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Abstract. Aspect-Oriented Programming (AOP) promotes better se-
paration of concerns in software systems by introducing aspects for the
modular implementation of crosscutting concerns. As a result, modular-
ity and adaptability of software systems are greatly enhanced. To date,
very few AOP proposals take distribution into account. This paper con-
siders the explicit introduction of distribution in AOP, by proposing
support for distributed aspects: all dimensions of aspects are studied in
the light of distribution. The result of this work is a versatile kernel for
distributed AOP in Java: a flexible infrastructure that allows aspects to
be defined and applied in a distributed manner, on top of which various
distributed aspect languages and frameworks can be defined.

1 Introduction

Aspect-Oriented Programming (AOP) provides means for proper modularization
of crosscutting concerns [8], i.e. concerns that cannot be cleanly modularized us-
ing traditional programming paradigms. Typical examples of such concerns are
non-functional concerns such as monitoring, security, concurrency, etc., but also
functional concerns such as observation relationships and, in general, coordina-
tion between different modules. Without AOP, the implementation of such con-
cerns is scattered across several modules. The importance of AOP for practical
software engineering is reflected in the growing interest manifested by industrial
actors, in particular in application servers [10]. AOP also helps adaptation of
software systems: for a given concern to be adaptable, it first has to be modu-
larized.

The relation between AOP and distributed computing is interesting. Even
though AOP is used in application servers, aspects are defined and applied locally
to enhance the implementation of the application server; most AOP proposals
to date do not support the remote definition and/or application of aspects.
In other words, AOP in distributed systems is NOT distributed AOP. To our
knowledge, only JAC [16], DJcutter [15], and AWED [4] address distributed AOP
as such, by enhancing the language constructs of AOP to cover distribution.
However, each proposal has its set of limitations, as will be discussed later.
Among motivating examples of distributed AOP are distributed unit testing [15],
sophisticated distributed cache policies and checking of architectural constraints
in distributed systems [3].



In this paper, we adopt a general approach to distributed AOP, by extending
our previous work on versatile kernels for AOP: expressive and flexible infras-
tructures for AOP on top of which different AOP languages and frameworks can
be developed [23,24]. Our methodology consists in revising all the concepts of
our AOP kernel for Java, Reflex !, in the light of distribution. The result is a
versatile AOP kernel for distributed AOP in Java, named ReflexD, which can
be used to define and apply aspects in a distributed manner.

In Section 2, we discuss the notion of distributed AOP, analyzing the different
elements of AOP and what it means to consider them in the light of distribution.
Section 3 briefly introduces the notion of AOP kernels in general, since we follow
this line of work here. Section 4 exposes the different elements of ReflexD, our
versatile kernel for distributed AOP in Java. In Section 5 we explain how a
distributed notion of control flow can be built with ReflexD, and apply it in
Section 6. Section 8 discusses related work and Section 9 concludes.

2 Distributed AOP

We now briefly discuss the main elements of an aspect in AOP, in order to later
analyze what distributed AOP means.

2.1 Elements of AOP
The anatomy of an aspect can be roughly described as follows:

— the cut of an aspect describes the execution points of a program to which
the aspect applies, e.g. calls to state-changing methods on shape objects;

— the action of an aspect describes the effect of the aspect at its cut, e.g. trac-
ing the underlying calls, or requesting a lock before proceeding;

— the binding between a cut and an action specifies issues such as when the
action is executed (before, after or around the intercepted execution point),
the context information to be exposed to the action, etc.

An aspect language typically extends a traditional programming language with
language constructs for the above elements. For instance, the most-used Java
AOP extension to date is AspectJ [11], which extends Java with constructs to
define aspects, with pointcuts (the cut) and advices (the action). In AspectJ, the
binding between a cut and an action is split between both: it is not a separate
entity. Below is a simple tracing aspect in AspectJ:

aspect Trace {

pointcut fooCalls (Object x): call(x A.foo(..)) && this(x);

} before (Object x): fooCalls(x) { // log call made by z }
A pointcut fooCalls is defined, matching all calls to method foo on objects of
type A, and exposing a single parameter x, bound to the instance performing
the call (using this(x)). Then an advice is associated to the pointcut: when the
pointcut matches, the body of the advice is executed before the original call is
performed. Variable x is available in the scope of the advice body.

