Parallel State Transfer in Object Replication Systems

Riidiger Kapitza', Thomas Zeman', Franz J. Hauck?, and Hans P. Reiser?

! Dept. of Computer Science 4, University of Erlangen-Niirnberg, Germany
rrkapitz@cs.fau.de, sithzema@cip.informatik.uni-erlangen.de
2 TInstitute of Distributed Systems, Ulm University, Germany
franz.hauck@uni-ulm.de
3 LASIGE, Departamento de Informdtica, University of Lisboa, Portugal
hans@di.fc.ul.pt

Abstract. Replication systems require a state-transfer mechanism in order to re-
cover crashed replicas and to integrate new ones into replication groups. This
paper presents and evaluates efficient techniques for parallel state transfer in such
systems. These techniques enable a faster integration of replicas and improve
overall service availability. On the basis of previous work on distributed down-
load in client-server and peer-to-peer systems, we obtain parallel state-transfer
mechanisms for replicated objects. Our algorithms support static and dynamic
distributed download of state without a priori knowledge about the state size.
A non-blocking transfer minimises the time of service unavailability during state
transfer. In addition, partial state capturing is presented as an additional technique
that improves the parallel transfer of large states.

1 Introduction

Replication is an established way for building reliable distributed applications. In any
replication system, state transfer is required for initialising new replicas as well as
for updating and recovering existing replicas. With the ongoing trend towards self-
organising, dynamic distributed systems, state transfer is becoming an essential aspect
of system performance and availability. For example, if the membership in a replica
group changes frequently, the efficiency of the state transfer plays a non-negligible role
in total system performance. In addition, synchronising the state transfer with state
modification usually requires suspending the application for at least part of the duration
of the transfer. This suspension time reduces system availability.

Current replication systems often use a very simple strategy for transferring the
state from an available replica to the new replica. In this paper, we analyse ways to
improve the performance of state transfer in replica groups. Non-blocking state transfer
minimises the suspension time during the transfer, and parallel transfer from multiple
state-providing replicas to a target avoids bottlenecks in the network. We evaluate the
impact of various state-transfer techniques on the performance and availability of the
running application.

This paper is structured as follows. The next section analyses the challenges of state
transfer in object replication system and discusses related work. Section 3 presents the
non-blocking and parallel variants of state transfer in our architecture. Section 4 gives
a detailed experimental evaluation and Section 5 concludes.

2 Background and Related Work

The transfer of the state of an application raises the following basic questions:

— The internal application state needs to be serialised, i.e., be converted into a location-
independent representation that can be transferred over the network.

— The state transfer (or, more precisely, the serialisation process) needs to be coordi-
nated with the normal operation of the replicated application.

— The state needs to be transferred over the network.

In our prototype, the serialisation is delegated to the application. The replicated ob-
ject needs to implement two methods: a get St at e method serialises the object’s state
into a byte stream, and a set State method sets the object’s state on the basis of data
read from a byte stream. The infrastructure provides these streams; different variants
of the stream implementation can, for example, read/write directly from/to a network
socket or from/to a file on a local disk. This streaming approach allows concurrency
between the serialisation and the actual remote transfer, and it avoids the necessity of
fully storing the serialised state. Thus, it perfectly qualifies for transferring large states.

This paper focuses on the other two questions. While most replication infrastruc-
tures need to suspend an application before state transfer and resume it afterwards, we
minimise this suspension time. In addition, while current systems use a simple trans-
fer from a single node to another, we analyse strategies for parallel state transfer from
multiple up-to-date replicas to a target replica. In the following, we first discuss basic
approaches to state transfer, then extend the discussion to parallel transfer mechanisms.

2.1 Basic Approaches to State Transfer

In an object replication system, the state transfer needs to be coordinated with the ex-
ecution of object methods. The state has to be captured atomically, without concurrent
modifications. Furthermore, the state must be captured at a specific point of time. For
example, if a new replica joins a group of actively replicated objects, it needs the current
state at the moment of the membership change.

