DOLCLAN - Middleware Support for Peer-to-Peer
Distributed Shared Objects

Jakob E. Bardram and Martin Mogensen

Department of Computer Science, University of Aarhus
Aabogade 34, DK-8200 Aarhus N., Denmark
{bardram,spider } @daimi.au.dk

Abstract. Contemporary object-oriented programming seeks to enable dis-
tributed computing by accessing remote objects using blocking remote procedure
calls. This technique, however, suffers from several drawbacks because it relies
on the assumption of stable network connections and synchronous method invo-
cations. In this paper we present an approach to support distributed programming,
which rely on local object replicas keeping themselves synchronized using an un-
derlying peer-to-peer infrastructure. We have termed our approach Peer-to-peer
Distributed Shared Objects (PDSO). This PDSO approach has been implemented
in the DOLCLAN framework. An evaluation demonstrates that DOLCLAN can
be utilized to create a real distributed collaborative system for ad-hoc collabora-
tion in hospitals, which demonstrates that the approach can support the creation
of non-trivial distributed applications for pervasive computing.

1 Introduction

Support for distributed computing in contemporary production OO languages is based
on the remote-procedure call (RPC) paradigm [8] where methods on single-copy ob-
jects are accessed remotely from other objects. Both Java RMI and .NET Remoting are
examples of this approach. A fundamental challenge to this paradigm is its inherent
assumption of a reliable infrastructure. Object registration and lookup is primarily done
through initialization, since remote object invocation assumes that objects stay on a
stable host machine with reliable networking connections. Remote object invocation is
furthermore done synchronously with blocking method calls. When programming ap-
plications for pervasive computing environments these assumptions do no longer hold.
Such an infrastructure is completely different, consisting of a heterogeneous set of more
or less stable host devices with intermitted network connections. Using RPC, RMI or
similar under these circumstances leads to highly unstable applications, unless the pro-
grammer goes through a lot of work of manually handling all sorts of networking and
runtime exceptions.

In order to provide a more resilient programming environment for this unstable run-
time infrastructure we propose a new approach for distributed programming, which rely
on local object replicas keeping themselves synchronized using an underlying peer-
to-peer infrastructure. We have termed our approach Peer-to-peer Distributed Shared
Objects (PDSO), which has been implemented in the DOLCLAN framework. In this

approach, each participating peer maintains a local copy of the object and executes pro-
cesses that keep these replicas coordinated in real time. This approach has a range of
advantages. First, it keeps applications responsive because the applications are much
more robust with respect to network latency. Second, applications can continue to run
when disconnected from the network. Third, computational and network load is dis-
tributed across the whole network of clients and is no longer tied to the machine host-
ing the remote object. Fourth, finding and joining a network may be simplified since
all participating clients can function as the gateway to the network. There are, however,
also a range of drawbacks to this approach, mainly associated with the overhead of dis-
tributing and managing the placement, synchronization, and replication of data, as well
as handling the underlying communication technology and topology. The purpose of
DOLCLAN is to help the programmer handle this real-time object synchronization of
distributed objects.

The main contribution of DOLCLAN is a novel peer-to-peer distribution mecha-
nism for object sharing which is especially suited for the creation of collaborative appli-
cations in a pervasive computing environment. This object sharing mechanism provides
optimistic synchronization strategies, easy deployment of distributed applications, and
support for different delivery guarantees — all of which can be accessed by the applica-
tion developers, if needed.

1.1 Related Work

Different suggestions to improve on the shortcomings of existing RPC-style interac-
tion with remote single-copy objects in RMI, CORBA, .NET Remoting, and DCOM
have been suggested. For example, asynchronous RPC [30, 18], and CORBA Event and
Notification Services [22]. One specific approach to improve Java RMI is to support
dynamic caching of shared objects on the accessing nodes, as done in Javanaise [13].
Research has also been done within asynchronous method invocation [18, 30], tuple
spaces [10, 19], or more generally with publish-subscribe interaction styles [21]. All
of these approaches mitigate the challenges of intermitted network connections, and
lack of scalability and performance in RPC. But they do not support object replication
and reconciling, and therefore does not allow the application to continue to access and
update the distributed objects while disconnected from the network. In certain tuple
spaces, a global virtual data structure is achieved by letting each device hold a local
copy of a tuple space which is transparently shared with the tuple space of the connected
devices [23, 9]. By accessing its local tuple space, each component has efficiently ac-
cess to the global tuple space. Hence, actions that are perceived as local actually has
global effects. This approach is similar to distributed objects but does not as such sup-
port distributed object-oriented programming, and is not designed to disconnected work
since it does not provide support for reconciling work done while disconnected.