! http://reflex.dcc.uchile.cl



2.2 Distributed AOP

Aspect-oriented programming enhances software modularity and adaptability
by promoting better modularization of otherwise crosscutting concerns. The en-
tailed benefits of using AOP are of interest for any kind of complex software
systems, and in particular, distributed systems: for instance to express aspects
covering crosscutting interactions between remote entities. However, as argued
in [15], simply combining an existing AOP language such as AspectJ with an
existing framework for distributed systems like Java RMI (Remote Method In-
vocation) [19] is not a solution.

As a matter of fact, a framework like RMI extends OOP to the world of
distributed programming, but does not help for AOP. The fact that the very
concepts of aspect languages are not extended to distribution forces programmers
to define a distributed aspect as a collection of distributed entities realizing the
whole aspect based on remote calls. It is not possible to define a distributed
aspect as a simple, non-distributed entity [15]. Hence developing distributed
aspects is made much more complex than it should be, and deployment issues
are exacerbated. Leveraging AOP to distribution requires the very concepts of
AOP to be revisited in the light of distribution:

— distributed cut: describing execution points of interest must possibly dis-
criminate among execution hosts (a.k.a. remote pointcuts [15,16]); a method
call may be of interest only if called in a particular host.

— distributed action: the effect of an aspect should possibly be executed on
a remote host, not necessarily where the cut is realized; e.g. the activity of
a process in a production machine monitored on a separate machine.

— distributed binding: the specification of the binding between the cut and
the action of an aspect may be done in any host, which may not be the host
where the cut is realized or the action is executed.

This defines our approach to distributed AOP. Given the variability in each
of the above elements, we target a flexible architecture covering these notions,
focusing on the core semantics first; syntax is not considered in this work.

3 The Kernel Approach to AOP

This section briefly introduces the necessary background concepts on AOP ker-
nels and our Java implementation, Reflex. More elements on Reflex will be in-
troduced as necessary in the course of the paper.

3.1 Versatile Kernels for AOP

In previous work [23,24], we have motivated the interest of being able to define
and use different aspect languages, including domain-specific ones, to modularize
the different concerns of a software system. We have proposed the architecture
of a versatile kernel for multi-language AOP, and our current Java implementa-
tion, Reflex. An AOP kernel supports the core semantics of various AO languages



through proper structural and behavioral models. Designers of aspect languages
can experiment comfortably with an AOP kernel as a back-end, as it provides
a higher abstraction level than low-level transformation toolkits. Furthermore,
a crucial role of an AOP kernel is that of a mediator between different coexist-
ing AO approaches: detecting interactions between aspects, possibly written in
different languages, and providing expressive means for their resolution [21].
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Fig. 1. Architecture of a versatile
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kernel for multi-language AOP.

The architecture of an AOP kernel (Fig. 1) consists of: a transformation layer
for basic weaving, supporting both structural and behavioral modifications of
programs; a composition layer, for detection and resolution of aspect interactions;
a language layer, for modular definition of aspect languages (as plugins).

3.2 Reflex in a Nutshell

Reflex is a portable library for structural and behavioral reflection in Java, op-
erating as a java.lang.instrument agent on bytecode. This paper only deals
with behavioral facilities, which follow the model of partial behavioral reflection
of [25]: explicit links binding a set of program points (a hookset) to a metaobject.
A hookset is defined as a condition over reifications of program elements: an
RPool object gives access to RClass objects, which in turn give access to their
members as RMember objects (either RField, RMethod, or RConstructor), which
in turn give access to their bodies as RExpr objects (with a specific type for
each kind of expression). These objects are causally-connected representations
of code, offering a source-level abstraction over bytecode.

