing dependency interfaces:
Components are also connected via interfaces used to manage resource sharing.
We consider as resource every structural entity defined in the component code
with an associate state. For example, instance and class attributes are consid-
ered as resources. Shared resources are those defined and used in two or more
component implementations. So, we need to preserve a coherent state of these
resources in all components sharing them (i.e. the same resource with the same
state on all components). Coherence is ensured through two types of interfaces.
The first one aims at permitting to communicate, between components, updates
occurred on shared resources. The second interface type allows to guarantee a
synchronized access to shared resources. The implementation of these communi-
cation interfaces is realized through the instrumentation of the object-oriented
source-code corresponding to these services [2].

– Communication interfaces are:
1. An interface defining required services permitting to notify shared-resource

state updates. These services are defined as synchronous (i.e. every time
when a shared resource is updated by a component, its execution can
continue only after its state is updated by the other components sharing
this resource). Component implementation is instrumented by adding
notification code every time the shared resources updated.

2. An interface defining provided services allowing to update shared re-
source states after this resource been updated by another component.
Thus, component implementation is instrumented by adding code per-
mitting to read new resource values and update the local resource copy.

Figure 4 shows an example of notification interfaces used to manage the
Absence list resource. This resource is an instance attribute whose value
represents the absence days for a given person. It is shared by the Absence-
Manage and Meeting-Manager components. When the Absence list resource
is updated by the Absence-Manager component (1), a notification is sent
to the Meeting-Manager component (2). Then, this last one memorizes the
new value (3).

– Synchronized access interfaces are:
1. An interface defining required services permitting to acquire an authori-

sation to update shared resources, from components sharing these ones.
These services are not called every time a shared resource is used in the
component implementation code.

2. An interface defining provided services allowing to release rights to up-
date shared resources. These services are called by components sharing
resources with the component providing this interface.

8 Abdelhak Seriai et al.

Fig. 4. Example of communication interfaces

Figure 5 shows an example of synchronized access interfaces used to man-
age the nb day free resource. This resource is an instance attribute whose
value represents the number of free days for a given person. It is shared by
the Absence-Manager, Database-Manager and Diary-Manager components.
First, Absence-Manager component which needs to update the nb day free
resource (1) asks a right access to the other components which share this
resource (e.g. DataBase-Manager and Diary-Manager) (2). Then, after it
receives a notification from these components, Absence-Manager can update
the nb day free resource (3).

Fig. 5. Example of synchronized access interfaces

3.4 Integration of the transformation result

The last step of our process is the integration, in the subjacent application, of
the component restructuring result obtained during the previous stages. It con-
sists in connecting the new generated components with the other application

Lecture Notes in Computer Science 9

components and to guarantee that the component transformation is achieved in
a transparent way compared to the application components. In fact, the appli-
cation must continue to be executed without any change compared to its initial
configuration. So, integration requires to satisfy the following properties:

– Security condition: the application components should not be able to access,
after the component transformation, to other services than those provided
by the component before its transformation. In fact, all new interfaces (i.e.
created by our process) must not be accessed by application components,
except those created by transformation. For example, all components must
not access to services allowing to modify a shared resource state (i.e. only
components which share this resource can access to related services).

– Distribution feature: New generated components can be accessed and han-
dled as separate entities. For example, it would be possible to specify a de-
ployment configuration by a direct designation of the generated components
(i.e. components generated by fragmentation).

Our solution to guarantee these properties consists in encapsulating components
generated by fragmentation into a new composite-component. This new compo-
nent allows to mask access to ”non functional” services (i.e. it wraps all the
generated components). Moreover, it provides interfaces allowing to manipulate
the generated components. For example, these interfaces aim at permitting in-
dependent deployment of each sub-component.

Fig. 6. Integration of component transformation result

4 From a centralized composite-component to a
distributed composite-component

The fragmentation process realized during the first phase of our approach allows
us to generate a new composite-component. However, this result cannot be dis-
tributed on several hosts because all sub-components use local binding. As many

10 Abdelhak Seriai et al.

resources or services cannot be accessed using direct references because they are
provided by remote components (i.e. sub-components are interconnected through
bindings which can be local or remote references between provided and required
interfaces), we need to ensure communications between local and remote com-
ponents. In order to create distributed components, first, we need to specify
the new component distribution (i.e. to specify sites for each component). This
specification is realized through ADL generation (see Sect. 3.1). Then, the com-
ponent structure is automatically updated (i.e. creation of new interfaces and
components dedicated to the distribution management) and component code is
instrumented in order to ensure coherence (i.e. a component may access to all
resources or services needed during its execution).
In order to introduce distribution mechanisms into the composite-component
generated during the first transformation process, we propose a distribution
model for composite-components (Fig. 7). This model is composed of two parts.
The first part is dedicated to the distribution management at the component
content scale (i.e. new created interfaces and new added sub-components) and
the other one defines all components needed at the controller scale (i.e. low-level
services, network services, etc.).

