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Abstract. Self-adaptation is currently addressed in general frameworks
and reference architectures but not in the application architecture. This
paper defines concrete concepts to specify timing driven self-adaptation
in the software architecture. This self-adaptation is aimed at high-end
embedded component based applications. We create an architectural
view of a music application describing this kind of adaptation and dis-
cuss its implementation. The novelty of our approach is the definition
of separate constructs for the monitoring, the adaptation decision logic
and the adaptation itself. This allows independent specification of pol-
icy and mechanisms and the possibility to adapt other applications in
order to satisfy important constraints. The implementation itself consists
of reusable run-time counterparts of the constructs. These counterparts
are managed by the component middleware and configured by the ar-
chitectural specification. This way one does not need to write additional
self-adaptation code.

1 Introduction

The increasing diversity and interconnection of applications leaves much of their
configuration to be dealt with at run-time. The vision of autonomic computing
acknowledges this as a problem leading to new levels of complexity [1]. The auto-
nomic computing solution is that computing systems should manage themselves
given high-level objectives. One of these objectives is to maintain a satisfactory
performance regardless of the available resources. This paper addresses self-
adaptation to uphold timing constraints. We focus on applications with CPU
intensive tasks for which the user has performance expectations. An example of
such an application is the music community application presented in Figure 1.
This application enables the user to browse, play and share music as well as chat
about it. These tasks are CPU intensive, yet we want an acceptable Quality-of-
Service (QoS) for all of them, even in situations with widely varying resources.
The self-adaptation will change the resource consumption by means of coarse-
grained adaptations to uphold a satisfactory QoS. To master the complexity of
this kind of self-adaptation, we need mechanisms and policies that specify and
control the adaptation process.



Browser Chat Manager

= =

Playlist Sound Processor

Manager

Repository Manager

Fig. 1. High level component diagram of a music community application

The ideal solution relies on the perfect prediction of an application’s resource
behavior based on resource profiling, but this is not an option for unknown plat-
forms and interactive behavior. A more realistic approach is the use of general
feedback based frameworks and architectures with reusable adaptation mecha-
nisms (e.g. [2], [3]). This approach usually employs a general “observe — process —
adapt” cycle. Although this cycle provides a good starting point for application
adaptation, there is still a gap to fill to enable the actual implementation of such
applications.

In particular, the frameworks advocate reusable mechanisms but do not de-
fine a high-level approach to specify the use of the mechanisms. Timing con-
straints are non-functional requirements and pertain to large portions of the
application. Likewise, coarse-grained application adaptation should also be spec-
ified at a level that is close to the functional requirements. To illustrate this, let
us reconsider the music community application. The basic functionality of the
application is built around distributed music repositories. Using these reposito-
ries, users can browse, play and share each other’s music. Although the diagram
in Figure 1 only shows a coarse architectural view, much of the timing driven
adaptation can already be defined at this level. Obvious constraints are that the
music must not stutter (a constraint on the Sound Processor), and that the GUI
control widgets are responsive enough. Appropriate adaptation actions could be:
omitting certain components (such as the optional chat service), switching com-
ponents (one could use an alternative codec component in the Sound Processor)
and “tuning” the resource behavior of a component (e.g. by setting a codec’s
compression rate).

We propose a feedback-based solution to uphold timing performance that
is twofold. First, we introduce two architectural constructs to specify indepen-
dently the monitoring of timing constraints and the execution of architectural
configuration changes. Such coarse grained adaptations have a large influence



on resource use, are easy to specify on a high level and do not require changing
the application’s functional components. Second, we offer an explicit architec-
tural construct to encapsulate the decision logic that links constraint monitoring
and adaptation. This way, the application developer can specify a coarse-grained
run-time adaptation policy in the architecture at design-time.

Throughout the paper, we will illustrate the introduced concepts with the
music community application. We show that reified run-time counterparts of
our constructs reduce the addition of timing driven adaptation to providing the
right architectural specifications.