Orca [4, 3, 2] is an object based programming language and distributed shared mem-
ory system (DSM). Orca is based on distributed coherent objects, e.g. Orca does not
invalidate objects on write, but propagates the write to all copies of the object. This is
done by sending all writes to a primary copy of an object called the object manager,
which then updates all copies. Coherence is ensured via a two-phase commit protocol
and by sending operations using totally ordered group communication, so all updates

are executed in the same order at all machines. To a certain respect, our work extends the
principles of Orca, including using a write-update protocol rather than a write-invalidate
protocol to address the core consistency challenge in object replication. Our infrastruc-
ture also relies on totally ordered group communication. Our work, however, is different
in at least two ways. First, we rely on direct object-to-object data synchronization and
do not use specialized object managers counting read and write operations. This signif-
icantly simplifies program development and deployment. Second, our language support
is part of the widely used C# language and does not require a specialized language like
Orca.

Globe [1, 15] is an object oriented framework for developing wide area distributed
applications using distributed shared objects (DSO). On the one hand, the Globe DSO
lets the application programmer concentrate on implementing business logic and not
worry about distribution and communication. On the other hand, Globe recognizes the
need to be able to implement object specific policies on issues such as distribution,
replication, and concurrency controls. By implementing a ‘replication sub-object’, the
programmer can create a specific replication policy. Depending on the implementations
of the sub-objects, the local object will function as a proxy object, forwarding requests
to a real object. Alternatively, the local object can carry out calculations on a local copy
of the object state and — depending on the implementation of the replication sub-object
— the new state can be propagated to other instances of the distributed shared object.
This possibility to override default functionality by implementing specific sub-objects
yields a flexible, highly extensible, and scalable framework for creating distributed ap-
plications. The approach, however, comes with a huge overhead for the programmer
who has to design and implement replication policies in the replication sub-objects.

Our work is situated within this line of research on distributed shared objects and
makes contributions primarily in three aspects: (i) we provide language support for a
widely used OO language (as compared to special languages like Orca), (ii) we have a
simple peer-to-peer distribution and synchronization mechanism for shared objects, and
(iii) we support an optimistic synchronization strategy based on user-defined merging
methods in write-update protocols.

2 Peer-to-Peer Distributed Object Sharing

The fundamental principles behind the design of our peer-to-peer distributed shared
object approach are:

Physical distribution Instead of viewing a distributed object as an entity running on
a single host with others accessing it remotely, we physically distribute a copy of
the object to all hosts using this object in an application. Hence, applications ac-
cess and use objects as local objects which ensures fast responsiveness. Objects are
distributed on creation (remote instantiation) and removed from the local address
space on deletion (distributed garbage collection).

Synchronized objects The state of the distributed shared object is kept synchronized
in real time, if possible. Hence, state changes are propagated to all object replicas.
State synchronization is handled by the underlying infrastructure, but the objects

themselves are involved in potential conflict resolution, using domain specific con-
flict resolution algorithms.

Peer-to-peer update Physically distributed objects rely on a peer-to-peer — or object-
to-object — synchronization strategy. Hence, no central entities like an object broker
or an object registry are involved in object registration or lookup. Each object is
responsible for looking up and synchronizing with its replicas. This principle makes
distributed programming simple from the developers point of view since there are
no configuration overhead associated with the development and deployment of a
distributed application.

Responsive Objects are used in highly interactive applications and needs to embody
a fast update protocol. This rules out pessimistic concurrency control which typ-
ically uses some kind of distributed transactional scheme [27,26] or distributed
locks [17].

Distribution-aware Objects are distribution-aware. This means that a shared object
must be declared as distributed, must handle potential conflict resolution, and must
consider the kind of delivery guarantees wanted in the network transport layer.
These issues are normally shielded from the application programmer but, as ex-
plained above, we deliberately want these things to surface in the language support
for distributed programming.

The principles involved in peer-to-peer distributed object sharing is illustrated in
figure 1, showing a set of distributed objects with replicas in four different address
spaces (A1-A4), using object-to-object communication pathways to keep the replicas
synchronized and sending remote instantiation and garbage collection events.

