
A Planning Method for Component Placement in Smart
Item Environments using Heuristic Search

Jürgen Anke1,2, Bernhard Wolf1, Gregor Hackenbroich1, and Klaus Kabitzsch2

1 SAP Research CEC Dresden, Germany
2 Dresden University of Technology, Institute of Applied Computer Science, Germany

{juergen.anke, gregor.hackenbroich, b.wolf}@sap.com,
kk10@inf.tu-dresden.de

Abstract. Smart item environments consist of networked nodes with heteroge-
neous hardware equipment and intermittent network connections. Usinga com-
mon component technology allows for flexible distribution of components for
processing of smart item data. Finding a good deployment plan for a newset
of components in an infrastructure is called Component Placement Problem. We
propose an approach for finding suitable deployment plans for components with
special regard to the characteristics of smart item environments. Our method eval-
uates deployment plans in terms of both resource consumption and availability.
From the analysis of the solution space we conclude that the number of network
link uses is an important criterion for the quality of a deployment plan regarding
both cost and availability. Based on this finding, we have derived a heuristic that
creates deployment plans, which have a low number of link uses and arethus
more likely of high quality.3

1 Introduction

Smart items are physical products that include product embedded information devices
(PEIDs), e.g. embedded systems, or RFID tags. For application domains such as Prod-
uct Lifecycle Management (PLM), enterprise applications benefit from accessing data
on smart items. Error-prone manual data input can be replaced with automatic data
acquisition to support business decisions, e.g. for maintenance planning, effective recy-
cling, and product design improvements. As it is not reasonable to integrate mechanisms
for accessing PEIDs into business applications, this functionality is provided by a mid-
dleware. The middleware and the PEIDs form thesmart item environment, which can
be distributed in a network over various nodes. A key characteristic of smart item en-
vironments is a high degree of heterogeneity in terms of hardware resources. Typically,
there is a powerful middleware server which is contacted by client applications to re-
quest smart item data. The requests are then forwarded to other nodes in the field, which
translate the requests into a PEID specific protocol. Finally, the PEIDs are embedded
systems, which contain the data sources and have very limited resources. In general,
available resources are decreasing towards the edge of the network.

3 Parts of this work are based on the PROMISE project (www.promise.no), which is funded by
the European Union IST 6th Framework program, project no 507100.

2

All nodes in the smart item environment can contain a standardised execution en-
vironment, such as OSGi [1] or Jini [2]. This turns the smart item environment into a
distributed execution environment, allowing for flexible placement of components that
format, analyse, filter, or pre-process the data flows between backend applications and
smart items [3]. If a new set of components (acomponent composition) has to be de-
ployed onto the smart item environment, each component has to be assigned to a host.
The assignment of a component to a host is calledcomponent placement, and hence
finding a set of good assignments is thecomponent placement problem (CPP) [4]. A
deployment plan is a set of component placements for a given component composition.
Previously, we have proposed a method to identify good deployment plans in smart
item environments based on thecost of demanded resources [5]. The cost of demanded
resources is an important evaluation criterion as resources on the various hosts and net-
work links are differently valued in heterogeneous environments.

However, considering the cost of resource demands alone is not sufficient to iden-
tify suitable deployment plans. Most products are mobile and therefore communicate
with middleware over wireless connections, which influences theavailability of PEID
data. Availability is defined as the degree to which a system or component is operational
and accessible when it is required for use [6]. In a distributed component-based system,
the availability depends on the placement of components [7–9] and hence availability
is also a relevant evaluation criterion for deployment plans. Intuitively, the availability
increases when the amount of data to be transferred over unreliable connections de-
creases. This can be achieved by placing components on the PEIDs to perform data
analysis locally and transmit only the analysis results. However, this competes with the
goal of minimising cost of resource demands as resources on the PEIDs are much more
expensive than on other nodes. This trade-off has not been investigated in the context of
component deployment planning. Instead, existing approaches use a single evaluation
criterion to determine the quality of deployment plans (seesection 3).