A link is characterized by a number of attributes, among which the control
at which metaobjects act (before, after, around), their scope (per object, class,
or global), and a dynamically-evaluated activation condition. Fig. 2 depicts two
links, one of which is not subject to activation, along with the correspondence to
the AOP concepts of the pointcut/advice model of AspectJ. In Reflex one can
specify, on a per-link basis, the exact communication protocol (which method to
call with which arguments) with the metaobject implementing the aspect action.

Links are a mid-level abstraction, in between high-level aspects and low-level
code transformation. How aspect languages are defined and implemented over
the kernel is out of the scope of this paper (see [24]); aspect composition in Reflex



is treated in [21]; a detailed case study of supporting the dynamic crosscutting of
AspectJ in Reflex can be found in [17]. A simple AspectJ aspect, comprising of a
single advice associated to a simple pointcut, is straightforwardly implemented
in Reflex with a link (as in Fig. 2). Below is the implementation of the link
equivalent to the Trace AspectJ aspect shown in the previous section?:

Hookset fooCalls = new Hookset(MsgSend. class, new NameCS(”A”),

new NameOS(” foo”));

Link trace = Links.get(fooCalls, new Tracer ());

trace.setControl (Control .BEFORE);

trace.setCall (” Tracer”, "log”, Parameter.THIS);
We first create a hookset selecting occurrences of the message sending operation,
with a name-based class selector matching class A and a name-based operation
selector matching occurrences of foo messages. Then a link is created, binding
this cut to the action defined in a Tracer metaobject. The control of the link is
set to before, and we specify that the 1log method of the tracer must be called,
with the predefined parameter corresponding to the current instance (THIS).

Nevertheless, most practical AOP languages, like AspectJ, make it possible

to define aspects as modular units comprising more than one cut-action pair.
In Reflex this corresponds to different links, with one action bound to each cut.
Furthermore, AspectJ supports higher-order pointcut designators, like cflow. In
Reflex, the implementation of such an aspect requires an extra link to expose
the control flow information. This is further discussed in Section 5.

4 A Kernel for Distributed AOP

We now go through the different features of our versatile kernel for distributed
AOP in Java, ReflexD. ReflexD is an extension of Reflex, currently implemented
using Reflex itself (for transparently handling remote communication and con-
sistency between objects) and RMI as a base for remote invocation.

4.1 Distributed Cut

Reflective model extended. Cut definition in Reflex is based on a reflective
model representing code as Java objects (RClass, RMethod, RExpr, etc.). To take
distribution into account, the model is extended with the reification of a host:

public interface RHost {
public String getName ();
public String getAddress ();
public Properties getProperties ();

A RHost object reifies a running Reflex-enabled VM, identified by its name given
at launch time; a RHost object can be obtained with RHosts.get (address,
name) where address is the physical address (server:port) of the Reflex host
named name. Apart from the name and address, the system properties of a host
are also exposed. All other entities of the reflective model are augmented with
the information of the host in which they are defined.

2 Concrete syntax for Reflex is under development [22], but we do not use it here.



Hookset extended. An aspect cut is expressed with a hookset, i.e. a condi-
tion over program elements from the reflective model. In addition to class and
operation selectors, host selectors are used to express conditions over hosts:

public interface HostSelector {
public boolean accept(RHost aHost);
}

The host selector discriminates the hosts of interest. A simple NameHS can do
name-based selection, while more advanced selectors can use the host system
properties. For instance, the following selector matches the group of development
hosts, i.e. hosts that have a custom property "type" with value "devel":

public class DevelopmentHosts implements HostSelector {
public boolean accept(RHost aHost){
return ”devel”.equals(aHost.getProperties (). get (7type”));
P

It is therefore possible to define a link whose cut matches events in different
hosts, providing the necessary support to handle distributed crosscutting.