A2 Group(A) PDSO(B)
Object-to- ‘
object events V7N e ——— _
(@ = ~
v oo AT Y [A2 7.
A & N T i\ A)
| e %

Network S _\ 1 AN\

j _________ —I /\\E N
Il !
RS Network | |
Local p R VN | \
object » (| (4 |
replicas ! Q\) Group(C) 4{’ :
—=1" " =+ I
A3 A4 (o) (o) !
B k\, J A A |

N T-=-=------ Y

A5 A3 A4\

Group(D) =

Fig.1. A set of peer-to-peer distributed Fig. 2. Five PDSOs (A-E) distributed over four
shared objects (PDSO) distributed over address spaces (A1-A4). Each address space
four address spaces (A1-A4). Each address hold a local replica of the PDSOs in the groups
space holds a local replica of the object the peer is member of.

which is synchronized by object-to-object

eventing. Address space AS does not cur-

rently participate in the object sharing but

may join one or more of the objects.

The main idea is that a distributed object, called a Peer-to-peer Distributed Shared
Object (PDSO) consists of several local replicas that keep their state synchronized.
Each local replica is identified by an Object Identifier (OID). A PDSO consists of the
set of local replicas with the same IOD. A set of PDSOs can be tied together by use of
distributed variables; we call such a set a group.

To be more precise, we are using the following terms:

OID Object Identifier. The OID is used to name a single instance of a local object
replica. Several local object replicas can have the same OID, but not within the
same namespace.

PDSO Peer-to-peer Distributed Shared Object. A set of local object replicas, that keep
their state synchronized. A PDSO is defined as the set of local object replicas
named by the same OID. Le. PDSO(s) = {local replicas x|OID(x) = s}

Group A setof PDSOs, defined by the transitive closure of a specified PDSO z. Le.
all PDSOs in the object graph that can be reached from .

Group(PDSO(z)) = {PDSO(y)|there is a path
from PDSO(z) to PDSO(y) in the object graph}.

Figure 2 shows five PDSOs distributed over four address spaces. The PDSOs are
named A, B, C, D, and E respectively. Each distributed object is comprised of sev-
eral local replicas, all named with the same object identifier (O D). The local replicas
comprising the PDSO named B have been highlighted. Also shown in the figure are
three groups, namely Group(A), Group(C), and Group(D). The groups are the tran-
sitive closure of the named PDSO. Group(A) is therefore comprised of PDSO(A) and
PDSO(B), whereas Group(D) equals PDSO(D) because the edges in the object
graph are directed. Notice also that two peers, address space A2 and A4, are members
of more than one group. Groups are used as a scoping mechanism enabling peers to join
only a subset of the object graph.

With respect to delivery guarantees from the transport layer we make a key dif-
ferentiation between what we have termed accountable and ephemeral events [S]. In
replicated collaborative architectures concurrency control between events on distributed
clients is absolutely central in order to maintain correct behavior of the distributed sys-
tem [24]. We use the term ‘accountable’ for this kind of distributed events, because
the system needs to be accountable for the correctness and timing of these events in
order to create a well-behaved collaborative system. Examples of accountable events
are the classical text insert, move, and delete commands in collaborative editors or the
state changes in general purpose frameworks like Corona [26] or GroupKit [25, 12]. An
IP-based infrastructure would use TCP or reliable multicast to distribute such events.
There are, however, a range of other kinds of events which are not subject to the same
kind of accountability. Such events are typically absolute values, independent of previ-
ous and subsequent events, and may even be missing or dismissed if needed. We call
these events ‘ephemeral’ because they are short-lived and transient. Examples of such
events are telepointer events, voice events, and other collaborative awareness events
like the ones in the MAUI Toolkit [14]. An IP-based infrastructure would typically use
multicast datagrams to distribute such events.

We argue that giving the application developer access to these low-level transport
issues in distributed computing is important since he can make appropriate judgments

on the choice of delivery guarantees based on application-specific concerns. Such con-
cerns are not present in contemporary language support for remote objects, like Java
RMI, CORBA, .NET Remoting, and DCOM!.

2.1 An example

The PDSOs can be used to construct a model for a distributed application, by connecting
objects via distributed fields within the objects. Such distributed fields can be declared
by using either the accountable or ephemeral keywords, supported by the language
constructs implemented to support the PDSO scheme”. A simple example could be a
model for a distributed eater or Pacman game. The game consists of a game controller
and a game model, which will be used to distribute state between the participating peers.
The model is comprised of a game name, a score, a position of the eater and a list of
stones visible on the board. Figure 3 shows the model represented as an UML diagram.