In this paper, we propose a component deployment planning method, which is appli-
cable for smart item environments. More specifically, we propose an extended system
model, evaluation functions for both cost and availability, and methods to determine
model parameters. Using a practical application, we found that the number of network
link uses is an important driver for the quality of a deployment plan. Based on that find-
ing, we propose a heuristic for creating deployment plans with few network link uses.
We show that applying this heuristic leads to good results invery short time.

The remainder of the paper is structured as follows: First, the characteristics of smart
item environments are discussed and a set of requirements for deployment planning are
derived. Afterwards, we review related work and point out their shortcomings with
regard to our problem. In section 4 our solution is presentedin an overview. Section
5 contains the core model for the CPP including evaluation functions and constraints.
The extension of this model for smart item infrastructures is shown in section 6, where
we propose methods to determine availability and resource demands. Finally, in section
7 it is investigated whether the two dimensions cost and availability are competitive,
i.e. form a trade-off. Furthermore, we show that the number of network link uses is a
major driver for the quality of deployment plans and presentan algorithm, which creates
deployment plans based on this heuristic.

3

2 Problem Analysis

Smart item environments have some characteristics which place special requirements
on deployment planning methods. Here, these characteristics are briefly discussed to de-
rive requirements from them. The requirements provide a rationale for the deployment
planning method we propose and serve as basis for identifying weaknesses in related
works. The main characteristics of smart item environmentsare:

– Heterogeneity of infrastructure: Infrastructure nodes in the smart item environ-
ment can range from resource-constraint embedded system, to conventional per-
sonal computers and middleware servers with vast resources. Network links con-
necting these nodes do also have different capacities.

– Intermittent connections: PEIDs are typically connected to the middleware using
wireless connections that are not permanently available. This is either due to re-
strictions in the technology, e.g. mobile phone networks donot have full coverage,
or a result of application specifics. For instance, if a PEID in a truck connects to a
middleware access point in a depot using wireless LAN, it is unavailable during the
time when the truck is not in connection range.

– Distributed data sources: Smart item environments are mainly employed to col-
lect and analyse product data, e.g. static product information, the product structure,
the operational status of the product, as well as historicalrecords of owners, users,
maintenance operations, etc. This data can be provided fromlocal memory of the
PEID or read from sensors that are integrated in the product.Other examples for
data sources are rule repositories used for data analysis and thresholds, which might
be stored on a middleware server. These data sources have a certain location in the
infrastructure and send a response of a certain size when they are queried.

A deployment planning method for smart item environments has to take all these
characteristics into consideration by fulfilling the following requirements:

1. Consider cost of demanded resources: The method shall consider the cost of
resource demands at different hosts in the infrastructure.Although there are various
resources, the method should at least take CPU, memory, and bitrate into account.
These are the resources that are particularly scarce at the edge of the network, e.g.
an embedded system has only a small memory, a very limited CPUpower, and
might only have low-bitrate connectivity, such as GPRS4 or IEEE 802.15.45.

2. Evaluate the effect of intermittent connections: Intermittent connections influ-
ence the availability of data in the smart item environment.Component deployment
plans can lead to better or worse availability. Therefore the method shall evaluate
the effects of intermittent connections on the availability.

3. Explicit modelling of distributed data sources: Resource consumption depends
on the data amounts that have to be transferred between the components and thus
between their hosts in the infrastructure. As the traffic originates from the dis-
tributed data sources, the method shall provide means to explicitly model the lo-
cation and message sizes of data sources.

4 General Packet Radio Service, a packet-oriented communication protocol on GSM mobile
phone networks.

5 An IEEE standard for low-rate Wireless Personal Area Network (WPAN) connectivity.

4

3 Related Work

There is currently no component deployment planning method, which specifically ad-
dresses the domain of smart item environments. Hence, we review existing methods
from related areas, e.g. mobile applications, grids, and computing clusters.