Activation extended. Dynamic activation of links in Reflex is done via either
restrictions [17] or activation conditions (the main difference between both being
the time at which they are bound, either weaving or runtime). These conditions,
evaluated on the host where operations occur, can now take the current host into
account (obtained with Reflex.getThisHost()) in order to condition links to
dynamic properties of the hosts in which their cut is realized. Dynamic activation
of links in Reflex has been used to provide context-aware aspects [21], which could
also be of interest in the context of distributed AOP.

4.2 Distributed Action

Parameterization extended. Passing parameters to metaobjects (e.g. THIS
as in Sect. 3.2) makes it possible to define parameterized actions. A number
of predefined parameters are provided beyond the THIS: method name, argu-
ments, etc. Considering distribution, we add two predefined parameters: HOST
and HOSTNAME to refer to the host (resp. its name) in which the cut is realized.

public class Tracer {
public void log(Object aThis, RHost aHost){
if (?devel” . equals (aHost.getProperties (). get(7type”)))
// do wverbose logging
else // do light logging

b}

Above is a tracer metaobject that accepts the current host as extra parameter,
and performs verbose logging for development hosts, light logging otherwise.

Since a metaobject can execute remotely, the programmer needs control over
how parameters are passed from the host where the operation occurrence is
intercepted to the metaobject. The default Java RMI semantics is used (passing
all objects by copy except remote ones), but in addition, Reflex makes it possible
to explicitly state that a parameter must be passed by reference (a small Reflex
library handles transparent remote invocations on any object). Below, we specify
that the THIS must be passed by reference to the tracer:



Link trace = /x as before x/;
trace.setCall (” Tracer”, "log”, new ByRef(Parameter.THIS), Parameter .HOST);

Scope extended. The scope attribute of a link specifies the association scheme
of metaobjects w.r.t. base entities involved in the cut. If it is per object, then each
object involved in the cut has its own metaobject reference (which may point
to the same metaobject), while if it is per class, each class has one reference to
it, and if it is global, the link itself holds the reference shared among all objects
and classes involved. Considering distribution, the Scope.GLOBAL attribute is
renamed Scope.HOST in order to make clear that there is one global instance per
host. In order to obtain a globally-unique metaobject, one simply needs to use
explicit (remote) creation of the metaobject, as discussed below.

Instantiation extended. While the scope of a link determines the metaobject
referencing scheme, instantiation addresses the bootstrapping of the metaobject
reference. Reflex provides two alternatives for instantiation:

— explicit instantiation: the metaobject is manually instantiated before defin-
ing the link; the instance is shared among all entities involved in the cut.

— implicit instantiation: at link definition, the class of the metaobject is spec-
ified® so that, when first needed, a new metaobject instance is created and
bound; subsequent invocations are performed on that metaobject instance.

For explicit instantiation, ReflexD provides a remote object creation service to
create any object on any host, which returns a type-compatible reference to the
remote object?. Below we remotely create a tracer on the monitor host, then
interact with it (e.g. to configure it), before using it in the link definition:

RHost host = RHosts.get(”178.1.2.3:4567”, "monitor”);

Tracer t = (Tracer) host.create(” Tracer”);

// ...interact with t...

Link trace = Links.get(fooCalls, t);

// ...configuration continued...
For implicit instantiation, the link definition must specify, in addition to the
metaobject class to instantiate, the host on which the metaobject instance will
reside. It can be either (Fig. 3):

— ExecHost.THIS_HOST: the current host, i.e. where the link is being defined;

— ExecHost.APP_HOST: the current application host, i.e. where the interception
of operation occurrences occur;

— Any arbitrary host (with new ExecHost(addr,name)/(aRHost)).