The state transfer can be made in a blocking, non-blocking, and checkpoint-based
way. Most systems support state transfer at the group-communication level. Cabaas
and Mestras [1] give an overview of existing approaches to state transfer in replication
frameworks, and discuss the coordination of state transfer with system operation.

In a blocking transfer, a replica resumes the execution of client requests only after
the state is fully transferred to the target node. Arjuna [2] and Electra [3] support an
automatic state transfer when a new member joins a replication group and block the
whole system during the transfer. Phoenix [4] blocks only the members involved in
the state transfer. All three systems block at least some of the group members for the
complete duration of the state transfer. For large application states, this can lead to long
response times [5].

In a non-blocking transfer, it is necessary only to capture the state atomically. The
captured state can, for example, be stored in memory for small states, or written to
hard disk for larger states. The node can resume execution while the captured state is
afterwards transferred to the target over the network. Systems such as JGroups [6] and

Eternal [7] provide such a non-blocking solution. However, both systems target at the
transfer of small application states that can be stored in main memory.

A checkpoint-based approach is a third variant for state transfer, used for exam-
ple by Mishra et al. [8] and Castro [9]. In this approach, every replica makes periodic
checkpoints and records all client requests after the last checkpoint to a log. For state
transfer, the existing checkpoint and log can be transferred to the target, without the
need for explicit state serialisation at the moment of state transfer.

In the domain of replicated database systems, existing work covers the recovery of
replicas using the coordination support offered by group communication frameworks
[10, 11]. Unlike the approaches discussed above, these systems primarily target the re-
covery of replicas by using system properties of databases. Thus, the proposed concepts
can not be directly applied to object replication systems.

This paper targets at improving and extending non-blocking as well as blocking
approaches for direct state transfer in the context of object replication systems. Some
of the proposed techniques can also be applied to the checkpoint-based state-transfer
approach, but this is not addressed further.

2.2 Parallel Transfer

Parallel transfer of state is not popular in object replication system, but it is a standard
technology in other domains such as distributed download and peer-to-peer file-sharing
systems.

Rodriguez, Kirpal and Biersack [12] propose two methods for parallel download
named history-based TCP parallel access and dynamic TCP parallel access. Both ap-
proaches require a dedicated unicast connection from the client to each of the providing
servers. The first approach adapts the packet size depending on the available bandwidth
of the accessed servers, estimated on the basis of bandwidth information gathered in
earlier accesses. According to the authors, history based TCP parallel access produces
good results if the network and server conditions are constant, but lead to poor perfor-
mance otherwise. The dynamic TCP parallel access does not rely on potentially out-
dated history information. A file that is to be downloaded is divided into N blocks of
equal size. The client requests a different block from every server. If a client has com-
pletely received a block, it requests a new, not yet downloaded block from that server.
This simple approach assigns more blocks to faster servers, but fully loads all servers.
Rodriguez et al. [13] discuss the problem that a server has an idle phase between the end
of transmission of a block and the reception of a succeeding request. They suggest re-
quest pipelining to avoid these inter-block idle times. A new block should be requested
at least one round-trip-time (RTT) before the current block is fully received.

Vazhkudai [14] proposes similar parallel access approaches, but targets at down-
loads of large data sets in a grid infrastructure instead of focusing on clients that ac-
cess small and mid-size documents. The simplest proposed approach is brute-force co-
allocation, in which a file is divided in n equal parts that are downloaded in parallel,
with n corresponding to the number of state-providing servers. This approach takes ad-
vantage of all servers, but the time to transfer the whole file depends on the slowest con-
nection and server. Another scheme proposed as predictive co-allocation corresponds to
the history based TCP approach. Third, Vazhkudai describes two variants of a dynamic

approach that takes server and network conditions into account: conservative load bal-
ancing and aggressive load balancing. The first variant is equivalent to dynamic TCP
without pipelining. The second variants uses heuristics to increase the amount of data
requested from fast servers, and reduce the amount requested from slow servers or even
exclude them from download altogether.