Mikic-Rakic et al present (re-)deployment planning for components in the context
of PRISM [10], a middleware for distributed and mobile applications. In this environ-
ment, hosts are resource-constrained devices connected with intermittent wireless links.
Component redeployment aims to improve the availability ofa system. Special focus is
put on the evaluation of planning algorithms, e.g. an approximative algorithm based on
ordered lists of hosts and components [8], a decentralised algorithm with an auctioning
mechanism [9], greedy and clustering algorithms [11]. The input model allows specify-
ing memory constraints, and evaluation of bandwidth constraints through frequency of
message exchanges between components and the average message size. The approach
is very comprehensive, however, it does neither support themodelling of data sources
nor evaluation of CPU utilisation. It also does not considerdifferent costs of resources.

Another approach [4] was proposed for resource-aware deployment planning for
component in grid environments based on Artificial Intelligence (AI) methods. For each
component the required CPU and bandwidth must be defined to compute a resource-
optimal deployment plan, which fulfils a deployment goal specified by the user (such as
componentc1 should run on hosth1). Additional components for encryption, caching,
compression etc. may be added to the deployment plan to adaptthe resource demands
to the infrastructure’s capacities. Although the presented approach is sophisticated, it is
not suitable for our purposes, as it does not support heterogeneous infrastructures and
modelling of data sources. Also, the effect of intermittentconnections is not considered.

Stewardet al propose automatic deployment for components of a J2EE application
running on a cluster of computers [12]. This method aims to find a deployment that
maximises the throughput of the distributed application but does not evaluate resource
consumption. The method is not applicable for smart item environments as it assumes
homogeneity of nodes. Deployment plans are evaluated only in terms of throughput but
not for cost or availability. Finally, modelling of data sources is not possible.

Dynamic networks with intermittent connections play a key role in the deployment
method for hierarchical components in a heterogeneous distributed system [13]. Un-
like other approaches, the deployment plan is not calculated in advance but determined
dynamically during the deployment process in a propagativemanner. In the context of
our elaborated requirements the approach is not applicable, as it only seeks a satisfying
solution rather than evaluating different valid deployment plans. Furthermore, it does
not support modelling of data sources and different costs for resources in the network.

An allocation algorithm for the placement of complex CORBA components is pre-
sented by Wuet al [14]. The method supports modelling of resource demands and
constraints as well as global weighting of the resources memory, CPU and bandwidth
according to their importance in the respective situation.Components are placed in or-
der of their allocation priority, which is derived from the weighted ratio of resource
demand and sum of available resource across all containers.However, the method nei-
ther considers intermittent connections, nor supports modelling of data sources. It does
not allow for assigning different costs for these resourceson each host. Finally, the

5

modelling used in this approach is very complex, which is appropriate for CORBA
components but less applicable for the simple data processing components in our case.

In summary, existing component deployment methods do not model distributed data
sources and are all based on a single evaluation criterion. Resource constraints are con-
sidered in some approaches but no cost-based evaluation of resource demands is per-
formed, i.e. the resources are valued the same on all hosts. It can be assumed that the
degree of heterogeneity in scenarios addressed by existingmethods was low, which
made cost-based evaluation unnecessary.

4 Proposed Solution

We propose a solution to the component placement problem that addresses the require-
ments stated above. Its overall approach is to create and rank deployment plan can-
didates by evaluating their cost of resource demands and their availability (Figure 1).
Expected resource demands are determined, and added as annotation to the composi-
tion model. On the basis of a given deployment plan, these demands are mapped to the
infrastructure model to relate the demands with the respective cost and capacities. If no
resource constraints are violated, the availability of thesystem and the cost of utilised
resources is calculated and compared to the best plans foundso far. When all deploy-
ment plan candidates have been evaluated or the maximum number of plans to evaluate
have been reached, the best ranking deployment plans are presented to the user.