For instance, using the following definition, if the link scope is per object, then
any object involved in the cut of the link will have a dedicated tracer instance
automatically created on the monitor host:

3 using an MODefinition.Class object. Reflex also supports metaobject factories to

bootstrap metaobject references [25], but we do not discuss them in this paper.
4 Further remote interaction with the object via RMI is handled transparently.
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RHost host
Link trace

/% as above x/;
Links.get (fooCalls ,
new MODefinition. Class (” Tracer” , new ExecHost(host));

Conversely, using ExecHost . APP_HOST implies that each tracer instance will re-
side on the same host than the object in which the cut is realized.

4.3 Distributed Binding

The binding between a cut and an action in Reflex is an explicit entity: a link.
So far, we have not explained how links are stored and applied.

Link definition, storage and application. Link definition can be done at
runtime, or prior to executing the main program, by specifying link providers to
invoke on startup. Link providers can either be plugins of aspect languages, or
plain Java classes (a.k.a. configuration classes) defining one or more links; a (set
of) configuration class(es) can be given on the command line as arguments to
the Java agent of Reflex:

% java "--javaagent:reflex.jar= -1lp class:Configl,Config2" Main

The above launches the Main program using Reflex, first performing the configu-
ration in classes Configl and Config?2. Links are stored in a local link repository.
Then, upon class loading, the Reflex agent queries the link repository to deter-
mine whether any link applies to the class being loaded. If it does, then code
transformation is performed before the class is finally loaded in the VM.

Definition, storage and application extended. In order to support a flexi-
ble distributed aspect infrastructure, ReflexD provides a complete decoupling of
link definition, link storage, and link application. Hence the distributed archi-
tecture of ReflexD involves three types of hosts: (1) Reflex hosts, in which Reflex
runs a program (possibly subject to links); (2) aspect hosts in which one or more
link repositories are exposed, and to which Reflex hosts can connect; (3) any
Java program running in any host can remotely populate link repositories. Such
a decoupling is convenient to group links that can apply to a program according
to some criteria, thereby raising the abstraction level of aspect configuration.
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IMustration. Consider four machines (Fig. 4): an aspect host machine
aspectHost, on which two link repositories are started, namely debugLinks and
prodLinks, to hold debug links (e.g. logging) and production links (e.g. business
observation relations), respectively; the developer’s machine develPC, on which
link definition is executed, populating both link repositories; and two Reflex
hosts, appHost1 and appHost2 running the application.

First, on the aspectHost machine, the two repositories are started:

% java reflex.StartLinkRep debugLinks
% java reflex.StartLinkRep prodLinks

Then, on the develPC machine, two configuration classes ConfDebug and
ConfProd are defined, and used to populate the corresponding repositories:

% java reflex.ExportToRep reflex://aspectHost/debuglinks ConfDebug
% java reflex.ExportToRep reflex://aspectHost/prodLinks ConfProd

Note that it is also possible to access a link repository programmatically, e.g.:

LinkRepository rep = LinkRepository.get(”reflex://aspectHost/debugLinks”);
rep.addLink (/% a link */);

rep.removeLink (/* a link x/);

Finally, supposing the application in appHost1 is deployed in a development
environment, it is configured to use the links defined in both repositories:

% java "--javaagent:reflex.jar= -lp reflex://aspectHost/debugLinks,
reflex://aspectHost/prodLinks" Main

If appHost2 is deployed in a production environment, it is enough to remove the
reference to the debuglinks repository in the command line above. No other
modification is needed, and only production links will apply.

Runtime link manipulation. A feature of Reflex that we have not mentioned
until now is the possibility to manipulate links at runtime [25]: e.g. changing
the metaobject associated to a base entity for a given link, or changing the
activation condition of a link. Note that the latter makes it possible to dynam-
ically deploy/undeploy aspects. Maintaining consistency between changes made
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to links in different hosts is done with a remote consistency framework developed
with Reflex, which ReflexD makes great use of°.

5 Distributed Control Flow

Control flow in aspect-oriented languages, as exemplified by AspectJ’s cflow
pointcut designator, is a very valuable feature that makes it possible to pick out
execution points of interest provided they are in the control flow of others.