EaterModel The Eater Game BEX
-gameName : distributed accountable string
-Score : distributed accountable int
-Position : distributed accountable DistributedPoint
-Stones : distributed accountable DistributedList 1
+stateChanged() T 1 °
T o
o
1 ° °
DistributedList
° o
- DistributedPoint °

+add() : void — .
+remove() : void -X d!str!buted ephemeral int ° of o
+get(in index : int) : object -Y : distributed ephemeral int 4
+stateChanged() +stateChanged()

Fig.3. UML diagram showing the pre- Fig.4. ‘The Eater Game’ showing the Pacman,
sented part of the EaterModel. stones, and the score.

The game’s name and the score is modeled as distributed accountable properties.
This enables us to intercept flow control every time the fields are set, and notify the view
and the other participating peers of the change. The position of the eater is modeled by
the DistributedPoint class, which contains two distributed ephemeral properties.
Each property corresponds to the X and the Y position of the eater. The choice of using
ephemeral variables emphasizes speed of delivery rather than delivery guarantees in
changes of the eater position. Finally, the model contains a list of stones, which are
visible on the game board. The stones are kept in a DistributedList, whichis a
list created using distributed accountable variables inside PDSOs for holding satellite
data.

It is, however, interesting to note that in SUN RPC the implementer has the choice of us-
ing either UDP or TCP for transporting remote procedure calls and for broadcasting remote
procedure calls [8]

% The language constructs is beyond the scope of this paper, but has been presented else-
where [20]

When a peer starts an instance of the eater game, it will first obtain a local replica of
the EaterModel and the PDSOs in the transitive closure of this PDSO. After joining
the game, the state of the model will be replicated between the different local replicas.
This is done, by assigning new values to the distributed variables. If a peer for instance
moves the eater, new values will be assigned to the distributed properties X and Y in the
DistributedPoint object. The infrastructure will intercept flow control and prop-
agate the new values around the network. When the new values reaches the designated
local replicas in the other address spaces, it will be set on the corresponding objects.
This will cause the objects to fire the stateChanged event on the objects, which in
turn, will fire the stateChanged events on the local replicas of the EaterModel
and the different views can be updated. The same is true for changes in any stone or the
score. Notice also, that if any of the distributed variables is assigned the null value,
this value will also be propagated around the network. When this is done, the object
which was previously referenced by the distributed variable might become subject to
garbage collection.

If a peer becomes disconnected for a period of time, subsequently reconnecting to
the network, the state of the peer and the state of the network might diverge. In such a
case domain specific conflict resolution methods, specified by the programmer, will be
used to handle conflicts bringing the network back to a consistent state.

3 Infrastructure Support

The proposed concepts presented have been implemented in the DOLCLAN? infras-
tructure [20], which uses a pure peer-to-peer architecture and supports object distribu-
tion, state synchronization, object discovery, peer joining, event ordering, and concur-
rency control. This section describes the system and network architecture (section 3.1)
and the architecture supporting this infrastructure on each participating peer holding the
object replicas (section 3.2).

3.1 System and Network Architecture

Communication between peers can be carried out in several ways. Events and messages
can be either unicasted or multicasted, and both reliable and unreliable communication
channels can be utilized. In our current implementation we have chosen to utilize the
possibilities of multicasting since many peers will have to receive the same information.
Point-to-point connections are possible but would require a quadratic number of unicast
connections between peers or the utilization of a sophisticated routing scheme, which
would impose an extra performance penalty and delay messages. Even though many
peers will have to receive the same information, this is not true for all peers. Therefore
the infrastructure has a control channel for reaching all peers and individual channels
for smaller groups.

Peer-to-peer Distributed Shared Objects require three things of the underlying sys-
tem infrastructure: (i) service discovery which enables a peer to find existing PDSOs,

3 Distributed Objects in Loose Coupled Local Area Networks

(ii) peer joining which enables a peer to join a group and get the state synchronized,
and (iii) synchronous object state replication amongst connected peers.