Determine Resource
Demands for CM

Create new
Deployment Plan

Composition
Model (CM)

Infrastructure
Model (IM)

Load Model
(LM)

Check Constraints

Determine Network
Link Availabilities

Calculate System
Availability and Cost

Add Deployment
Plan to TOP N List

Display TOP
N List

Deployment
Plan

[plan valid]

[plan invalid]

[in best
N plans]

[not in best N plans]

[count<maxCount &&
 plans available]

[else]

Mapping of Resource
Demands CM IM

Fig. 1. Solution overview

Details of our solution are presented in the next two sections as follows:

Core Model The basis of our solution is the core model of the component placement
problem, which consists of the following elements:

– Composition Model (CM), which specifies the composition of components, their
dependencies, and resource demands. It contains the data sink and data sources.

– Infrastructure Model (IM) describing the structure of the network, the resource
capacities of each host and network link, and cost per unit for these resources.

6

– Mapping function describing the assignment of components to hosts for mapping
resource demands in the CM to resource capacities and costs in the IM.

– Constraints to validate deployment plans.
– Evaluation functions to calculate quality measures (availability and cost of de-

manded resources) of valid deployment plans.

Determining Model Parameters for Smart Item Environments The model requires a
number of parameters, which have to be supplied when the model is applied for com-
ponent deployment in smart item environments. We go beyond estimating these param-
eters by proposing methods to determine availability as well as the demands for bitrate
and CPU based on a load model. As these methods for determining parameters are de-
coupled from the CPP model, they can easily replaced by otherones when appropriate.
Activities related to determining parameters are highlighted with italics in Figure 1.

5 Core Model of the CPP

Composition Model The composition model is represented as a connected, directed
composition graphG, consisting of a set of nodesC and set of dependencies (edges)
D ⊆ C×C. The setC consists of a set of nodesCR that can be relocated and a setCF of
nodes which are fixed to a specific host. The number of relocatable componentsC and
dependenciesD is the cardinality of the respective set:C = |CR| andD = |D|.

– Data Sources and Data Sink It is characteristic for each component that it receives
an input and produces an output of data. Therefore, each component depends on
one or more other components. Besides components there are two other node types
in the composition graph: First, there can be one or more datasources that only
provide output of data. Second, there must be exactly one data sink, which only re-
ceives data input. Data sink and data sources represent endpoints in the composition
graph and belong to the setCF as they are fixed to a specific host.

– Resource Demands For all componentsc ∈ C a resource demandRz(c), wherez =
{mem, cpu} depends on memory and CPU power. Similarly, for all dependencies
d ∈ D in the composition graph we assign the required bitrateRbr(d) for the
communication between the respective two components.

Infrastructure Model The infrastructure onto which components are to be deployed,
is modelled using a connected, undirected infrastructure graphI. It consists of a set of
hostsH and a set of network linksL ⊆ H×H.

– Resource Capacities For each hosth ∈ H the available capacitySz(h) of memory
and CPU are stored,z = {mem, cpu}. The same applies to network links, each of
which holds a valueSbr(l) describing its available bitrate of each linkl ∈ L.

– Cost of Resource Units As mentioned before, we use a cost-based evaluation of
resource demands to address the heterogeneity of hosts and network links in the
infrastructure. Thus, we assign the costsWz(h), Wbr(l) for a unit of memory and
CPU power consumption, and for a required unit of bandwidth,respectively.

7

– Network Availability Each network linkl in the infrastructure is assigned a value
0≤ a(l)≤ 1 describing the availability of that link. This measure is important for
evaluating the system’s availability of a given deploymentplan later on.

Assignment of Components to Hosts For deployment planning, every componentcj

is assigned to a hosthi. Such an assignment is called acomponent placement:

cj → v(cj) = hi.

A deployment plan v : C → H is a set of component placements, such that each
component ofC is assigned exactly to one host ofH. On the opposite, every host can
have assigned0..C relocatable components. Theset of all deployment plans is denoted
by V and has the cardinalityV = |V| = HC .

Constraints

Static Assignments The subset of nodesCF in the composition graph are statically
assigned to hosts, i.e. these assignments are the same in alldeployment plans.Static
assignments are primarily used for data sources and the data sink as they can not be
relocated. Additionally, user-defined static assignmentsare possible, if a component
has to be placed on a specific host.