Control Flow. In Reflex, if a link depends on a control flow condition (e.g. log
only top-level position changes on shape objects), it is subject to an activation
condition, which checks the associated control flow condition. The control flow
information has to explicitly exposed, by a dedicated link.

Hookset shapeMove = /x shape position changes */;

Link moveCflow = CFlow. get (shapeMove);

Link trace = Links.get (shapeMove, new Tracer ());
trace.addActivation (new CFlow.IsNotBelow (moveCflow)); // dependency

The hookset corresponding to shape position changes is defined (1). This hook-
set is used in the two link definitions that follow. First, it is used to obtain a link
that exposes control flow information (2). CFlow.get is a convenience method
that returns a link matching the given hookset, to which a before-after meta-
object called a CFlowExposer is bound. Such an exposer maintains a thread-local
counter (or stack if context information must be kept) that keeps track of control
flow. Overloaded versions of CFlow.get make it possible to explicitly pass the ex-
poser instance to use, and to specify context information that must be collected
by the exposer if any. The trace link also relies on the shapeMove hookset (3),
and its activation depends on the control flow exposed by moveCflow (4): only
calls that are not below that control flow will match (i.e. only top-level calls).
Class CFlow offers other predefined activation conditions like IsIn, IsOut, and
IsBelow.

Distributed Control Flow. Extending control flow to distributed systems is
highly interesting, as it makes it possible to capture particular patterns of inter-
host communications; e.g. trace all calls on a machine that are performed in the
control flow of a call originating from another machine. There is an implemen-
tation challenge associated to distributed control flow: control flow information
is intrinsically bound to a given thread, and thread identity is not preserved
in a typical remote method invocation middleware like RMI. An alternative is
to make use of a distributed call stack [1], however this raises other issues of
efficiency. We rather adopt the same approach than in [15,3]: custom socket

5 Due to space limitations, we do not discuss these issues in detail, nor do we present
the remote consistency framework and other elements of the implementation. More
information on the Reflex website (http://reflex.dcc.uchile.cl).
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implementations for RMI [20], which manage the propagation of thread-local in-
formation from one host to another in order to simulate the unicity of the caller
thread. This solution works, but it is dependent on the RMI implementation.

This being said, a distributed control flow library for Reflex is provided,
illustrated in the next section. The underlying details are transparently handled
by Reflex. Finally, note that control flow as discussed here is only a particular
case of what event collectors can expose: it is possible to provide event collectors
for matching event sequences for stateful aspects [6], or to support more advanced
control flow properties as in [7].

6 Application: An Adaptive Image Server

We now consider an image server: an ImgServer is an RMI object that delivers
images stored in a storage area. Clients can (in parallel) request images by calling
getImg(name); the ImgServer object translates the image name to a path, and
requests an ImgFinder to retrieve the actual bytes of the image.

We consider an image quality adaptation aspect, which, based on the avail-
able bandwidth of each client, returns a possibly lower quality image. The de-
sign of this aspect relies on distributed control flow with context exposure:
when ImgFinder.findImg() is called in the control flow of a client call to
ImgServer.getImg(), the actual bandwidth value at the client site is used to
determine the quality of the returned image. Link definition code is as follows:

RHost server = /+ retrieve server host object */;
CFlowExposer exposer =
(CFlowExposer) server.create (” CFlowExposer” );
Hookset clientCalls = /x call to ImgServer.getImg() in any client x/;
Link callCflow = DCFlow. get(clientCalls , exposer, new BWParam());

Hookset findCalls = /+ calls to ImgFinder. findImg () in ImgServer x/;
Link adapt =

Links.get (findCalls , new MODefinition. Class (” QualityAdapter” , exposer);
adapt.setControl (Control .AROUND) ;
adapt.setCall (” QualityAdapter”, "getImg”, new Parameter.Arg(0));
adapt.addActivation (new DCFlow. IsInside (callCflow )); //dependency