2 Architectural approach

The software architecture of an application provides a coarse-grained decompo-
sition in components and connectors. It abstracts away the complexity of the
low level design and enables reuse of functionality. Also, a reified implementa-
tion of components allows to adapt the application while it is running [4]. Apart
from the user requirements, software architecture should also cover important
non-functional requirements and show how it can uphold these requirements.
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Fig. 2. Architectural constructs and the “observe - process - adapt” cycle

Figure 2 shows how we achieved this. In particular, we concretized the “ob-
serve - process - adapt” cycle [4] for timing based application adaptation using
special architectural constructs. Figure 2 introduces three new constructs to
complement application components:

constraint monitors specifying timing constraints on message flows between
application components and how these constraints must be checked at run-
time;

adaptation actors specifying how application components and component com-
positions may be altered at run-time;



decision makers detailing an adaptation policy to connect monitor evaluations
with the appropriate adaptation actors.

We call the architectural view that describes this monitoring-based adapta-
tion the run-time adaptation view. This view is based on a component instance
diagram but defines a run-time adaptation process with reified versions of the
above constructs as follows. Decision makers encapsulate QoS levels for a compo-
nent group. Constraint evaluations determine this QoS and the decision maker
maps QoS levels to adaptation actions that are to be executed to uphold the
QoS.

The next sections further detail the syntax and semantics of constraint mon-
itors, adaptation actors and decision makers. Following this, we present and
evaluate a reusable run-time implementation to carry out the architectural mon-
itoring and adaptation specification.

3 Case study

As an illustration of a diverse and interconnected distributed application, we
chose to implement a prototype version of the mentioned music community ap-
plication. This application, called Dale, was designed to use timing driven self-
adaptation so that it could run on a variety of platforms. Adding constraints and
adaptation in the implementation or even the object oriented design is not an
easy task: the application consists of over 50 classes, whereas the architectural
component view is much simpler and closer to the user requirements. Figure 3
shows a part of the Dale component instance diagram focusing on playlists. It
is this diagram for which we will create a run-time adaptation view.

The diagrams in the paper use a component model with asynchronous mes-
sage based communication. Messages can only be sent out and received through
ports. Connectors relay messages from one port to one or more others.

The Repository component forms the heart of the Dale application: it con-
tains songs and their meta-data. The Playlist Manager defines this playlist
and dictates songs to play to the Player component. The latter is responsi-
ble for setting up the right Codec component and getting the audio through a
Fader component to a Sound Output component. Finally, the Queuer compo-
nent keeps the playlist automatically filled and the optional Assistant offers
advice on related songs to queue.

4 Architectural Constructs

4.1 Constraint Monitors

At the software architecture level, ports declare the messages that are processed
and passed around between components. We introduce constraint monitors to
encapsulate declarative timing constraints on a number of events pertaining this
processing and passing around of messages. Architecturally, we link constraints
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Fig. 3. Playlist component instance diagram

to ports rather than to connectors in order not to limit a constraint to events
involving two directly connected components. For example, in Figure 3, one
could specify a deadline involving ports from the Playlist Manager and Sound
Output, although these are not directly connected to each other. The constraint
monitor construct is depicted as a triangle and is attached to all ports that are
involved in the timing constraints.

Constraint monitors do not only encapsulate constraint information, they
also state that the constraints should be monitored at run-time. For this reason,
we define time as it is handled at the target platforms: a series of discrete time
events (monotonously increasing) generated by a system clock. To express the
message related events, we adopt an event model defining three types of events:

send corresponds to the sending of a message through a port;

receive corresponds to the reception of a message on a port;

processed corresponds to the end of processing in the component. When this
event is reached, a component without a thread of its own will no longer
send outgoing messages (send events) until it receives a new message.

The BNF syntax is as follows:

(message event) — (port>:<message>send| receive| processed

For example, for an audio decoding component, mp3:packet,. .. ..., signifies the
arrival of the message packet on the port mp3. Similarly, mp3:packet,,, ccssca
means that the component to which the port belongs has processed the given
packet and sent out the decoded audio, if any.