Resource Constraints Besides static assignments, we have the requirement that the
demand for resources does not exceed the capacity of infrastructure elements. For the
hosts this requirement implies that the resource demand does not exceed the capacity

∑

j,v(cj)=hi

Rz(cj) ≤ Sz(hi) .

Likewise it is necessary to formulate the constraint for themaximum bitrate de-
mand on network links. This is more complicated as the communication between any
pair of components can affect multiple network links in the infrastructure, if the two
components are deployed to hosts which are not directly connected with each other. To
formulate this constraint, we consider the communication pathP between two compo-
nentsci andcj within the infrastructure at a given deployment planv. This path is a set
of network links connecting the hostsv(ci) andv(cj) on which the components reside.

Now the constraint for the maximum bitrate demand on networklink l, requires that
the sum of all communication between neighbouring components that use this network
link to be less than the capacity of this link:

∑

<i,j>

Ql(P(ci, cj)) · Rbr(d(ci, cj)) ≤ Sbr(l) .

Here, we introduced the projection:

Ql(P(ci, cj)) =

{

1 , if link l belongs to the pathP,

0 , else.

8

Evaluation functions If a valid deployment plan was found, both its cost of resource
demands and its availability is evaluated. Although both measures can be used indepen-
dently for evaluating deployment plans, it may be assumed that high availability implies
high cost of resource demands.

Cost of demanded resources The cost of resource demands for a given deployment plan
v is the total cost of resource demands, cumulated over all hosts and network links.

K(v) =

H
∑

i=1

∑

z

Resz(i) · Wz(i) +

L
∑

j=1

Resbr(j) · Wbr(j) (1)

Here,L is the number of network links,H is the number of hosts in the infrastructure
andResz(i) is the total demand for resourcez on hosti. Similarly, Resbr(j) denotes
the total bitrate demand on network linkk.

Availability For the evaluation of a deployment plan’s availability, theavailabilitiesa(l)
of all individual network links have to be aggregated. Availabilities can be considered as
probabilities of success for communication between pairs of components over network
links l. The availability of the deployment plan is determined by the product

A(v) =
L

∏

l=1

a(l). (2)

We note, that the determination of the link availabilitya(l) is not trivial. We explain the
method we have used in section 6.2.

6 Determining Model Parameters for Smart Item Environments

To use the presented core model for deployment planning, it has to be instantiated with
actual values for the input parameters. In this section, we explain methods on how re-
source demands and the availability can be determined. As these methods are decoupled
from the core model, it allows for any other way to determine the input parameters.

6.1 Determining Resource Demands

Some resource demands depend on other inputs and have to be calculated before a
deployment plan can be evaluated. In principle, we follow anapproach proposed by
Stewardet al [12]. It estimates resource demand for components based on ”resource
profiles”, which are created ”off-line” by measurements under different workloads.

Load Model To calculate component-level resource demands, except memory, the load
placed on the composition has to be known. Load refers to the number of requests
a user issues over a period of time. Generally, the requests over time are POISSON-
distributed. As our method only considers static deployment planning, the mean value

9

of this distribution (λ-parameter) is sufficient to characterise the load. This parameter
is namediph (invocations per hour) and does logically belong to the datasink.

Besides the number of invocations, also the message sizes tobe transferred have to
be defined in the load model. As the data originates from the data sources, the message
sizes are logically assigned to them. Therefore, for each data source the size of the
message returned when it is queried has to be specified in the load model.

Bitrate Bitrate demandRbr(d) for the communication between components depends
on the message sizes to process and the load. By multiplying the size of the message to
process with the invocation per houriph, we get the incoming bitrate. At each invoca-
tion, the incoming data is processed into outgoing data, whereby the size of outgoing
data can be different. One approach to model this for simple functional blocks in build-
ing automation is used by Plönnigset al. They use an amplification factor (gain) to
describe the relation of inputs to outputs in processing devices [15]. We extend this by
using a linear functionoc to describe the input/output-relation for each component

IORel : oc(ic) = ec · ic + fc .