Service Discovery To find other peers in the network, the joining peer multicasts a
HELLO message on the control channel. This indicates that the peer is looking for an-
other peer which can help it join a group. If one or more peers exist on the network able
to serve the new peer, these peers reply with a HELLO_ACK message unicasted to the
joining peer. The message contains information about how to reach the sending peer
and also information about which channels the events for the shared objects are prop-
agated on. This enables the new peer to start listening for events on the event channels
while the state is synchronized via an existing peer. The joining peer now chooses the
peer from which it first receives a reply as its serving peer. It is possible to pick any
peer replying to the HELLO message, as all peers replying will have the same state.
The picked peer will with high probability be a peer residing close to the joining peer
in terms of network latency, thereby optimizing on network latency overhead in the
synchronization of the new peer.

Peer joining After the service discovery phase, the joining peer will need to synchro-
nize the state between itself and one or more groups. The joining peer may or may not
contain state of its own state.

If the joining peer contains no state information, then it needs to obtain the shared
state from the serving peer. This is done by a process called ‘Just-in-time-eventing’
(JITE) where the joining peer first receives a snapshot of the replicated state while
collecting events from the other peers during the process. After setting the state of the
new peer to the snapshot, the peer also commits the collected events in the correct
order [11,29]. If the events were not collected, then the snapshot approach needs to
stop any work on the shared object until they were synchronized. This would greatly
reduce the responsiveness of the collaborative applications using the infrastructure.

If the joining peer contains state information then the states must somehow be
merged. Such a joining peer with state information may be a peer which has been dis-
connected for a period of time while the user has continued working. The merging or
conflict resolution of state based on the local state and the state from the network is
highly domain specific. In some cases it makes sense to use the most recent state, in
other cases it makes sense to merge the two states, and sometimes the merge is based
on the semantics of the application. The joining peer obtains the network state (using the
JITE approach) and this state is then given to a conflict resolution method implemented
by the application programmer. This enables the programmer to create application spe-
cific conflict resolution algorithms.

Synchronous Object State Replication Synchronous object state replication keeps
the replicated objects synchronized, while peers are modifying them. The design should
consider basic state change situations, but also be able to handle situations, where two
or more peers modify the same component concurrently.

In order to reduce implementation complexity, maximize end-user responsive-
ness, and minimize communication overhead, the infrastructure utilizes an optimistic

concurrency control mechanism based on absolute state events. Event ordering and
concurrency control is managed by an extended version of the Lamport clock algo-
rithms [16]. The algorithm uses a logical clock and adds the identity of the sending
peer process into the event. Each event is stamped with a timestamp consisting of
(time, peer, process) which eliminates the possibility that two events should
be stamped with the same logical timestamp. When using this timestamp on each state
change event, consistency on fields can be ensured by applying all events with a higher
timestamp than the latest committed. If an event is received out of order, the event is
simply dismissed. Note that dismissing of events, that is received out of order, will have
no influence on the state of the object because only absolute (and not delta) values are
sent.

The biggest problem with this design is the case where an event message disap-
pears in the network because of unreliable communication channels. This problem
could be eliminated, by using a reliable protocol, but this might imply a huge per-
formance penalty due to the increased communication, as for instance the case with
reliable multicast. Sometimes an application may need delivery guarantees and hence
pay this penalty, and in other cases the application might not care about reliable de-
livery but is more focused on speedy delivery. This is precisely the difference between
accountable and ephemeral events as introduced earlier and in Bardram et al. [5].

3.2 Peer Architecture

Figure 5 illustrates the peer architecture which consists of three layers. The application
layer contains the application which is typically programmed according to the model-
view-controller pattern. Part of the model uses distributed shared objects, which are
located in the distributed model layer. This layer contains the distributed part of the
model, which consists of distributed objects and nothing else.

The communication layer implements the network architecture described in sec-
tion 3.1 and is responsible for the distribution of state changes to other peers and for
managing incoming state changes. This layer is also responsible for the communica-
tion between peers holding replicas of distributed objects. This layer keeps track of
communication (I/O), event ordering, naming services, and the state of the distributed
objects.

Closest to the physical network there are three I/O Controllers controlling one form
of communication each: TCP unicast, ordinary IP multicast, and reliable multicast. A
controller is capable of sending a message to a specified connection point and listening
for incoming messages from other devices. The Communication Controller manages the
I/O controllers and new I/O controllers can be added to support other network protocols.