3 Decentralised State-Transfer Algorithms

In the following, we adapt the terminology of Xu et al. [15], who classify state-transfer
approaches as static-equal, static-unequal, and dynamic. In contrast to previous work,
we present an implementation that is adapted to fit the needs of distributed state transfer
in active object replication. Our infrastructure provides two variants: The first variant
is static equal, which assigns equal shares to all state-providing servers and uses small
blocks to enable a continuous data flow. The second variant is dynamic and can be
compared to dynamic TCP [12] and brute-force co-allocation [14]. In contrast to those
systems, we support novel approaches for runtime optimisation that are beyond the
typical mechanisms in distributed download applications.

The first issue in object replication systems is that the size of the transfer data is
not known in advance. The transfer data is the result of an application-specific serial-
isation process, and thus it will be created “ad-hoc” at the moment the state transfer
is requested. Theoretically, it is possible to first acquire the complete state from the
application and then start the transfer. This is inefficient in terms of transfer time (the
network transfer is delayed instead of being started in parallel to the state serialisation)
and in terms of resource usage (if the state is transferred during serialisation, it is not
necessary to store the full serialised state in memory or on disk). Thus, we propose
algorithms that do not require the state size to be known a priori.

The second key issue is related in terms of resource usage: At the target of the state
transfer, it is desirable to pass the serialised state data directly to the deserialisation
process. This way, the need for storing a full copy of the serialised data in parallel to
the deserialised data can be eliminated. Such functionality, however, requires that state
data arrive in correct order. Some buffers for temporarily storing out-of-order data can
be provided, but we want our algorithms to provide flow-control mechanisms that limit
the size of such temporary storage. As a result, our approach ensures a low resource
demand.

3.1 Terminology

In our system, the state data is transferred from a set of state providers to a single
transfer target. The transfer protocols are defined by the exchange of data requests
from the transfer target to state providers and data replies in the opposite direction. We
use the following terminology:

— S is the set of state providers (servers).

— D is the state data to transfer. The size | D| is not known in advance.

— A data request is defined by a tuple < s;, start, end >; s;€S, start represents the
first byte and end represent the last byte of a requested byte sequence.

— A data reply is defined as < start, B >, in which start determines the absolute
position in the state data and B represents a transmitted byte sequence, which we
call a block.

If the requested block starts beyond the end of the state data (start > | D)), a state
provider will indicated this fact with an empty response (B = {}). It is possible that a
transfer target requests blocks beyond the end, as | D| is not known in advance.

3.2 Parallel Transfer: Static Equal

The most simple strategy for distributed file transfer is static equal. The transfer data is
split into n pieces of equal size, with n being the number of servers hosting a replica.
Each replica thus has to provide a part of the state data. If the size of the transfer data
is known in advance, it can easily be split into n pieces, like is done by Vazhkudai [14]
and Gkantsidis et al.[16].

Without such knowledge, we must use a different approach. Each server should
provide an equal amount of the state. The solution that we propose is to divide the
state into small blocks of static size and to organise the transfer in rounds. In each
round, the target sends a request to each server in a round-robin way, requesting a new
block that has not been transferred yet. We assume that the block size | B| is defined
at transfer start. In round n (n € M), the requests can be constructed as follows:
<i,nr+ (i —1)|Bl,nr+iB| —1 >, where i = 1, ..., |S| designates the target of the
requests. A round transfers r = |B||.S| of data.

As the state size is not known in advance, we define start,,,, = +00. If a response
a with D = {} is received, we compute start,,q, = min(startyqz, start,). Now, all
requests start = nr+ (i — 1)| B| > startq, can be discarded. As there might be out-
of-order transmissions, one has to wait for all pending requests with start < start,,qq.-
On the server side, the first request b that arrives with start, > |D| causes the server
to send a response B = {}. All subsequent messages requesting data behind the end
of D can be ignored. The server still has to continue participating in the state-transfer
protocol, as requests for blocks before the end position might arrive out of order.

Requesting small blocks is expensive in terms of control messages, as for every
block a request message has to be sent. We use batching to reduce the number of con-
trol messages. Instead of requesting only one block at a time, the set of all blocks of a
configurable number of rounds p is requested from a state provider with a single mes-
sage. Batching can easily be combined with pipelining, as suggested by Rodriguez and
Biersack [13]. With pipelining, the requests for a new batch round are sent before the
previous requests has fully been answered, thus reducing or eliminating the idle time of
the servers between requests.