Here,oc is the output of componentc, which depends on the inputic, the amplifi-
cation factorec and the biasfc. In our model, the inputic is the sum of all incoming
bitrates for a component. Note thatec andfc are constant during the calculation.

CPU Power The CPU demandRcpu(c) is calculated with a method proposed by Stew-
ardet al. [12], who used it to plan component distribution in a server cluster for max-
imum throughput. They describe the CPU demand as linear function, whereby load is
the independent variable. The coefficientac and the constantgc were gained by linear
regression on a series of CPU utilisation measurements under different loads.

Rcpu : pc(ic) = ac · ic + gc

We adopt this method and use the amount of data to be processedby the respective
component as loadic. For each component, such a linear function has to be determined
with different data amounts rather than with requests per second. A major difference be-
tween our work and the work by Stewardet al is the heterogeneity in the infrastructure.
While a server cluster consists of identical machines, the CPU power in a smart item
environment is diverse. Therefore, we propose to compute the CPU demand function
on a reference system, and adjust CPU capacities on each hostto reflect its CPU power
in relation to the reference system. For example, if an embedded system has only 5% of
the CPU power of the reference system, its CPU capacity is setto 5. We recognise that
this method allows only for a rough estimation of CPU demands. However, in our view
it is a good balance between model complexity and accuracy for our purpose.

6.2 Determining Availability

For the evaluation of the system’s availability (Equation (2) in section 5) the availability
of all network links in the infrastructure is needed. To characterise intermittent network

10

1

0 t

d C d P

Fig. 2. Parameters to describe an intermittent connection

links, we introduce two parameters: (a) Mean connection duration dC , and (b) Mean
pause durationdP (see Figure 2). We present three different methods for calculating
the availability of a network link, which is understood as probability of success for:

1. Network link availability
2. Immediate successful execution of a request
3. Successful execution of a request within a given time frame

For simplicity we will denote availability asa(l) for these probabilities and the specific
context clarifies the meaning in each case.

(1) The probability of network link availability is the ratio between connection du-
rationdC and the duration between two connection establishments (dC + dP)

a =
dC

dC + dP

(3)

(2) The probability of immediate successful execution of a request considers the
time required to transfer the requested data amount. Based on the data amountmsg and
the capacity of the network linkSbr, the required transfer timedT can be determined
by dT (l) = msg

Sbr(l) . The transfer of the requested data amount is successful, ifboth the
connection is available and the transfer was started beforethe connection is terminated.

a =
dC

dC + dP

·
dC − dT

dC

=
dC − dT

dC + dP

(4)

This only is meaningful if thedT < dC , otherwise the request will not be successful
and the availability of the whole system is set to0.

(3) For the probability of successful execution of a request within a given time
frame, a maximum timedmax has to be specified. The calculation is based on probabil-
ity of then-fold repetition of the complementary event (”transmission unsuccessful”):

a = 1 − (1 −
dC − dT

dC + dP

)n , wherebyn =
dmax

dC + dP

| n ≥ 1 . (5)

Multiple Uses of Links All equations defined in this section determine the availability
of a network link for a single transmission. As every dependency in the composition
graph represents a service invocation (request) and its result (response), the network
link is used twice for each dependency mapped to it. Moreover, several dependencies
can be assigned to a network link. If a link is used multiple times, its availability is the
product of all availabilities for each individual use. For each use, the required transmis-
sion timedT might be different. Therefore, we consider the transmission timedTi for
transmissioni to determine availability using Equation (4) for multiple uses by

a =
∏

i

(

dC − dTi

dC + dP

)

.

11

Similarly, the availability can be calculated with Equation (3) and Equation (5). In each
case, it can be seen that the availability decreases when thenumber of network link uses
increases.

7 Analysis of the Solution Space

We validate our proposed method by analysing the results of apractical application,
which deals with maintenance planning for trucks and was adapted and extended from
an earlier publication [5]. It consists of 11 components, which are to be deployed onto
an infrastructure with 3 hosts. We show the solution space for all valid deployment plans
and identify the location of the best deployment plans in it.Furthermore, the influence
of the number of network uses on both cost and availability isanalysed.