Management of state change is done by three processes. The JITE Controller con-
trols the Just-In-Time-Eventing mechanism explained above. The JITE controller han-
dles a state change event if such an event arrives and no object that corresponds to the
event is bound in the naming service. When a new object is created from a remote loca-
tion, the object is handed to the JITE controller which checks if it contains any events
that should be applied to the object. If such events exist they will be applied and the
state of the object is up to date. The Naming Service is responsible for mapping dis-
tributed objects to names and names to distributed objects and it contains methods for

Application
Layer Ve Y

‘ View }— Model — Controller

Distributed [\ / \ N
Model Layer | Object 1 Object 2 Object 3 Object 4 Object N

I

Distributed Object Controller)

Communication

2l | I JITE Controller
Communication Controller —_— Protocol Naming Service
TCP UDP PGM Time Service

Unicast Multicast Multicast

Network
Fig. 5. The architecture of each peer (host) participating in peer-to-peer distributed object sharing.
The architecture is divided into three layers: application layer, distributed object model layer, and
the communication layer.

looking up an object by name and vice versa. The naming service is used by the dis-
tributed object controller. The Logical Time Tracker is responsible for keeping track of
the logical time by updating the time on both incoming and on outgoing messages.

The Distributed Object Controller works as a facade between distributed objects
and the communication layer. When a state change occurs in the distributed objects,
the controller will propagate this change to the other participating peers. When a state
change arrives from a remote peer, the controller updates the distributed object.

4 Implementation and Evaluation

The infrastructure supporting the proposed PDSOs and a pre-compiler enabling the lan-
guage support has been implemented. The implementation has been subject to extensive
evaluation including completeness of expressiveness, complexity of use, run-time per-
formance, and concept utility. Due to the focus of this paper, presenting the concepts
of PDSOs, we shall only present a part of the evaluation focusing on performance and
concept utility.

4.1 Performance

Performance evaluation of the DOLCLAN infrastructure has been reported else-
where [20]. This shows that the infrastructure performs well — both with regard to re-
sponse time and memory footprint. In this context, we would however like to highlight

one particular performance measurement, namely the performance penalty introduced
by initiating the propagation of a variable value change.

Performance penalty using PGM and UDP
140000

120000 [

100000

80000

Time / msec

B0000

40000 1

UDP -g(x)=ax+ b

20000 -

o L L L L L
0 5000 10000 18000 20000 25000 30000

State changes

Fig. 6. Performance penalty as a function of number of variable state changes. The graph shows
the time it takes to push the state change event into the network asynchronously.

Figure 6 shows the performance penalty introduced by initiating the propagation
of a variable value change. The test measures the time it takes before variable changes
have been sent asynchronously into the network. Note that this test does not say any-
thing about the time it takes before the remote peers have received the changes. As
reliable multicast protocol we used the Pragmatic General Multicast Protocol (PGM)
specified in RFC 3208 [28]. It is clear from the diagram, that there is a significant
difference between using reliable and unreliable multicast, even if all communication
is done asynchronously. The performance penalty using unreliable multicast has been
matched as a linear relationship, while the performance penalty using reliable multicast
has been matched with a polynomial relationship. One of the arguments in this paper,
is that the application developer should be aware of such differences and have the pos-
sibility to make the decisions. This test supports our idea of the need to distinguish
between ephemeral and accountable field types.

4.2 Utility

The PDSO concept and the infrastructure described in this paper, has been used to
create support for ad-hoc collaboration in the activity-based computing (ABC) frame-
work [5, 6]. Previously, the ABC framework was designed according to a client-server
architecture and collaboration took place via the activity server. Now, peer-to-peer col-
laboration can be initiated between two peers with no access to an activity server and
activities are replicated on the local peers. This has yielded a higher responsiveness in
real-time collaboration and has created support for disconnected work.

In the ABC-framework collaboration is modeled as a number of activities referenc-
ing a number of services. The activities represent work tasks and the services represents
applications used in the work tasks. To enable ad-hoc collaboration, we used the exist-
ing model, but turned the local representation of an activity into a distributed object
containing several distributed slots. The same was done with the local representation of
a service. This instantly gave us the communication and synchronization between the
different participating peers for free.