First, a link to expose control flow information from client calls is de-
fined (1-5). We explicitly create an exposer metaobject on the server host (1-
3), which will store the bandwidth value for a client in a thread-local when
ImgServer.getImg() is called (4). The corresponding link is obtained by pass-
ing both the hookset and the exposer to DCFlow. get, as well as a custom param-
eter object BWParam that encapsulates the know-how for extracting bandwidth
value (5). Then the link matching calls to ImgFinder.findImg() in the server is
defined (7-12). A QualityAdapter object will be created (on the server), pass-
ing it the exposer as constructor parameter (9). The link is set to act around
such calls (10), by invoking the getImg method of QualityAdapter with the
first argument as parameter (i.e. the path of the image to find) (11). Finally, the
control flow dependency is set (12): the adaptation link only applies if findImg
is called in the control flow of a client call.

Class QualityAdapter is straightforward:
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class QualityAdapter {
QualityAdapter (CFlowExposer exp){ this.exp = exp; }
byte[] getImg(String path){
int bw = exp.getValue (0);
if (bw < threshold){
// check existence of low—quality img, generate it otherwise
// proceed with modified path
} else // proceed as normal

P}
This example demonstrates how one can concisely define a distributed aspect in
ReflexD. The example uses distributed hooksets (clientCalls matches on any
client host), remote actions (the event collector operates on the server host),
and distributed control flow. Without distributed AOP, coding such an aspect
requires to manually handle the distributed nature of the aspect.

7 Discussion

Distribution is an inherently large and complex topic. Although it seems that
distributed AOP can help in tackling some of the challenges faced in distributed
computing, it would be simplistic to claim that distributed aspects can turn the
development of distributed programs into an easy go. A number of challenging
issues for distributed AOP need to be further explored.

Scalability. Our experiments with ReflexD are, as of now, pretty small. The ex-
ercise of Section 6 is a valid proof of concept, showing the interest of distributed
AOP versus a manually-distributed implementation. Still, distributed AOP can
only get to be a convincing approach for distributed programming if its scalabil-
ity to larger and far more complex scenarios can be shown. As a first step in this
direction, Benavides et al. report on a successful larger scale study with repli-
cated caches [4]. Finally, it has to be expected that larger experiments will be
developed if distributed AOP attracts attention from the distributed computing
community, thereby helping in shaping the future of distributed AOP.

Failures. A distinctive characteristic of distributed programming is partial fail-
ures of the system. Introducing an infrastructure for distributed aspects therefore
adds a new dimension of possible partial failures: for instance, in the communica-
tion between the cut of an aspect and its associated action (back and forth, once
for the call, once for the return), or in the communication with link repositories.
There are several approaches to this issue. At the very least, it should be possi-
ble to guarantee that the behavior of the original application is preserved when
communication with an aspect action fails. We are currently exploring this solu-
tion and possible variants. It is important to note that this concern is different
from that of handling partial failures in a given application using aspects.

Performance. The use of distributed aspects ought also to be evaluated in
the light of performance. As of today, we have not performed significant bench-
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marks of ReflexD. Reflex as such is among the most efficient portable AOP im-
plementations in Java [9]. Still, the ReflexD infrastructure introduces a number
of possible overheads. A major source of potential overhead actually lies in the
use of advanced control flow features in aspects: distributed control flow as pre-
sented previously, and most importantly aspects that rely on distributed event
sequences [4], pose a challenge to efficient implementations. However, the recent
achievements in optimizing (local) trace matching for aspects brings optimism
in this regard [2].

8 Related Work

The issue of crosscutting concerns and code tangling related to distribution was
first addressed in the literature by Lopes [14]: it is shown that dedicated aspect
languages for handling concurrency and remote parameter passing strategies
greatly improve understandability and maintainability of code. However no dis-
tributed aspects are considered. More recently, Soares et al. have reported on the
use of AspectJ to encapsulate RMI code in aspects, showing that current AOP
technologies (that do not support distributed AOP as such) require in-depth
knowledge of the middleware (RMI) [18].