Instead of batching, two other ways might be used to reduce the cost of control mes-
sages. First, using a large block size could reduce the number of requests. Unfortunately,
this strategy defeats our goal of providing a continuous stream of data that can directly
be fed to the deserialisation process and thus would increase the resource usage at the
receiver side. Second, the sequence of blocks could be assigned statically to each state
provider at the transfer start. This way, each server would start to transfer every n-th
block triggered by a single start message. This strategy leads to problems if the relative

speed of the servers differs. Again, parts of the state of very different positions might
arrive at a time, requiring large buffering and thus causing resource consumption at the
receiver side. Consequently, there is a need for flow control, and using explicit requests
for each block (or set of blocks) automatically provides such a control mechanism.

3.3 Parallel Transfer: Static Unequal

Some existing approaches to parallel file transfer use a technique called static unequal
by Xu et al. [15]. The difference to static equal is the addition of a phase that estimates
the transfer speed from the replicas. This estimation is later used to distributed the size
of the state portions that are transferred according to the relative speed. This way, faster
nodes are statically assigned a larger part than slower ones.

Theoretically, this principle could also be applied to parallel state transfer, using the
same extensions as for static equal. The disadvantage of static unequal, however, is the
addition of the estimation phase that delays the actual phase. A similar estimation can
be obtained from the transfer of the first blocks in the subsequently described dynamic
approach. The dynamic approach, however, is able to adjust the distribution of blocks
dynamically, and, especially if flow control is used, adds no overhead compared to static
unequal. Thus, we consider only the dynamic approach.

3.4 Parallel Transfer: Dynamic

While the static-equal algorithm assigns an equal part of the work to each server, dy-
namic adapts the request strategy at runtime, taking network and server condition into
account. Our algorithm uses a novel approach to runtime adaptation and, in addition,
introduces batching for optimisation.

The basic idea of the algorithm is to request a new block from a server each time the
previously assigned block has been fully transferred. This ensures that servers which are
less loaded and have a better connection (i.e., higher bandwidth and smaller round-trip
time) transmit more data. As a result, the overall transfer time no longer depends on the
slowest server, as it is the case for static equal. Similar to our static-equal approach, we
obtain a continuous data stream with only minimal signalling overhead with a batching
technique.

Our dynamic algorithm adapts the batch size individually for each server. A new
batch is requested immediately after the first block has been successfully received, as
shown in Figure 1. The key idea is to find an optimised batch size. If too much data
is requested, this leads to bad performance in case that the state provider or the corre-
sponding network connection slows down. On the other hand, if too few blocks (in the
extreme, only one block) are requested, this causes undesirable idle times at the state
provider. The ideal is to compute the batch size in a way such that a new batch request
reaches the server when the last block of the previous batch has been fully transmit-
ted. As this is not possible due to the unpredictable behaviour of the network and the
server load, an estimation is used. We use a strategy inspired by Rodriguez and Bier-
sack [13], who suggest to estimate an upper bound of the RTT and use this as a mark
for submitting the next request.

Client Server Client Server

(a) Sub-optimal batchsize (p=3) caus- (b) Optimal batchsize (p=5)
ing idle time

Fig. 1. Static Dynamic request scheme with adaptive batch size

Figure 1(a) shows an idle time, ¢,, that should be avoided by adjusting the batch
size. As shown in Figure 1(b), the batch size should be as big as it is necessary to keep
the state provider busy until the next requests arrives. The value of ¢, can be computed
ast, = RTT — ty(p — 1) = RTT — &(p — 1). In this formula, ¢, is the transfer time
for a single block, b denotes the block size, p is the batch length, and C'is the transfer
speed of the network. In the optimal case we require ¢, = 0, and thus we can compute
p = RTT% + 1. The value of p depends on runtime conditions. An estimate of C'
can be determined by measuring the time ¢; and computing C' = % The RTT can be
measured in a straightforward way. As both values depend on runtime measurements
that might temporarily fluctuate, an exponential moving average is used to eliminate
outliers and to include previous values, but give more recent ones more impact. If the
computed batch length is very short, the benefit of batching vanishes, causing a high
request overhead. To compensate this fact, we introduce a configurable minimal batch

length (e.g., 3).