The effort of extending the ABC framework to support ad-hoc collaboration was
limited, counting days rather than weeks or months. Moreover, it showed that the PDSO
concepts and the supporting infrastructure are well suited to support the creation of
more complex distributed application tasks that just a simple game. The technology is
now part of the ABC framework and we are currently creating support for activity-based
computing in a hospital setting, by integrating to a Picture, Archiving, and Communi-
cation System (PACS) and an Electronic Health Record (EHR). The plan is to deploy
the ABC Framework including the distributed shared objects in a hospital. The support
for ad-hoc collaboration implemented using the distributed shared objects will enable
clinicians to initiate a real-time collaborative session between a surgeon in the operating
room and an expert located elsewhere in the hospital.

5 Conclusions

One of the key features of the peer-to-peer distributed shared objects presented in this
paper is their support for ad hoc object sharing in loosely coupled networks. The peer-
to-peer — or object-to-object — discovery and synchronization makes it simple to create,
lookup, and join the distributed objects with their shared data. You can simply look
up the object, join it, get a replica, and start to use it as another local object. This
indeed makes distributed programming simple while maintaining awareness about the
distributed nature of the application.

Furthermore, to support distribution in a pervasive computing environment, the
PDSO infrastructure supports intermitted network connections. A peer continues to
work while disconnecting and may re-join the network and the PDSOs set of objects
later. This applies equally well for smaller network interruptions and for disconnected
use. In the former case the user would most likely not even notice the small glitch since
all distributed objects are available locally. In the latter case, the user is able to continue
working on his local object model and upon reconnect he can re-join the shared network
model potentially being involved in some conflict resolution.

The notion of distributed shared objects have been receiving increasing attention
because this approach addresses some of the core challenges in existing RPC-based re-
mote method invocation schemes, and it holds the potential to ensure large-scale distri-
bution while ensuring local responsiveness in applications. This paper have suggested
one approach to create infrastructure support for such distributed shared objects and
should hence be seen as one contribution in this line of research. In our future work we
plan to improve on the infrastructure, especially focusing on making support beyond
a local area network, and to continue making pervasive computing applications using

these distributed shared objects in C#. The latter would also include creating support
for e.g. the Pocket PC platform in the NET compact framework.

6

Acknowledgments

Jonathan Bunde-Pedersen provided valuable feedback on the ideas and language sup-
port presented in this paper. This work is partly funded by the Competence Centre ISIS
Katrinebjerg. The ABC project is funded by the Danish Research Council under the
NABIIT program.

References

1.

10.

11.

12.

13.

14.

A. Bakker, M. van Steen, and A. S. Tanenbaum. From remote objects to physically dis-
tributed objects. In FTDCS ’99: Proceedings of the 7th IEEE Workshop on Future Trends
of Distributed Computing Systems, page 47, Washington, DC, USA, 1999. IEEE Computer
Society.

. H. E. Bal, R. Bhoedjang, R. Hofman, C. Jacobs, K. Langendoen, T. Ruhl, and M. F.

Kaashoek. Performance evaluation of the orca shared-object system. ACM Trans. Comput.
Syst., 16(1):1-40, 1998.

. H.E.Bal, M. F. Kaashoek, and A. S. Tanenbaum. Orca: A language for parallel programming

of distributed systems. IEEE Trans. Softw. Eng., 18(3):190-205, 1992.

. H. E. Bal and A. S. Tanenbaum. Distributed programming with shared data. In IEEE CS

1988 International Conference on Computer Languages, pages 82-91, Piscataway, NJ, USA,
1988. IEEE Press.

. J. E. Bardram, J. Bunde-Pedersen, and M. Mogensen. Differentiating between Accountable

and Ephemeral Events in the ABC Hybrid Architecture for Activity-Based Collaboration. In
Proceedings of the IEEE International Conference on Collaborative Computing (Collabo-
rateCom 2005), pages 168—-176. IEEE Press, 2005.

. J. E. Bardram, J. Bunde-Pedersen, and M. Soegaard. Support for activity-based computing in

a personal computing operating system. In CHI "06: Proceedings of the SIGCHI conference
on Human factors in computing systems, New York, NY, USA, 2006. ACM Press. To appear.

. M. Beaudouin-Lafon, editor. Computer Supported Cooperative Work. John Wiley and Sons,

New York, 1999.

. A.D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM Trans. Comput.

Syst., 2(1):39-59, 1984.

. G. Cugola and G. Picco. Peerware: Core middleware support for peer-to-peer and mobile

systems, 2001.