7.1 Analysis of Competition

The complete solution space for the base scenario is depicted in Figure 3.1. It shows
the cost and availability of all valid component deploymentplans. The best deployment
plans (low cost and high availability) are located in the upper left corner of the diagram.
Data points representing the best deployment plans are highlighted with circles and
bounded by a rectangle, which marks the area between the two extremal points of low-
est cost and highest availability. All deployment plans which are not highlighted can be
discarded as they are definitely worse than the highlighted ones. There are 35 deploy-
ment plans which were identified as ”best”. For clarity, we name these ”deployment
plan candidates”.

Fig. 3.1 Complete solution space Fig. 3.2 Distribution of network link uses

7.2 Number of Network Link Uses

We have analysed the effect of the number of network link useson the quality of deploy-
ment plans. As briefly discussed in section 6.2, the availability depends on how many

12

times a network link is used. Furthermore, the cost is also influenced by this measure
as the cost for transmission depends on how much bitrate demand from dependencies
is mapped to network links. Therefore, it can be assumed thatthe number of network
link uses is an important factor for the quality of a deployment plan.

To verify this hypothesis with our example, the number of network link uses is
represented by the colour of data points in Figure 3.1, whereby darker points represent
deployment plans with fewer link uses. As it can be seen, there is a tendency that good
deployment plans utilise network links fewer times. To further investigate this, we have
analysed the position of the best deployment plans in the distribution of link uses.

As Figure 3.2 shows, the deployment plan candidates utilisenetwork links 10 times
or less in this example. This is an important finding, which helps to design a heuristic
search for good deployment plans in the solution space without complete evaluation of
all possible combinations.

8 A Heuristic Algorithm for Finding Deployment Plans

From our findings, we have derived a heuristic algorithm thatfinds good deployment
plans without scanning the whole solution space.

Heuristic Generation of Deployment Plans As depicted in Figure 1, our method creates
a number of deployment plans for evaluation and stores the best found ones. Using the
heuristic that a low number of network uses are a characteristic of good deployment
plans, our algorithm places neighbouring components only on the same hosts or on
neighbouring hosts. Therefore each dependency of the composition model is mapped
only to either0 or 1 network links. The recursive algorithm is initialially invoked with
the data sink as argument (see Algorithm 1).

Algorithm 1 placeDependentComp(start)
1: find hosth on whichstart is placed
2: find all hostsHn, which are direct neighbours ofh

3: find all componentsKn, on whichstart depends
4: for all kj in Kn do
5: randomly select hosthi from (Hn ∪ h)
6: placekj onhi

7: placeDependentComp(kj)
8: end for

Evaluation To evaluate the quality of the heuristic, we have compared itto another
method, which creates deployment plans based on random placements of components
to hosts. Both the heuristic and random assignments were used to evaluate various per-
centages of all combinatoric possible deployment plans. The quality criterion used is
the mean euclidean distance of found deployment plan candidates to the nearest plan
found by an exact algorithm, i.e. the optimum.

13

Fig. 4. Evaluation of Heuristic Accuracy

The results in Figure 4 show that the deployment plan candidates found by the
heuristic algorithm are closer to the optimum than almost all random component place-
ments. Furthermore, it shows that good results can achievedwithout evaluating a large
number of deployment plans. However, it can also be seen thatthe optimum is not
reached. The reason for this is that the highest availability is achieved in this scenario
by placing all components on the embedded system. This meansthat there is more than
one network link between the data source and the first dependent component. This is
prevented by the heuristic algorithm which only allows a maximum distance of one host
between any pair of neighbouring components.