3.5 Partial State Capturing

In a non-blocking state transfer, the serialised state data is temporarily stored at the state
providers. If the state size exceeds the available memory, disk storage has to be used.
Writing the state to disk is a bottleneck that limits the performance of the state acqui-
sition, and thus also determines the period of unavailability during state serialisation.
Moreover, starting the network transfer of the state in parallel to the state serialisation
causes concurrent read and write operations on the same disk, which further decreases
the performance.

The performance penalty of writing state data to disk can be reduced in a parallel
download strategy by writing only a partial state to disk at each state provider. This
requires a coordination between state capturing and state transfer. In case of the static
equal approach, the parts of the state that a replica has to transmit are known at transfer

start, and thus the state acquistion process at node s; only has to write the corresponding
parts of the state, which are the blocks s; + n|S| (n € Ny).

Using the same approach with the dynamic transfer strategy is more difficult, as
there is no fixed rule that defines the blocks that are requested from a replica. Instead,
the blocks are defined at run-time. If all replicas write disjunct parts of the state, only
a static equal transfer can be used. Using partial state capturing with dynamic transfer
can, however, be used with a more relaxed rule. All replicas can write overlapping
parts of the state (for example, by letting every replica write half of the state). The
writing strategy must be defined at transfer start, and the request algorithm must take
into account the availability of blocks at each state provider. The amount of overlap is
a trade-off between being able to redistribute load and being able to reduce the cost of
state capturing.

4 Experimental Evaluation

This section gives a brief overview of our prototype implementation and evaluates the
parallel state-transfer strategies discussed in the previous section in a homogeneous
LAN environment and a heterogeneous WAN setting. Finally, the impact of a non-
blocking state transfer on service availability is investigated.

4.1 Implementation Overview

The proposed algorithms and mechanisms have been implemented as a protocol layer of
the Java-based JGroups [6] group communication framework, which is used for repli-
cation support in our Aspectix middleware [17]. JGroups has a modular protocol stack
that is configured at start-up time. An application accesses the framework via a chan-
nel that provides a socket-like communication endpoint. A channel provides a local
unique address and enables an application to exchange unicast messages with single
members and multicast messages with all members connected to the channel. Each
protocol can be configured via properties during the stack initialisation. There are es-
sentially two kinds of transmission units named events and messages. Events represent
a signalling mechanism for corresponding protocol layers. Messages are application-
dependent transmission units.

The message sequence diagram in Figure 2 outlines the basic signalling of the non-
blocking variant of our distributed state-transfer protocol. Initially, an application re-
quests its current state via GET_DSTATE. The distributed state transfer protocol (dstp)
layer immediately returns a Java InputStream to the application, which uses this
stream to deserialise the state. Next, the dstp layer sends a NEED_CURRENT_STATE
message to all members including the local node. This event causes all members to
enqueue all subsequent messages and a GET_APPSTATE message is forwarded to the
replicas. This message includes a Java Output St ream, which the application uses
to serialise the state. All members of the group that reply by sending an event named
STATE_VIEW. If there is already an ongoing state transfer, this message and all other
actions are suppressed. The joining node will be informed by STATE_ TRANSFER_DONE

that an earlier initiated state transfer has finished and can restart its state request by re-
sending NEED_CURRENT_STATE. If there is no active state transfer, the requesting
node will receive the STATE_VIEW message events of all group members. Collecting
these messages provides the information about all fully-functional nodes, enabling the
requesting node to compute the request strategy. For example, assuming a non-blocking
state transfer with partial state writing and the dynamic algorithm, not every node can
provide every part of the state. Consequently, this has to be taken into account when
requesting parts of the state. After reception of the STATE_VIEW message, the join-
ing node can request the state according to the request strategy by sending dedicated
DATA_REQUEST messages, which are answered by DATA_RESPONSE messages. As
soon as the requesting node has received the whole state, the state transfer is finished
by sending a STATE_ TRANSFER_DONE.