D. Gelernter. Generative communication in linda. ACM Trans. Program. Lang. Syst.,
7(1):80-112, 1985.

W. Geyer, J. Vogel, L.-T. Cheng, and M. Muller. Supporting activity-centric collaboration
through peer-to-peer shared objects. In GROUP ’03: Proceedings of the 2003 international
ACM SIGGROUP conference on Supporting group work, pages 115-124. ACM Press, 2003.
S. Greenberg and M. Roseman. Groupware toolkits for synchronous work. In Beaudouin-
Lafon [7], pages 135-168.

D. Hagimont and F. Boyer. A configurable rmi mechanism for sharing distributed java ob-
jects. IEEFE Internet Computing, 5(1):36—43, 2001.

J. Hill and C. Gutwin. The MAUI Toolkit: Groupware Widgets for Group Awareness. Com-
puter Supported Cooperative Work, 13(2):539-571, 2004.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

217.

28.

29.

30.

P. Homburg, M. van Steen, and A. S. Tanenbaum. An architecture for a wide area distributed
system. In EW 7: Proceedings of the 7th workshop on ACM SIGOPS European workshop,
pages 75-82, New York, NY, USA, 1996. ACM Press.

L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558-565, 1978.

I. Lipkind, I. Pechtchanski, and V. Karamcheti. Object views: language support for intelligent
object caching in parallel and distributed computations. In OOPSLA ’99: Proceedings of the
14th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, pages 447-460, New York, NY, USA, 1999. ACM Press.

B. Liskov and L. Shrira. Promises: linguistic support for efficient asynchronous procedure
calls in distributed systems. In PLDI ’88: Proceedings of the ACM SIGPLAN 1988 con-
ference on Programming Language design and Implementation, pages 260-267, New York,
NY, USA, 1988. ACM Press.

S. Matsuoka and S. Kawai. Using tuple space communication in distributed object-oriented
languages. In OOPSLA ’'88: Conference proceedings on Object-oriented programming sys-
tems, languages and applications, pages 276284, New York, NY, USA, 1988. ACM Press.
M. Mogensen. Distributed objects in loose coupled local area networks. Technical Report,
Computer Science Department, University of Aarhus, 2005.

B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The information bus: an architecture for exten-
sible distributed systems. In SOSP '93: Proceedings of the fourteenth ACM symposium on
Operating systems principles, pages 58—68, New York, NY, USA, 1993. ACM Press.

OMG. Corba services: Common object services specification, chapter 4: Event service,
March 2001.

G. P. Picco, A. L. Murphy, and G.-C. Roman. LIME: Linda meets mobility. In International
Conference on Software Engineering, pages 368-377, 1999.

A. Prakash. Group editors. In Beaudouin-Lafon [7], pages 103—134.

M. Roseman and S. Greenberg. Building real-time groupware with groupkit, a groupware
toolkit. ACM Trans. Comput.-Hum. Interact., 3(1):66-106, 1996.

H. S. Shim, R. W. Hall, A. Prakash, and F. Jahanian. Providing Flexible Services for Man-
aging Shared State in Collaborative Systems. In T. Rodden, J. Hughes, and K. Schmidtk,
editors, Proceedings of the Fifth European Conference on Computer Supported Cooperative
Work, pages 237-252, Lancaster, UK, Sept. 1997. Kluwer Academic Publishers.

D. A. Smith, A. Kay, A. Raab, and D. P. Reed. Croquet - a collaboration system architec-
ture. In C5 2003. Proceedings. First Conference on Creating, Connecting and Collaborating
Through Computing, pages 2-9. IEEE Press, 2003.

T. Speakman, J. Crowcroft, J. Gemmell, D. Farinacci, S. Lin, D. Leshchiner, M. Luby,
T. Montgomery, L. Rizzo, A. Tweedly, N. Bhaskar, R. Edmonstone, R. Sumanasekera, and
L. Vicisano. PGM Reliable Transport Protocol Specification. RFC 3208 (Experimental),
Dec. 2001.

J. Vogel, W. Geyer, L.-T. Cheng, and M. J. Muller. Consistency control for synchronous
and asynchronous collaboration based on shared objects and activities. Computer Supported
Cooperative Work, 13(5-6):573-602, 2004.

A. Yonezawa, J.-P. Briot, and E. Shibayama. Object-oriented concurrent programming
abcl/1. In OOPLSA ’86: Conference proceedings on Object-oriented programming systems,
languages and applications, pages 258-268, New York, NY, USA, 1986. ACM Press.