9 Conclusion and Outlook

We have presented a deployment planning method for components that addresses specif-
ically distributed components in smart item environments.These networks are charac-
terised by a high degree of heterogeneity in terms of available hardware resources. The
main contribution of this paper is a concept for evaluating deployment plans both in
terms of availability and cost of demanded resource. We haveshown that these two
criteria compete with each other among the deployment plan candidates in the solution
space. Furthermore, we have presented a comprehensive model for component deploy-
ment, which might serve as basis for other research questions in the domain of smart
item environments. Additionally, we have identified the number of network link uses
as a key driver for the quality of a deployment plan and derived a heuristic from this
finding. As the evaluation showed, the application of this heuristic helps to find very
good deployment plans after testing only a small fraction ofall possible plans.

In the future, our work will focus on improved heuristic algorithms for creating
deployment plans which are likely of high quality. For that,additional characteristics of

14

good deployment plans, such as the average distance of components to the data sinks,
are investigated and integrated into the algorithms.

Acknowledgements

The authors would like to thank Mario Neugebauer and Eric Neuber for their valuable
comments, and Jürgen Zimmermann for his support with the implementation.

References

1. OSGi Alliance: Open Services Gateway Initiative (2006)
2. SUN Microsystems: Jini Network Technology (2006)
3. Anke, J., Neugebauer, M.: Early data processing in smart item environments using mobile

services. In: Proceedings of the 12th IFAC Symposium on InformationControl Problems in
Manufacturing (INCOM 06), St. Etienne, France (2006)

4. Kichkaylo, T., Karamcheti, V.: Optimal Resource-Aware Deployment Planning for
Component-Based Distributed Applications. In: Proceedings of the 13th IEEE Interna-
tional Symposium on High Performance Distributed Computing (HPDC’04), Washington,
DC, USA, IEEE Computer Society (2004) 150–159

5. Anke, J., Kabitzsch, K.: Cost-based Deployment Planning for Components in Smart Item
Environments. In: 11th IEEE International Conference on Emerging Technologies and Fac-
tory Automation, Prague, Czech Republic (2006)

6. Institute of Electrical and Electronics Engineers: IEEE Standard Computer Dictionary: A
Compilation of IEEE Standard Computer Glossaries, New York, NY (1990)

7. Wegdam, M.: Dynamic reconfiguration and load distribution in component middleware. PhD
thesis, University of Twente, Enschede (2003)

8. Mikic-Rakic, M., Malek, S., Medvidovic, N.: Improving availability in large, distributed
component-based systems via redeployment. In: Third International Working Conference on
Component Deployment, Grenoble, France (2005)

9. Malek, S., Mikic-Rakic, M., Medvidovic, N.: A decentralized redeployment algorithm for
improving the availability of distributed systems. In: Third International Working Confer-
ence on Component Deployment. (2005)

10. Malek, S., Mikic-Rakic, M.: A style-aware architectural middlewarefor resource-
constrained, distributed systems. IEEE Trans. Softw. Eng.31(3) (2005) 256–272

11. Mikic-Rakic, M., Malek, S., Beckman, N., Medvidovic, N.: A tailorable environment for
assessing the quality of deployment architectures in highly distributed settings. In: Second
International Working Conference on Component Deployment, Edinburgh, UK (2004)

12. Stewart, C., Shen, K., Dwarkadas, S., Scott, M.L., Yin, J.: Profile-driven component place-
ment for cluster-based online services. IEEE Distributed Systems Online5(10) (2004) 1

13. Hoareau, D., Mah́eo, Y.: Constraint-Based Deployment of Distributed Components in a
Dynamic Network. In: 19th International Conference on Architecture of Computing Systems
(ARCS). Volume LNCS 3894., Frankfurt, Germany, Springer (2006) 450–464

14. Wu, Q., Wu, Z.: Adaptive component allocation in scudware middleware for ubiquitous
computing. In Yang, L.T., Amamiya, M., Liu, Z., Guo, M., Rammig, F.J., eds.: EUC. Volume
3824 of Lecture Notes in Computer Science., Springer (2005) 1155–1164

15. Pl̈onnigs, J., Neugebauer, M., Kabitzsch, K.: A traffic model for networked devices in the
building automation. In: Proceedings of the 5th IEEE International Workshop on Factory
Communication Systems (WFCS 2004), Vienna, Austria (2004) 137–145