Application DSTP DSTP Application

GET_DSTATE

DSTATE_STREAM

A

NEED_CURRENT_STATE

start queueing k_)

A\ 4

start queueing

P start stream output
STATE_VIEW GET_APPSTATE

A

&

DATA_REQUEST « close stream
— stop queueing

A 4

DATA_RESPONSE send messages

<
'

'
'
' g

STATE_TRANSFER_DONE

stop queueing ’

send messages

\ 4

AA

Fig. 2. Message Exchange of the Non-Blocking Distributed State Transfer Protocol

4.2 State Transfer in a Homogeneous LAN Environment

Group communication and active replication of objects often takes place in a homoge-
neous cluster environment. Thus, the following measurements have been made on a set
of PCs with a AMD Athlon 2.0 GHz CPU and 1 GB RAM, using Linux kernel 2.6.17,
SUN Java SDK 1.5.0_09, and connected by a 100 MBit/s switched Ethernet network.
We measured the time to do state transfer of state sizes between 0 and 200 MB for
replication groups using the static equal and the dynamic state transfer algorithm. As
the impact of parallel state transfer depends on the number of state providers, we varied
the group size from one to four state-providing nodes. In all experiments, we used a
fixed batch length of 10 and a block size of 16 kB. In order to compare our prototype
implementations with existing state-transfer protocols, we did the same measurements

with two state-transfer protocols provided by the JGroups group communication frame-
work. The first variant, implemented by JGroups version 2.3, supports a non-blocking
state transfer that requires the application to provide the state as a byte array that is
transferred to the joining node. The second variant has recently been made available in
the preview version of the future JGroups 2.5. It offers an API similar to our prototype
and supports a blocking streaming state transfer.

24—
22—
20—
18
o)
§ 16—
14—
g @e—e@ 1 replicadynamic
= 12— B -m lreplicastatic
g oL 2repl!cadyn_amm
8 H--W 2 replicastatic
= 8 @—® 3 replicadynamic
6 3replicastatic
4 replicadynamic
4 N ‘W 4replicastatic
jgroups 2.5
2 ¢—¢ jgroups 2.3

| | L L L
40 60 80 100 120 140 160 180 200
state size (MB)

Fig. 3. State transfer in a LAN environment

Figure 3 shows the results of the measurement. The old state transfer protocol of
JGroups 2.3 is not suitable for transferring states larger than 50 MB. The JGroups 2.5
state transfer protocol implementations scales better, but is not as efficient as any of our
parallel state-transfer variants. The static equal parallel transfer produces very similar
results for any number of state providers. The dynamic transfer offers a slight speed-up
with 2 and 3 state providers, compared to only a single one. However, the performance
drops back again with 4 providers. We assume that this is due to a network saturation at
the link to the target and the overhead for sending requests to an increasing number of
state providers.

All streaming state transfer variants produced good results that are close to each
other. The dynamic variant performed slightly better than the static one, but the dif-
ference is very small. This matches our expectations, as a static equal distribution of
state-transfer tasks on all nodes should be well-suited for the given homogeneous envi-
ronment.

10

In practice, a LAN or cluster environment often is not dedicated to a single appli-
cation. Thus, in a second experiment we evaluated the impact of CPU load at one of
the state providing replicas. We implemented a simple load generator to produce a pre-
dictable and reproducible load. During the whole experiment, the selected node had a
system CPU load between 2 and 3. We chose a group size of three replicas and a fourth
node that joins the group. Again, we increased the state size from 0 to 200 MB in steps
of 10 MB.

Figure 4 shows the strong impact on the state streaming Jgroups implementation.
The state transfer time roughly doubles in comparison to an unloaded system. Both
the dynamic and the static implementation perform better, as the state transfer is split
among all state-providing replicas. The dynamic variant in general outperforms JGroups 2.5
and static equal state transfer.