To model deadlines, we chose a modified language based on RTL ([5], [6]),
although our approach can be used with other formalisms. The RTL syntax uses
the @ function to denote the occurence time of a particular event. To give an
example involving the mp3 port, here is a constraint limiting the processing time
of the request to 20 ms:

Q(mp3: packetprocessed) < @Q(mp3: packeteceive) + 20ms

This particular form applies to all instances of mp3:packet. Another use of the
@ function has more fine-grained control. For example, the following function
indicates that the time between two successive instances of mp3:packet should
be equal or less than 20 ms:

@(mp3: packeteceive, 1 + 1) < @(mp3:packet,eceive, 1) + 20ms

Figure 4 shows the constraint monitors that were defined in the earlier pre-
sented playlist related instance diagram. Curved connections distinguish the in-
teraction from software connector-based interaction: monitors do not influence
(functional) behavior, they merely observe. Of course, the act of observation
always influences non-functional aspects, such as performance. Section 5 shows
that the involved run-time overhead is limited.

_ _ _ | responsiveness I
@(fader.startFadeggp4,i) <

fill queue @(play events.songChangegg i) + 100ms
@(status.song g eived) < play events
@(status.needSonggg i) + 500ms Playlist
Manager
control
. Player
playlist repository
control
1__F .
repository repgsitory | codec | fader
Queuer . Assistant
- query control
repository .
out in

Repository . . Codec
. out
in out . =
[ Sound Output . . Fader . control

Fig. 4. Constraint monitors for the Dale playlist diagram
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The £i11 queue constraint monitor in Figure 4 places an upper-bound on the
time between the playlist reporting it needs a new song, and the queuer providing
the song. The responsiveness constraint monitor checks that song changes
are timely processed by the player (eventually resulting in a fader command).
Finally, the no stutter constraint monitor checks for audio buffer under-runs.

4.2 Adaptation Actors

As mentioned in the introduction, we want to specify and support coarse-grained
changes in resource consumption for component based applications. We define
constructs to describe the manipulation of messages and components for the
following adaptation actions:

Component configuration: a component’s resource consumption is changed
by configuring its settings. This is the equivalent of changing variability
parameters [7];

Run-time component optionality and variability: resource use is changed
by omitting components or by choosing alternative components. A static ap-
proach for this has already been investigated in [8].

We put forward two major objectives for our constructs:

Adaptations are fully determined by the specification. No extra appli-
cation code is necessary to enable the adaptations at run-time. The adapta-
tion code can be automatically generated or the middleware coordinates the
adaptations. This reduces the developer’s burden and speeds up development
time;

Adaptations are carried out efficiently. The user of the system should only
notice the effects of an adaptation, not the adaptation action itself. The
described adaptations should therefore be easily translatable to an efficient
adaptation mechanism, to keep user distraction to a minimum.

An adaptation actor is an architectural construct that encapsulates such
architectural modifications. These manipulations are formulated into adaptation
action recipes that are to be executed at run-time by reified counterparts of the
actors. These counterparts can send messages just like regular components. The
graphical representation of an adaptation actor is a circle that is associated to a
block containing the action recipes. We define two types of actors: the message
router and component tuner. Recipes have a name and body and are specified
as follows (curly brackets in fixed font represent the beginning and ending of the
recipe body):

(adaptation recipe) — recipe (recipe name) {
{(adaptation action) ;}
¥

In what follows, we describe the different adaptation actors and how they can be
used to achieve the earlier mentioned adaptations. Just like regular components,



adaptation actors have ports, but they are not annotated with rectangles to avoid
overloading the diagrams. All described adaptation actions are accomplished by
sending and receiving messages through these ports.

The purpose of a message router is to specify run-time “switching” of message
flows. This is done by a reified run-time counterpart that relays messages across
its ports. To specify this, we define the 1ink and unlink actions:

(link action) — link ({port), (port))
(unlink action) — unlink ({port), (port))

When a link action is executed, all messages that are received through the first
stated port must be relayed to the second. Using this, one can enable “mul-
ticast” or “router” like message flows. Figure 5 shows the message routers we
have defined for the music application. The queuer router switches requests for
new songs from an ad-hoc based queue algorithm to a more CPU intensive one
that takes into account user preferences. The other two routers switch between
a normal fader and one that cross-fades between songs. These two have been
paired by a dotted line, meaning that the recipe declaration applies to both.
The Crossfader component needs 2 decoded streams at a time and is more
CPU intensive. Note that we make some assumptions about component state
and message synchronization. First, switching of message flows should only be
used when the components that receive messages directly or indirectly from a
message router do not require reception of all messages. Second, a component
receiving messages via different “switched” paths must not rely on the order of
received messages, as we are using an asynchronous component model.