Fig. 7. Component distribution model

4.1 Distributed composite-component

A distributed component is a component whose sub-components may be de-
ployed on different hosts. We distinguish three solutions which can be used to
create a distributed component. The first one (see Fig. 8 Case B) consists in
deploying sub-components on different hosts and the composite on only one. In
this case, the composite-component instance contains only connectors which are

Lecture Notes in Computer Science 11

used to transfer messages from provided composite ports (or interfaces) to sub-
component ports (or interfaces) which may be provided by a local or a remote
host (i.e. export binding). Moreover, sub-components are connected together
through direct binding which may be local or remote ones. This strategy implies
that sub-components may be accessible by a direct way. Moreover, the visibility
of the internal composite structure is blurred. The second solution (see Fig. 8
Case C) consists in the use of virtual components within the composite. Virtual
components are used in order to access a remote component (see below). This
strategy allows to improve composite structure visibility. The last solution (see
Fig. 8 Case A) consists in the creation of a composite-component into every host
on which a part of the component is deployed. This solution allows to preserve
a strong encapsulation of the created components. A composite-component in-
stance is loaded on each host which contains a part of this component (i.e. at
least one sub-component). Nevertheless, the entire composite-component is not
instancied on each host. In fact, different copies of the composite-component are
instancied. Each instance is composed of a set of local components and a set of
virtual components.

Fig. 8. Transformation from a centralized component to a distributed one

Local components: Local component means real component (i.e. sub-component)
of the composite-component. They are generated during the fragmentation step
of the first transformation. Each component is instancied in only one host (i.e.
those which are specified by the administrator during the specification step).

12 Abdelhak Seriai et al.

Virtual components:

Virtual component structure: A virtual component provides the same interfaces
than those of the remote component, however implementation (i.e. service code)
is different. In fact, functional code is replaced by controller code which allows
to invoke remote services. Two interfaces are added to this virtual component
(Fig. 9): one is required and allows the component to send messages to the
remote component and the other one is provided and allows the component
to receive messages from the remote component. These two interfaces ensure
remote communications. Bindings between virtual components are created using
architecture description analysis (i.e. ADL analysis). For example, when a local
component C1 deployed on site 1 is bound to a remote component C2 deployed
on site 2 (i.e. a required interface of the component C1 is linked to a provided
interface of the component C2), we create two links: one from the provided
interface of the component C’2 (i.e. virtual component of C2 on site 1) to the
required interface of the component C’1 (i.e. virtual component of C1 on site
2) and the other one from the provided interface of the component C’1 to the
required interface of the component C’2. Communications between C’1 and C’2
components are realized through these two new interfaces whose services use the
distribution components (see Sect. 4.2).

Fig. 9. Example of component distribution

Virtual component behaviour: A virtual component is a representation of a local
component which is deployed on a remote host. In fact, it is used as connectors
between local and remote components. Indeed, a local component service may
invoke a remote service as if this one is provided by a local component (i.e.
functional code of local components is not modified). Virtual components are

Lecture Notes in Computer Science 13

used in order to transfer messages between local and remote components (i.e.
delegation services). So, remote connections are realized only from a virtual
component to another one because only these components are able to send and
receive messages through network (Fig. 10). Thus, when a service of a component
C1 calls a service provided by a remote component C2, the component C1 sends
a message to the virtual component of C2. Then, this call is transformed into a
call from the virtual component of C1 to the component C2. This transformation
is realized through a remote connection between the virtual component of C2
and the virtual component of C1 (i.e. on the remote host).

Fig. 10. UML2 Sequence Diagram of the distribution process between two components

4.2 Distribution components

A new controller component called distribution component which allows to en-
sure remote communications is added to our model. It is composed of two sub-
components:

14 Abdelhak Seriai et al.

– A transport component: it allows virtual components to realize remote com-
munications (i.e. services provided by the transport component allow to pack
and unpack messages which are exchanged between local and remote com-
ponents, and set up connections through network protocols).

– A naming component: it allows the transport component to find the host ad-
dress on which local component services are instancied (i.e. services provided
by the naming component allow to search and locate remote components).

As we explained previously, different component instances are loaded on deploy-
ment hosts. As a copy of the composite-component is created on each site, non-
functional services (i.e. service allowing to manage component content, service
allowing to manage bindings between components, service allowing to manage
component life cycle, etc.) are duplicated. So, we need to ensure communication
and coherence between component instances at the control scale in order to pre-
serve software component integrity. For example, when the composite-component
starts (i.e. call to the life cycle controller services), the other instances loaded
on the remote hosts have to start their own component version. This operation
can be realized using code instrumentation of controller services.