50

-

@—@ dynamic
N W static
4—& jgroups 2.5

W
=}
I

transfer time (seconds)
8 B
I I

=
[

10

100 120 140 160 180 200
state size (MB)

Fig. 4. State transfer in a LAN environment with load injection

In summary, the two experiments have shown that the introduction of parallel down-
load techniques accelerates the transfer of large application states. While the benefit is
only small in an idle environment, a significant speed-up is obtained in an environment
with high CPU load. In both cases, the proposed dynamic state transfer algorithm out-
performs the streaming state transfer offered by JGroups 2.5 and the parallel static equal
algorithm.

4.3 State Transfer in a Heterogeneous WAN Environment

For evaluating the proposed techniques in a heterogeneous WAN environment, we
chose a set of four different nodes. Two nodes are located in the same sub-network at

11

the FAU Erlangen-Nuernberg, a third node fauiOOa is located in a different sub-network
also at the campus of the FAU. Finally the fourth node schirk is located more distant at
Ulm University.

In the experiment we set up a group of three replicas and let the fourth node join the
group. We chose two scenarios: One time one of the machines at FAU faui0Oa joined
the group and another time schirk the node located at Ulm University entered the group
(cf. Figure 5).

Again the state transfer protocol of JGroups 2.3 did not scale and had memory
problems especially when the distant node joined the group. The JGroups 2.5 protocol
produced better results than the implementation of JGroups 2.3 and, as expected, re-
quires more time for state transfer if the node at Ulm University joins the group. The
transfer values of static equal are very close together, independent of the location of the
joining node. Static equal is in general better than JGroups 2.5 if the distant node joins
the group, but slower if the joining node is located at FAU. This is to be expected, as
static equal waits for the slowest node to start another round. The dynamic parallel state
transfer performs best regardless of the location of the joining node.

30

&—& jgroups 2.3 - schirk
jgroups 2.3 - fauiOOa
9—& jgroups 2.5 - faui00a
jgroups 2.5 - schirk
static equal - faui0Oa
- W static equal - schirk
@®—® dynamic - fauiOOa
@—@ dynamic - schirk

25

N
o

transfer time (seconds)
=
ol

=
o

50 100
state size (MB)

Fig. 5. State transfer in a WAN environment

4.4 Non-blocking State Transfer

This experiment does not target the reduction of the state transfer time, but instead
evaluates the reduction of service unavailability caused by a state transfer.

We set up a replication group of two nodes. One node sending probe message every
100 ms to all group members. Every node that receives a probe message immediately

12

replies to the probe and the sender records the round-trip time. Again we let a third node
repeatedly join the group and raised step-wise the state size from 0 to 200 MB. During
this process the joining replica recorded the time to acquire the state and the providing
nodes logged the time to hand over the state to the group-communication framework.
As Figure 6 details by the strong red and black lines, far less time is required to provide
the state to the framework than to transfer the whole state. This is achieved as the state
is temporarily saved on disk. Directly after the state provision, the application is able to
respond to requests, as the second set of curves shows.

n
o

~

N
®
I

— state providing node
— dtate requesting node e

—T
N\
\

.
N
I

blocking time & message round-trip time (seconds)
© 5
T T

I LI
0 20 40 60 80 100 120 140 160 180 200

state transfer time (MB)

o

Fig. 6. The impact of a non-blocking state transfer on blocking time and message delay

5 Conclusions

This paper has presented and evaluated concepts for parallel state transfer in object
replication systems. First, this paper presented and evaluated the implementation of
parallel state transfer in an object replication system. While parallel download has pre-
viously been used with success in client-server systems as well as in decentralised peer-
to-peer systems, it is currently not used in general infrastructures for object replication.
Second, we have defined parallel state-transfer algorithms that work with an object state
of unknown a priori size. In our application domain, the size of the serialised state of the
replicas is usually unknown; this differs from the situation in other parallel download
scenarios, in which files of known size are transferred. Third, we have presented partial
state capturing as a technique that enables efficient non-blocking parallel transfer of
large application states by generating only a partial state copy on disk.