A component tuner configures one or more components. The actor achieves
this by sending configuration messages to regular component ports.

The action for sending a message is as follows:

(send action) — (port)...(message) ([ {(key): (val)}])

The triple-dot notation denotes the sending of the message with the supplied
key-value parameters.

The semantics of a component tuner are straightforward: when a recipe con-
tains one or more of these send actions and the former is executed, the described
messages are sent out through the denoted port, optionally containing the spec-
ified key-value parameter pairs. Figure 6 shows a component tuner in the Dale
music application that deactivates the assistant, freeing up CPU resources.

4.3 Decision Makers

Now that we have adaptation actors and timing monitors, we need to link them.
We base the logic on levels of perceived QoS that are defined in another architec-
tural construct called a adaptation decision maker. Decision makers encapsulate
how the timing constraints and adaptation actions relate to the perceived qual-
ity at run-time. A level’s quality is defined by one or more constraint monitor
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conditions. When the conditions are met, the level is entered. Adaptation recipes
can be linked to be executed upon entering the level. For our purposes we de-
fined three monitor conditions that provide an abstract representation of the
constraint state, but the constraint state can be divided otherwise. The red level
indicates that the involved constraint is violated and adaptation is necessary.
The yellow level indicates that there are few or no constraint violations. Green
indicates that the constraints are easily respected and that there may be room
for inverse adaptations.
The syntax for this is as follows:

(decision level) — on (monitor clause) [{, (monitor clause)}] {
{(recipe name) ;}
}
(monitor clause) — (monitor name) . (monitor condition)

(monitor condition) — red | yellow | green

The exact interpretation of monitor conditions is done by the run-time in-
frastructure. The latter should also avoid so-called “yo-yo” effects. An example
mapping for switching to the green level could be that there are no deadline vi-
olations and there is a CPU margin for which the linked recipes did not already
cause violations. A complete run-time mapping algorithm is outside the scope
of this paper.

on queue.green { I% et
queuer.switch to advanced; i
}

playlist status

Playlist
on queue.red { Manager

queuer.switch to ad hoc; queuer
}

playlist playlist repository

| -

Advanced Queuer Ah hoc Queuer

1

repository
repository

Repository

Fig. 7. Dale queue decision maker

Figure 7 shows one of the three decision makers we have defined in the
Dale application. The decision maker links the £i1ll queue constraint with the



queue adaptation actors. The other decision makers are created similarly. The
second one links the responsiveness of the Playlist Manager controls to the
components that access the repository frequently: the Assistant and Queuer.
The third one links the no stutter constraint to the fader actors to control the
decoding load.

5 Evaluation

The first aspect of evaluation is expressiveness. Timing monitors only monitor
events that can be made visible in the software architecture, e.g. that involve the
handling of messages. This is deliberate: if an event is important enough that it
needs a constraint, it should be visible at this level. However, next to message
events, there may be extra events that could be useful, such as the initialization
of a component or redeployment. These events may be added to the event model
of the timing constraints.

Although adaptation actors do not require any additional code, components
may need to be rewritten to support the assumptions made in Section 4.2.

Second, we tested the run-time aspects. We have implemented our Dale case,
the run-time monitors and adaptation logic in DRACO [9], a Java based compo-
nent run-time platform. In terms of code overhead, the monitors and actors can
be kept quite small (each less than 20 KB), as DRACO allows interception and
injection of messages in an application.