5 Related works

We classify related works according to two criteria: the approach goal and the
technique used to reach this goal. First, we present works related to software
component adaptation. Next, we focus on works related to program transfor-
mation and restructuring and particularly those interested to object-oriented
softwares.
Concerning the first criterion related to the adaptation goal, many adaptation
approaches have been discussed in the literature [10]. Adaptation techniques can
be categorized as either white-box or black-box. White-box techniques typically
require understanding of the internal implementation of the reused component,
whereas black-box techniques only require knowledge about the component’s in-
terface. A commonly discussed black-box technique is wrapping, also known as
containment in COM literature. Superimposition [3] is an alternative technique.
The idea behind is that the entire functionality of a component (i.e. rather than
that of a single method) should be superimposed by certain behaviour.
To our knowledge no approach from those discussed in the literature, is inter-
ested in the adaptation of component structures. All are interested in service
adaptation. This adaptation can be carried out in a static [11] or dynamic [12]
way. Binary component adaptation (BCA) [11] is a mechanism to modify exist-
ing components (such as Java class files) to the specific needs of a programmer.
It allows components to be adapted and evolved in binary form and on-the-fly
(i.e. during program loading).
Concerning the second criterion related to restructuring approaches, we can
quote refactoring techniques [13] that aim at restructuring an existing body
of an object-oriented code, altering its internal structure without changing its
external behaviour. Generally, refactoring is used to make the code simpler in

Lecture Notes in Computer Science 15

order to include or understand it easier [8]. It also allows to find the potential
bugs or errors more quickly. It makes it possible to eliminate the duplicated
code. This technique aims at reorganizing classes, variables and methods in a
new hierarchy in order to facilitate its future adaptation or extension [7].
Another technique of program analysis is slicing [14]. It is generally used for the
code debugging and testing [1], for maintaining [9] or for transforming source
code. The goal of this technique is to determine program behaviour but also that
of all elements which it can contain (e.g. variables, methods, etc.). For example,
slicing allows to detect all instructions which can affect a variable.

6 Conclusion and future works

We presented in this article an approach allowing to create distributed compo-
nents from monolithic ones. Our proposal is based on a new adaptation technique
allowing to reorganize the software component structure using code refactoring.
In fact, as we explained, component deployment and execution are linked to its
structure. So, we propose to use this approach in order to fragment existent
components and generate new components which can be distributed on several
hosts. This approach is implemented and a prototype has been developed using
the Julia [5] software component framework which is the Java implementation
of the Fractal component model [4]. Fractal and Julia are developed by the IN-
RIA5. Fractal is a hierarchical component model quite close to that proposed by
UML2 [6].
Our approach needs source code analysis and instrumentation. It does not con-
sider run-time adaptation problems. However, it is generic enough to be applied
to dynamic adaptation. Nevertheless, concerning this possibility, it is necessary
to define, in addition to the presented process, mechanisms for the dynamicity
management (e.g. disconnection, connection, interception of the invocations of
services, service recovery, etc). Thus, this way constitutes one direction of our
future work.
As we noted it before, the main application of our approach consist in realizing
a flexible deployment of software components. A future work may consist in the
deployment process automation according to the execution context.

References

1. H. Agrawal, R. Demillo, and E. Spafford: Debugging with dynamic slicing and back-
tracking. Software-Practice an Experience, 23(6): 589-616, 1993.

2. G. Bastide, A-D. Seriai, M. Oussalah: Adapting Software Components by Structure
Fragmentation. The 21st Annual ACM Symposium on Applied Computing; Software
Engineering: Applications, Practices, and Tools (SE), Dijon, France, April 2006.

3. J. Bosch: Superimposition: A Component Adaptation Technique. Information and
Software Technology, 1999.

5 The French National Institute for Research in Computer Science and Control.
http://www.inria.fr/

16 Abdelhak Seriai et al.

4. E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, J.-B. Stefani: An Open Compo-
nent Model and Its Support in Java. CBSE, 7-22, 2004.

5. E. Bruneton: Julia Tutorial. http://fractal.objectweb.org/tutorials/julia/
6. H.-E. Eriksson: UML 2 Toolkit, Wiley edition, ISBN: 0471463612, 2003.
7. B. Foote and W. F. Opdyke: Life Cycle and Refactoring Patterns that Support

Evolution and Reuse. First Conference on Pattern Languages of Programs (PLOP
’94), Monticello, Illinois, 1994.

8. M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts: Refactoring: Improving the
Design of Existing Code. ISBN 0201485672, 1999.

9. K. B. Gallagher and J. R. Lyle: Using program slicing in software maintenance.
IEEE Transactions on Software Engineering, 17(8):751-761, 1991.

10. G. T. Heineman and H. Ohlenbusch: An Evaluation of Component Adaptation
Techniques. Technical Report WPI-CS-TR-98-20, Department of Computer Science,
Worcester Polytechnic Institute, 1999.

11. R. Keller, U. Holzle: Binary Component Adaptation. ECOOP, 307-329, 1998.
12. A. Ketfi, N. Belkhatir, P.Y. Cunin: Automatic Adaptation of Component-based

Software: Issues and Experiences. PDPTA’02, Las Vegas, Nevada, USA, 2002.
13. T. Mens, T. Tourwe: A Survey of Software Refactoring, IEEE Transactions on

Software Engineering, Volume 30, Number 2, pp. 126-139, February 2004.
14. M. Weiser: Program Slicing. IEEE Trans. Software Eng. 10(4): 352-357, 1984.