In the area of distributed AOP, three proposals relate to ours: JAC [16], DJ-
cutter [15], and AWED [4]6 (previously known as Dhamaca [3]). DJcutter and
JAC both introduced remote pointcuts, making it possible to specify on which
hosts join points should be detected. Although JAC allows distributed aspect
deployment to various containers with a consistency protocol between hosts, DJ-
cutter adopts a centralized architecture with an aspect host where all aspects
reside and advices are executed. This is in contrast with AWED and ReflexD,
which make it possible to execute advices in (several) arbitrary host(s): multi-
ple parallel advice execution in specific hosts is possible, and programmers can
control where aspects are deployed. In this regard, ReflexD goes a step further
than AWED by providing greater flexibility in the localization of advices (meta-
objects), and by allowing to customize the remote parameter passing strategy
for each parameter passed to a remote advice. Furthermore, compared to the
centralized architecture of DJcutter, both AWED and ReflexD adopt a decen-
tralized architecture. AWED only supports two deployment modes: local to the
aspect definition host, or global to all hosts. Conversely, ReflexD is more flexible
by supporting stand-alone link repositories to which a Reflex host can connect.
JAC, AWED and ReflexD support dynamic deploy/undeploy of aspects with
distributed effect.

Both DJcutter and AWED represent hosts as plain strings, whereas in
ReflexD they are reified as RHost objects giving access to the system properties
of the hosts. So groups of hosts, as provided in AWED, can be intensionally and
dynamically defined in ReflexD. Since the fact that a host belongs to a group is

5 The implementation of the AWED language is called DJasCo. In the following we
simply refer to both the language and the DJasCo implementation as AWED.
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just one kind of metadata that can be associated to it, the explicit representation
of hosts as objects in ReflexD is more general and expressive.

An interesting feature of AWED is the possibility to control whether advice
execution is done synchronously or asynchronously. This is something we have
not considered yet, but which is clearly possible to achieve. As of now, advice
execution is synchronous in ReflexD.

With respect to control flow, DJcutter, AWED and ReflexD adopt the same
implementation strategy. However in ReflexD the use of custom sockets is com-
pletely hidden from the programmer. Finally, AWED supports distributed se-
quences of events for stateful aspects [6]. However, the AWED implementation
does not handle the challenging issue of distributed time, so inconsistencies can
occur when matching event sequences. At present stateful aspects have not been
implemented in Reflex, but they can be supported via event collectors. Their cor-
rect semantics in a distributed setting remains a challenge for future research.

Finally, work on distributed AOP can be useful for a new generation of reflec-
tive middleware [12] based on AOP. ReflexD can be seen as an open middleware
for distributed AOP, which in turn can be used in the implementation of adapt-
able middleware.

9 Conclusion

We have presented the extension of our work on versatile kernels for AOP to dis-
tributed systems, yielding a flexible and expressive infrastructure for distributed
aspect-oriented languages and frameworks in Java. All dimensions of aspects
have been revisited in the light of distribution, including distributed cut based on
an extended reflective model, distributed action with fine-grained customizable
parameter passing and flexible instantiation, and complete decoupling of defini-
tion, storage and application of aspects. We have illustrated the expressiveness
of ReflexD with the provision of abstractions for distributed control flow and
their application in an adaptive image server. Compared to other distributed
AOP proposals, ReflexD provides more flexibility. Furthermore, although this
paper does not focus on this issue, the fact that ReflexD is based on our work on
AOP kernels implies that it is able to automatically detect interactions between
(distributed) aspects, and provide expressive means for their resolution.

As regards future work, apart from extending the concrete syntax developed
for Reflex to ReflexD, we plan to study the support for stateful aspects, and
experiment with different aspect languages useful in a distributed setting, both
general purpose (such as AWED) and domain-specific (such as SOM [5] for
scheduling of concurrent requests).
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