To test the effectiveness of the adaptations, we ran the application with and
without the adaptation activated to see in which circumstances it performed
adequately. Figure 8 shows the run-time behavior of the earlier discussed com-
ponent setup. We ran the tests on a 1.5 GHz PowerPC computer with Sun’s Java
1.4.2 SDK. We simulated different CPU conditions (slower CPU’s and different
CPU loads) by slowly increasing the time to process the calls of the music reposi-
tory and codec. We recorded the number of deadline violations with and without
adaptation. Noticeable difference between adapted and non-adapted scenario’s
can be seen when the available CPU power decreases below 65 % and the adap-
tation actors for the fading algorithm execute the adaptation recipe normal.
Also, starting from 45 % and less, the advanced queue algorithm cannot keep
up with the requests of the Playlist Manager and the queuer message router
switches to the ad-hoc queue algorithm. As can be seen, the adaptations keep
the deadline violations at an acceptable level until the CPU power drops below
30 %, when the audio stream cannot be decoded fast enough anymore. Also note
that the responsiveness constraint is not affected by the less powerful CPU.

As for efficiency of the mechanisms, the additional overhead is limited for
CPU intensive tasks. We measured the message throughput of a connector with
messages that took 5ms to process. Adding a timing monitor decreased the
throughput with less than 2 %. Similarly, the decrease in throughput of a message
router is less than 5%. A component tuner imposes no additional overhead.
The decision makers are periodically activated and do not influence message
throughput.
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6 Related Work

Traditional real-time software typically resides on a dedicated system. The tim-
ing constraints involved have been extensively tested or proven and there is little
need to ensure those constraints at run-time (apart from the addition of some
exceptional counter-measures). That is why the many formalisms to specify tim-
ing constraints (e.g. UML [10] and extensions [11] [12]) lack support for added
run-time behavior and adaptation logic. However, timing constraints tend to be
re-adopted in the larger context of Quality of Service (QoS) and resource aware-
ness. QoS management frameworks try to integrate resource management and
adaptive behavior. The Quality Object’s Contract Description Language (CDL)
and CQML specify changes using callback functions. Rainbow also uses low-level
adaptation mechanisms but aims for reusability of abstract adaptation strategies
and operators [3].

The 2K 9 methodology [13] offers middleware-supported adaptation by spec-
ifying component dependencies in functional graphs. From these graphs, all pos-
sible component configurations are translated. QoS adaptation is then defined
and associated with transitions between component configurations. The adapta-
tion behavior is thus somewhat hidden in the set of component configurations.
2K @ suggests the use of middleware entities to recreate a new configuration.

The Quality Objects framework is perhaps the best known example of adap-
tive middleware. QuO specifies an architecture for implementing distributed
adaptive applications; the adaptation itself however is worked out at a low level.
Also, efforts have been made to package the QuO monitoring and adaptation
into reusable entities called Qoskets [14]. Qoskets offer pre-defined but reusable
adaptation code that can be added to CORBA objects, provided that the right
wrapper code is written.

In order to tackle the development of adaptive applications, some research
efforts explored the concept of QoS developer. They claim that the application
developer needs help specifying and implementing adaptive QoS and propose
that this work must be done by another person. The people behind the Quality
Objects framework call this person a qoskateer [14]. If such a person would
be necessary in a project, specifying the adaptation architecturally reduces the
responsibilities of the qoskateer to a minimum.

7 Conclusions and future work

The handling of non-functional constraints such as timing is an important re-
quirement for upcoming pervasive distributed applications. Defining constraints
late in the development process may lead to the discovery of structural flaws in
the architecture and entanglement of the adaptation in the functional design. We
defined simple architectural constructs that have a clear goal: monitor timing
constraints for component based applications and uphold them by carrying out
architectural adaptations. These concepts do not offer a general replacement for



domain specific adaptation solutions such as bandwidth control or grid appli-
cation management, but can be used in most distributed resource-intensive or
time-critical applications.

Throughout the paper we worked out an architectural run-time adaptation
view of a music application we implemented. Although the architecture may
need to be tailored to clearly define timing constraints and adaptation oppor-
tunities, the tailoring itself adds clarity to the architectural design. If the state
and synchronization assumptions are respected, no extra code is needed to en-
able the adaptation actors at run-time. Although the overhead of the run-time
mechanisms is limited, it is best to only define adaptations that have a significant
influence on resource consumption.

The separation of constraints, decision logic and adaptation opens up possi-
bilities to execute adaptations to uphold constraints that belong to other appli-
cations. This will be a topic for future research. Finally, it would be interesting
to define adaptation actors that handle distribution. This way, resource intensive
components could be migrated to uphold constraints.
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