13

An experimental evaluation has given important information about which state-
transfer strategies are most important, depending on the size of the application state
and the distribution of the system. We have particaluary shown that a dynamic parallel
transfer enables a highly efficient state transfer. Besides minimising transfer time, our
approach also minimises the time that replicas are unavailable because of suspension
during state transfer.

References

1. L. Pefia Cabaiias and J. Pavon Mestras. Conditions for the state transfer on virtual syn-
chronous systems. In Proc. of the 10th Int. Conf. on Computing and Information ICCI’
2000, volume LNCS, 2023. Springer, 2000.

2. G. D. Parrington, S. K. Shrivastava, S. M. Wheater, and M. C. Little. The design and imple-
mentation of arjuna. Computing Systems, 8(2):255-308, 1995.

3. S. Maffeis. Adding group communication and fault-tolerance to CORBA. In Proc. of the
Conf. on Object-Oriented Technologies, (Monterey, CA), USENIX, pages 135-146, 1995.

4. C. P. Malloth. Conception and implementation of a toolkit for building fault-tolerant dis-
tributed applications in large scale networks. PhD thesis, EPFL, 1996.

5. K. Birman. Building secure and reliable network applications. Manning Publications Co.,
Greenwich, CT, USA, 1997.

6. B. Ban. Design and implementation of a reliable group communication toolkit for Java.
Technical report, Dept. of Computer Science, Cornell University, 1998.

7. P. Narasimhan, L. Moser, and P. M. Melliar-Smith. State synchronization and recovery for
strongly consistent replicated CORBA objects. In DSN, pages 261-270, 2001.

8. S. Mishra, L. Peterson, and R. Schlichting. Consul: a communication substrate for fault-
tolerant distributed programs. Distributed Systems Engineering, 1(2):87-103, 1993.

9. M. Castro. Practical Byzantine Fault Tolerance. Ph.D., MIT, January 2001. Also as Techni-
cal Report MIT-LCS-TR-817.

10. B. Kemme, A. Bartoli, and O. Babaoglu. Online reconfiguration in replicated databases
based on group communication. In DSN ’01: Proc. of the 2001 Int. Conf. on Dependable
Systems and Networks, pages 117-130, Washington, DC, USA, 2001. IEEE Computer Soci-
ety.

11. R. Jiménez-Peris, M. Patifio-Martinez, and G. Alonso. Non-intrusive, parallel recovery of
replicated data. In SRDS ’02: Proc. of the 21st IEEE Symp. on Reliable Distributed Systems
(SRDS’02), page 150, Washington, DC, USA, 2002. IEEE Computer Society.

12. P.Rodriguez, A. Kirpal, and E. W. Biersack. Parallel-access for mirror sites in the internet. In
INFOCOM 2000. Nineteenth Annual Joint Conf. of the IEEE Computer and Communications
Societies. Proc.. IEEE, volume 2, pages 864—873 vol.2, 2000.

13. P. Rodriguez and E. W. Biersack. Dynamic parallel access to replicated content in the inter-
net. IEEE/ACM Trans. Netw., 10(4):455-465, 2002.

14. S. Vazhkudai. Distributed downloads of bulk, replicated grid data. J. Grid Comput., 2(1):31—
42, 2004.

15. Z. Xu, L. Xianliang, H.Mengshu, and Z. Chuan. A speed-based adaptive dynamic parallel
downloading technique. SIGOPS Oper. Syst. Rev., 39(1):63-69, 2005.

16. C. Gkantsidis, M. Ammar, and E. Zegura. On the effect of large-scale deployment of parallel
downloading. In WIAPP ’03: Proc. of the The Third IEEE Workshop on Internet Applica-
tions, pages 79-89, Washington, DC, USA, 2003. IEEE Computer Society.

17. H. P. Reiser, R. Kapitza, J. Domaschka, and F. J. Hauck. Fault-tolerant replication based
on fragmented objects. In Proc. of the 6th IFIP Int. Conf. on Distributed Applications and
Interoperable Systems (DALS 2006), 2006.

14

